EN
登录

细胞外和跨膜结构域之间的构象偶联调节全粘附GPCR功能

Conformational coupling between extracellular and transmembrane domains modulates holo-adhesion GPCR function

Nature 等信源发布 2024-12-04 20:17

可切换为仅中文


AbstractAdhesion G Protein-Coupled Receptors (aGPCRs) are key cell-adhesion molecules involved in numerous physiological functions. aGPCRs have large multi-domain extracellular regions (ECRs) containing a conserved GAIN domain that precedes their seven-pass transmembrane domain (7TM). Ligand binding and mechanical force applied on the ECR regulate receptor function.

摘要粘附G蛋白偶联受体(aGPCRs)是参与多种生理功能的关键细胞粘附分子。AGPCR具有较大的多结构域胞外区域(ECR),其中包含一个保守的GAIN结构域,该结构域位于其七次跨膜结构域(7TM)之前。施加在ECR上的配体结合和机械力调节受体功能。

However, how the ECR communicates with the 7TM remains elusive, because the relative orientation and dynamics of the ECR and 7TM within a holoreceptor is unclear. Here, we describe the cryo-EM reconstruction of an aGPCR, Latrophilin3/ADGRL3, and reveal that the GAIN domain adopts a parallel orientation to the transmembrane region and has constrained movement.

然而,ECR如何与7TM通信仍然难以捉摸,因为ECR和7TM在全受体内的相对方向和动力学尚不清楚。在这里,我们描述了aGPCR,Latrophilin3/ADGRL3的低温EM重建,并揭示了GAIN结构域与跨膜区域平行,并且运动受限。

Single-molecule FRET experiments unveil three slow-exchanging FRET states of the ECR relative to the transmembrane region within the holoreceptor. GAIN-targeted antibodies, and cancer-associated mutations at the GAIN-7TM interface, alter FRET states, cryo-EM conformations, and receptor signaling. Altogether, this data demonstrates conformational and functional coupling between the ECR and 7TM, suggesting an ECR-mediated mechanism for aGPCR activation..

单分子FRET实验揭示了ECR相对于全受体内跨膜区域的三种缓慢交换FRET状态。GAIN靶向抗体和GAIN-7TM界面处的癌症相关突变会改变FRET状态,冷冻EM构象和受体信号传导。总而言之,该数据证明了ECR和7TM之间的构象和功能耦合,表明了ECR介导的aGPCR激活机制。。

IntroductionWith 33 members in humans, the adhesion G protein-coupled receptors (aGPCRs) make up the second-largest GPCR family, but the molecular mechanisms underlying their activation and modulation are not fully understood1,2,3. Genetic studies have demonstrated critical roles for aGPCRs in development, immunity, and neurobiology, including brain development4,5,6,7,8, myelination9, brain angiogenesis10, and neural tube development11,12.

引言人类有33个成员,粘附G蛋白偶联受体(aGPCRs)构成第二大GPCR家族,但其激活和调节的分子机制尚未完全了解1,2,3。遗传学研究表明,aGPCRs在发育,免疫和神经生物学中起着关键作用,包括大脑发育4,5,6,7,8,髓鞘形成9,脑血管生成10和神经管发育11,12。

They are also linked to various diseases such as neurodevelopmental disorders, deafness, male infertility, attention deficit-hyperactivity disorder, schizophrenia, immune disorders, and cancers6,13,14,15,16. While 35% of FDA-approved drugs target GPCRs17, aGPCRs have yet to be targeted therapeutically, primarily due to our limited understanding of their functional modulation.The distinctive chimeric architecture of aGPCRs differentiates them from conventional GPCRs13,18.

它们还与各种疾病有关,如神经发育障碍,耳聋,男性不育,注意力缺陷多动障碍,精神分裂症,免疫障碍和癌症6,13,14,15,16。虽然35%的FDA批准的药物靶向GPCRs17,但aGPCRs尚未成为治疗靶点,主要是由于我们对其功能调节的了解有限。aGPCRs独特的嵌合结构使其与传统的GPCR区分开来13,18。

In addition to their signaling seven transmembrane (7TM) helices that are characteristic of all GPCRs, aGPCRs also have large (up to 6000 residues), multidomain extracellular regions (ECRs). The ECR is characterized by a conserved GPCR Autoproteolysis INducing (GAIN) domain that is always positioned at the far C-terminus of the ECR, in close proximity to the 7TM region19.

除了它们的信号传导七个跨膜(7TM)螺旋是所有GPCR的特征外,AGPCR还具有大的(多达6000个残基)多域细胞外区域(ECR)。ECR的特征在于保守的GPCR自蛋白水解诱导(GAIN)结构域,其总是位于ECR的远C末端,紧邻7TM区域19。

The GAIN domain contains an autoproteolysis site between its last two β-strands, and it is cleaved during protein maturation in the endoplasmic reticulum19,20,21. After autoproteolysis, the cleaved fragments stay non-covalently connected on the cell surface. The multidomain structure of the ECR allows it to interact with protein ligands found on adjacent cells or within the extracellular matrix.

GAIN结构域在其最后两条β链之间包含一个自蛋白水解位点,并且在内质网中的蛋白质成熟过程中被切割19,20,21。自蛋白水解后,切割的片段在细胞表面保持非共价连接。ECR的多结构域结构使其能够与相邻细胞或细胞外基质中发现的蛋白质配体相互作用。

These interactions give rise to mechanical forces that are key for regulating receptor activation by modul.

这些相互作用产生的机械力是调节modul受体激活的关键。

Data availability

数据可用性

The cryo-EM density map has been deposited in the Electron Microscopy Data Bank under accession code EMD-43523, and the coordinates for the model of HormR/GAIN domains of ADGRL3 in complex with sAB LK3 generated in this study have been deposited in the Protein Data Bank under accession code PDB 8vti.

低温电磁密度图已以登录号EMD-43523保存在电子显微镜数据库中,并且本研究中产生的与sAB LK3复合的ADGRL3的HormR/GAIN结构域模型的坐标已保存在蛋白质数据库中,登录号为PDB 8vti。

The available structure of the apo-state 7TM region of ADGRL3 referenced in this work is available under the accession code 8jmt. Sample single molecule image data of ADGRL3 WT and ADGRL3 S810L/E811Q has been deposited in the Harvard Dataverse repository at https://doi.org/10.7910/DVN/W446VI. All data supporting the findings of this study are available within the article and Supplementary Information/Source Data files.

这项工作中引用的ADGRL3的载脂蛋白状态7TM区域的可用结构可在登录号8jmt下获得。ADGRL3 WT和ADGRL3 S810L/E811Q的样品单分子图像数据已保存在哈佛大学Dataverse存储库中https://doi.org/10.7910/DVN/W446VI.。

Raw smFRET traces data sets can be provided upon request to the corresponding author R.V. Source data are provided with this paper..

。。

ReferencesFolts, C. J., Giera, S., Li, T. & Piao, X. Adhesion G protein-coupled receptors as drug targets for neurological diseases. Trends Pharmacol. Sci. 40, 278–293 (2019).Article

参考文献Folts,C.J.,Giera,S.,Li,T。&Piao,X。粘附G蛋白偶联受体作为神经系统疾病的药物靶标。趋势药理学。科学。40278-293(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Monk, K. R. et al. Adhesion G protein-coupled receptors: from in vitro pharmacology to in vivo mechanisms. Mol. Pharmacol. 88, 617–623 (2015).Article

Monk,K.R.等人,《粘附G蛋白偶联受体:从体外药理学到体内机制》。。88617-623(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Araç, D. & Leon, K. in GPCRs Structure Function and Drug Discovery (Elsevier, 2020).Bae, B.-I. et al. Evolutionarily dynamic alternative splicing of GPR56 regulates regional cerebral cortical patterning. Science 343, 764–768 (2014).Article

Araç,D。&Leon,K。在GPCRs结构功能和药物发现中(Elsevier,2020)。Bae,B.-I.等人。GPR56的进化动态选择性剪接调节局部大脑皮层模式。科学343764-768(2014)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pederick, D. T. et al. Reciprocal repulsions instruct the precise assembly of parallel hippocampal networks. Science 372, 1068–1073 (2021).Article

Pederick,D.T。等人。相互排斥指导平行海马网络的精确组装。科学3721068-1073(2021)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Piao, X. et al. G protein-coupled receptor-dependent development of human frontal cortex. Science 303, 2033–2036 (2004).Article

Piao,X。等人,人类额叶皮层的G蛋白偶联受体依赖性发育。科学3032033-2036(2004)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sando, R., Jiang, X. & Südhof, T. C. Latrophilin GPCRs direct synapse specificity by coincident binding of FLRTs and teneurins. Science 363, eaav7969 (2019).Wang, J. et al. RTN4/NoGo-receptor binding to BAI adhesion-GPCRs regulates neuronal development. Cell 185, 218 (2022).Article

Sando,R.,Jiang,X。&Südhof,T.C。Latrophilin GPCR通过FLRT和teneurins的同时结合来指导突触特异性。科学363,eaav7969(2019)。Wang,J。等人。RTN4/NoGo受体与BAI粘附GPCR的结合调节神经元发育。细胞185218(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Monk, K. R. et al. A G protein-coupled receptor is essential for Schwann cells to initiate myelination. Science 325, 1402–1405 (2009).Article

Monk,K.R.等人。G蛋白偶联受体对于雪旺氏细胞启动髓鞘形成至关重要。科学3251402-1405(2009)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kuhnert, F. et al. Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124. Science 330, 985–989 (2010).Article

Kuhnert,F。等人。孤儿G蛋白偶联受体GPR124对中枢神经系统血管生成的重要调节。科学330985-989(2010)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Langenhan, T. et al. Latrophilin signaling links anterior-posterior tissue polarity and oriented cell divisions in the C. elegans embryo. Dev. Cell 17, 494–504 (2009).Article

Langenhan,T。等人。Latrophilin信号传导将秀丽隐杆线虫胚胎中的前后组织极性和定向细胞分裂联系起来。Dev.Cell 17494-504(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Usui, T. et al. Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell 98, 585–595 (1999).Article

Flamingo是一种七通道跨膜钙粘蛋白,在卷曲蛋白的控制下调节平面细胞的极性。细胞98585-595(1999)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Langenhan, T., Aust, G. & Hamann, J. Sticky signaling–adhesion class G protein-coupled receptors take the stage. Sci. Signal. 6, re3–re3 (2013).Article

Langenhan,T.,Aust,G。&Hamann,J。Sticky signaling–粘附G类蛋白偶联受体登上舞台。科学。信号。6,re3–re3(2013)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Liebscher, I. et al. A guide to adhesion GPCR research. FEBS J. 289, 7610–7630 (2021).O’Hayre, M. et al. The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nat. Rev. Cancer 13, 412–424 (2013).Article

Liebscher,I。等人,《粘附GPCR研究指南》。FEBS J.2897610–7630(2021)。O'Hayre,M。等人。癌症中G蛋白和G蛋白偶联受体的新兴突变景观。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Prömel, S., Langenhan, T. & Araç, D. Matching structure with function: the GAIN domain of Adhesion-GPCR and PKD1-like proteins. Trends Pharmacol. Sci. 34, 470–478 (2013).Article

Prömel,S.,Langenhan,T。&Araç,D。将结构与功能相匹配:粘附GPCR和PKD1样蛋白的GAIN结构域。趋势药理学。科学。34470–478(2013)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Drews, J. Drug discovery: a historical perspective. Science 287, 1960–1964 (2000).Article

Drews,J。药物发现:历史观点。科学2871960-1964(2000)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lala, T. & Hall, R. A. Adhesion G protein-coupled receptors: structure, signaling, physiology, and pathophysiology. Physiol. Rev. 102, 1587–1624 (2022).Article

Lala,T。&Hall,R.A。粘附G蛋白偶联受体:结构,信号传导,生理学和病理生理学。生理学。版本1021587-1624(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Araç, D. et al. A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis. EMBO J. 31, 1364–1378 (2012).Article

Araç,D。等人。细胞粘附GPCR的新型进化保守结构域介导自蛋白水解。EMBO J.311364–1378(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chang, G.-W. et al. Proteolytic cleavage of the EMR2 receptor requires both the extracellular stalk and the GPS motif. FEBS Lett. 547, 145–150 (2003).Article

Chang,G.-W.等人。EMR2受体的蛋白水解切割需要细胞外茎和GPS基序。FEBS Lett公司。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lin, H.-H. et al. Autocatalytic cleavage of the EMR2 receptor occurs at a conserved G protein-coupled receptor proteolytic site motif. J. Biol. Chem. 279, 31823–31832 (2004).Article

Lin,H.-H.等人。EMR2受体的自催化裂解发生在保守的G蛋白偶联受体蛋白水解位点基序上。J、 生物。化学。2793183–31832(2004)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Liebscher, I. et al. A tethered agonist within the ectodomain activates the adhesion G protein-coupled receptors GPR126 and GPR133. Cell Rep. 9, 2018–2026 (2014).Article

Liebscher,I。等人。胞外域内的束缚激动剂激活粘附G蛋白偶联受体GPR126和GPR133。Cell Rep.92018–2026(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Stoveken, H. M., Hajduczok, A. G., Xu, L. & Tall, G. G. Adhesion G protein-coupled receptors are activated by exposure of a cryptic tethered agonist. Proc. Natl Acad. Sci. USA 112, 6194–6199 (2015).Article

Stoveken,H.M.,Hajduczok,A.G.,Xu,L。和Tall,G.G。粘附G蛋白偶联受体通过暴露隐蔽的束缚激动剂而被激活。程序。国家科学院。科学。美国1126194–6199(2015)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nazarko, O. et al. A comprehensive mutagenesis screen of the adhesion GPCR latrophilin-1/ADGRL1. iScience 3, 264–278 (2018).Article

Nazarko,O。等人。粘附GPCR-latrophilin-1/ADGRL1的综合诱变筛选。iScience 3264-278(2018)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wilde, C. et al. The constitutive activity of the adhesion GPCR GPR114/ADGRG5 is mediated by its tethered agonist. FASEB J. 30, 666–673 (2016).Article

Wilde,C。等人。粘附GPCR GPR114/ADGRG5的组成型活性由其束缚激动剂介导。FASEB J.30666–673(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bernadyn, T. F., Vizurraga, A., Adhikari, R., Kwarcinski, F. & Tall, G. G. GPR114/ADGRG5 is activated by its tethered peptide agonist because it is a cleaved adhesion GPCR. J. Biol. Chem. 299, 105223 (2023).Article

Bernadyn,T.F.,Vizurraga,A.,Adhikari,R.,Kwarcinski,F。&Tall,G.G。GPR114/ADGRG5被其栓系肽激动剂激活,因为它是一种裂解的粘附GPCR。J、 生物。化学。299105223(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kishore, A., Purcell, R. H., Nassiri-Toosi, Z. & Hall, R. A. Stalk-dependent and stalk-independent signaling by the adhesion G protein-coupled receptors GPR56 (ADGRG1) and BAI1 (ADGRB1). J. Biol. Chem. 291, 3385–3394 (2016).Article

Kishore,A.,Purcell,R.H.,Nassiri-Toosi,Z。&Hall,R.A。通过粘附G蛋白偶联受体GPR56(ADGRG1)和BAI1(ADGRB1)进行茎依赖性和茎非依赖性信号传导。J、 生物。化学。2913385-3394(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Salzman, G. S. et al. Stachel -independent modulation of GPR56/ADGRG1 signaling by synthetic ligands directed to its extracellular region. Proc. Natl Acad. Sci. USA 114, 10095–10100 (2017).Article

Salzman,G.S.等人。通过针对其细胞外区域的合成配体对GPR56/ADGRG1信号传导的Stachel非依赖性调节。程序。国家科学院。科学。美国11410095–10100(2017)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bui, D. L. H. et al. The adhesion GPCRs CELSR1–3 and LPHN3 engage G proteins via distinct activation mechanisms. Cell Rep. 42, 112552 (2023).Article

Bui,D.L.H.等人。粘附GPCR CELSR1-3和LPHN3通过不同的激活机制与G蛋白结合。细胞代表42112552(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Prömel, S. et al. The GPS motif is a molecular switch for bimodal activities of adhesion class G protein-coupled receptors. Cell Rep. 2, 321–331 (2012).Article

GPS基序是粘附G类蛋白偶联受体双峰活性的分子开关。Cell Rep.2321–331(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dates, A. N. et al. Heterogeneity of tethered agonist signaling in adhesion G protein-coupled receptors. Cell Chem. Biol. 31, 1542–1553.e4 (2024).Leon, K. et al. Structural basis for adhesion G protein-coupled receptor Gpr126 function. Nat. Commun. 11, 194 (2020).Article

Dates,A.N.等人。粘附G蛋白偶联受体中栓系激动剂信号传导的异质性。细胞化学。生物学311542-1553.e4(2024)。Leon,K。等人。粘附G蛋白偶联受体Gpr126功能的结构基础。。11194(2020)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Purcell, R. H. & Hall, R. A. Adhesion G protein–coupled receptors as drug targets. Annu. Rev. Pharmacol. Toxicol. 58, 429–449 (2018).Article

Purcell,R.H。和Hall,R.A。粘附G蛋白偶联受体作为药物靶标。年。药理学杂志。毒理学。58429-449(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Salzman, G. S. et al. Structural basis for regulation of GPR56/ADGRG1 by its alternatively spliced extracellular domains. Neuron 91, 1292–1304 (2016).Article

Salzman,G.S.等人。通过其选择性剪接的细胞外结构域调节GPR56/ADGRG1的结构基础。神经元911292-1304(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kordon, S. P. et al. Isoform- and ligand-specific modulation of the adhesion GPCR ADGRL3/Latrophilin3 by a synthetic binder. Nat. Commun. 14, 635 (2023).Article

Kordon,S.P.等人。合成粘合剂对粘附GPCR ADGRL3/Latrophilin3的同工型和配体特异性调节。。14635(2023)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Stephan, G., Frenster, J. D., Liebscher, I. & Placantonakis, D. G. Activation of the adhesion G protein-coupled receptor GPR133 by antibodies targeting its N-terminus. J. Biol. Chem. 298, 101949 (2022).Paavola, K. J., Stephenson, J. R., Ritter, S. L., Alter, S. P. & Hall, R. A. The N terminus of the adhesion G protein-coupled receptor GPR56 controls receptor signaling activity.

Stephan,G.,Frenster,J.D.,Liebscher,I。和Placantonakis,D.G。通过靶向其N端的抗体激活粘附G蛋白偶联受体GPR133。J、 生物。化学。298101949(2022)。Paavola,K.J.,Stephenson,J.R.,Ritter,S.L.,Alter,S.P。&Hall,R.A。粘附G蛋白偶联受体GPR56的N末端控制受体信号传导活性。

J. Biol. Chem. 286, 28914–28921 (2011).Article .

J.生物学。化学。286, 28914-28921 (2011).第条。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Beliu, G. et al. Tethered agonist exposure in intact adhesion/class B2 GPCRs through intrinsic structural flexibility of the GAIN domain. Mol. Cell 81, 905–921.e5 (2021).Article

Beliu,G。等人。通过GAIN结构域的内在结构灵活性,在完整粘附/B2类GPCR中束缚激动剂暴露。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Barros-Álvarez, X. et al. The tethered peptide activation mechanism of adhesion GPCRs. Nature 604, 757–762 (2022).Article

Barros-Álvarez,X。等人。粘附GPCR的栓系肽激活机制。自然604757-762(2022)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xiao, P. et al. Tethered peptide activation mechanism of the adhesion GPCRs ADGRG2 and ADGRG4. Nature 604, 771–778 (2022).Article

Xiao,P。等人。粘附GPCR ADGRG2和ADGRG4的栓系肽激活机制。自然604771-778(2022)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ping, Y.-Q. et al. Structural basis for the tethered peptide activation of adhesion GPCRs. Nature 604, 763–770 (2022).Article

Ping,Y.-Q.等人。粘附GPCR的栓系肽激活的结构基础。自然604763-770(2022)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Qu, X. et al. Structural basis of tethered agonism of the adhesion GPCRs ADGRD1 and ADGRF1. Nature 604, 779–785 (2022).Article

Qu,X。等人。粘附GPCR ADGRD1和ADGRF1的束缚激动作用的结构基础。自然604779-785(2022)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ohta, S. et al. Agonistic antibodies reveal the function of GPR56 in human glioma U87-MG cells. Biol. Pharm. Bull. 38, 594–600 (2015).Article

激动性抗体揭示了GPR56在人脑胶质瘤U87-MG细胞中的功能。生物制药公牛。38594-600(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chu, T.-Y. et al. GPR97 triggers inflammatory processes in human neutrophils via a macromolecular complex upstream of PAR2 activation. Nat. Commun. 13, 6385 (2022).Article

Chu,T.-Y.等人,GPR97通过PAR2激活上游的大分子复合物触发人中性粒细胞的炎症过程。。136385(2022年)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, F. et al. Crystal structure of the extracellular domains of GPR110. J. Mol. Biol. 435, 167979 (2023).Article

Wang,F。等人。GPR110胞外域的晶体结构。J、 分子生物学。435167979(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Guo, Q. et al. A method for structure determination of GPCRs in various states. Nat. Chem. Biol. 20, 74–82 (2024).Article

郭,Q。等。一种在各种状态下测定GPCR结构的方法。自然化学。生物学20,74-82(2024)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Moreno-Salinas, A. L. et al. Latrophilins: a neuro-centric view of an evolutionary conserved adhesion G protein-coupled receptor subfamily. Front. Neurosci. 13, 700 (2019).Mathiasen, S. et al. G12/13 is activated by acute tethered agonist exposure in the adhesion GPCR ADGRL3. Nat. Chem.

Moreno-Salinas,A.L.等人,Latrophilins:进化保守的粘附G蛋白偶联受体亚家族的神经中心观点。正面。神经科学。13700(2019)。。自然化学。

Biol. 16, 1343–1350 (2020).Article .

《生物学》161343-1350(2020)。第条。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Qian, Y. et al. Structural insights into adhesion GPCR ADGRL3 activation and Gq, Gs, Gi, and G12 coupling. Mol. Cell 82, 4340–4352.e6 (2022).Article

Qian,Y.等人。粘附GPCR ADGRL3激活和Gq,Gs,Gi和G12偶联的结构见解。分子细胞824340–4352.e6(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, S. et al. Alternative splicing of latrophilin-3 controls synapse formation. Nature 626, 128–135 (2024).Arcos-Burgos, M. et al. A common variant of the latrophilin 3 gene, LPHN3, confers susceptibility to ADHD and predicts effectiveness of stimulant medication. Mol. Psychiatry 15, 1053–1066 (2010).Article .

latrophilin-3的选择性剪接控制突触的形成。自然626128-135(2024)。Arcos-Burgos,M。等人。latrophilin 3基因的常见变体LPHN3赋予ADHD易感性并预测兴奋剂药物的有效性。摩尔精神病学151053-1066(2010)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jain, M. et al. A cooperative interaction between LPHN3 and 11q doubles the risk for ADHD. Mol. Psychiatry 17, 741–747 (2012).Article

Jain,M。等人。LPHN3和11q之间的协同作用使多动症的风险增加了一倍。摩尔精神病学17741-747(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sando, R. & Südhof, T. C. Latrophilin GPCR signaling mediates synapse formation. Elife 10, e65717 (2021).Li, J. et al. Alternative splicing controls teneurin-latrophilin interaction and synapse specificity by a shape-shifting mechanism. Nat. Commun. 11, 2140 (2020).Article

Sando,R。&Südhof,T。C。Latrophilin GPCR信号传导介导突触形成。Elife 10,e65717(2021)。Li,J。等人。选择性剪接通过变形机制控制腱蛋白-亲脂蛋白相互作用和突触特异性。。112140(2020)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

del Toro, D. et al. Structural basis of teneurin-latrophilin interaction in repulsive guidance of migrating neurons. Cell 180, 323–339.e19 (2020).Article

del Toro,D。等人。teneurin-latrophilin相互作用在迁移神经元排斥性引导中的结构基础。细胞180323-339.e19(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Perry-Hauser, N. A., VanDyck, M. W., Lee, K. H., Shi, L. & Javitch, J. A. Disentangling autoproteolytic cleavage from tethered agonist–dependent activation of the adhesion receptor ADGRL3. J. Biol. Chem. 298, 102594 (2022).Article

Perry Hauser,N.A.,VanDyck,M.W.,Lee,K.H.,Shi,L。&Javitch,J.A。从粘附受体ADGRL3的束缚激动剂依赖性激活中分离自蛋白水解切割。J、 生物。化学。298102594(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Paduch, M. et al. Generating conformation-specific synthetic antibodies to trap proteins in selected functional states. Methods 60, 3–14 (2013).Article

Paduch,M.等人产生构象特异性合成抗体,以捕获处于选定功能状态的蛋白质。方法60,3-14(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Dutka, P. et al. Development of “plug and play” fiducial marks for structural studies of GPCR signaling complexes by single-particle cryo-EM. Structure 27, 1862–1874.e7 (2019).Article

Dutka,P.等人,《通过单粒子cryo-EM开发用于GPCR信号复合物结构研究的“即插即用”基准标记》。Structure 271862–1874.e7(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mukherjee, S. et al. Synthetic antibodies against BRIL as universal fiducial marks for single−particle cryoEM structure determination of membrane proteins. Nat. Commun. 11, 1598 (2020).Article

Mukherjee,S.等人。针对BRIL的合成抗体作为膜蛋白单颗粒冷冻电镜结构测定的通用基准标记。。111598(2020)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).Article

Mirdita,M。等人,ColabFold:使所有人都可以进行蛋白质折叠。自然方法19679-682(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Punjani, A. & Fleet, D. J. 3D variability analysis: resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. J. Struct. Biol. 213, 107702 (2021).Article

Punjani,A。&Fleet,D。J。3D变异性分析:解决单粒子cryo-EM的连续柔性和离散异质性。J。Struct。生物学213107702(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).Article

Punjani,A.,Rubinstein,J.L.,Fleet,D.J。&Brubaker,M.A。cryoSPARC:快速无监督低温电磁结构测定的算法。自然方法14290-296(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kaszuba, K. et al. N -Glycosylation as determinant of epidermal growth factor receptor conformation in membranes. Proc. Natl Acad. Sci. USA 112, 4334–4339 (2015).Article

。程序。国家科学院。科学。美国1124334–4339(2015)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Faust, B. et al. Autoantibody mimicry of hormone action at the thyrotropin receptor. Nature 609, 846–853 (2022).Polley, A. et al. Glycosylation and lipids working in concert direct CD2 ectodomain orientation and presentation. J. Phys. Chem. Lett. 8, 1060–1066 (2017).Article

Faust,B。等人。促甲状腺激素受体激素作用的自身抗体模拟。自然609846-853(2022)。Polley,A。等人。糖基化和脂质协同作用直接指导CD2胞外域的定向和呈递。J、 物理。化学。利特。81060-1066(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liauw, B. W.-H., Afsari, H. S. & Vafabakhsh, R. Conformational rearrangement during activation of a metabotropic glutamate receptor. Nat. Chem. Biol. 17, 291–297 (2021).Article

Liauw,B.W.-H.,Afsari,H.S。&Vafabakhsh,R。代谢型谷氨酸受体激活过程中的构象重排。自然化学。生物学17291-297(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liauw, B. W.-H. et al. Conformational fingerprinting of allosteric modulators in metabotropic glutamate receptor 2. Elife 11, e78982 (2022).Schamber, M. R. & Vafabakhsh, R. Mechanism of sensitivity modulation in the calcium-sensing receptor via electrostatic tuning. Nat. Commun. 13, 2194 (2022).Article .

Liauw,B.W.-H.等人。代谢型谷氨酸受体2中变构调节剂的构象指纹图谱。Elife 11,e78982(2022)。。。132194(2022)。文章。

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bhudia, N. et al. G protein-coupling of adhesion GPCRs ADGRE2/EMR2 and ADGRE5/CD97, and activation of G protein signalling by an anti-EMR2 antibody. Sci. Rep. 10, 1004 (2020).Article

Bhudia,N。等人,粘附GPCR ADGRE2/EMR2和ADGRE5/CD97的G蛋白偶联,以及抗EMR2抗体对G蛋白信号传导的激活。科学。代表101004(2020)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chatterjee, T. et al. Anti-GPR56 monoclonal antibody potentiates GPR56-mediated Src-Fak signaling to modulate cell adhesion. J. Biol. Chem. 296, 100261 (2021).Article

Chatterjee,T。等人。抗GPR56单克隆抗体增强GPR56介导的Src-Fak信号传导以调节细胞粘附。J、 生物。化学。296100261(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Avila-Zozaya, M., Rodríguez-Hernández, B., Monterrubio-Ledezma, F., Cisneros, B. & Boucard, A. A. Thwarting of Lphn3 functions in cell motility and signaling by cancer-related GAIN domain somatic mutations. Cells 11, 1913 (2022).Article

Avila Zozaya,M.,Rodríguez-Hernández,B.,Monterrubio-Ledezma,F.,Cisneros,B。&Boucard,A.A。通过癌症相关的GAIN结构域体细胞突变阻止Lphn3在细胞运动和信号传导中的功能。细胞111913(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Vizurraga, A., Adhikari, R., Yeung, J., Yu, M. & Tall, G. G. Mechanisms of adhesion G protein–coupled receptor activation. J. Biol. Chem. 295, 14065–14083 (2020).Article

Vizurraga,A.,Adhikari,R.,Yeung,J.,Yu,M。&Tall,G.G。粘附G蛋白偶联受体激活的机制。J、 生物。化学。29514065–14083(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhong, B. L. et al. Piconewton forces mediate GAIN domain dissociation of the latrophilin-3 adhesion GPCR. Nano Lett. 23, 9187–9194 (2023).Article

Zhong,B.L。等人。Piconewton力介导latrophilin-3粘附GPCR的GAIN结构域解离。纳诺莱特。239187–9194(2023)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Dumas, L. et al. Uncovering and engineering the mechanical properties of the adhesion GPCR ADGRG1 GAIN domain. Preprint at bioRxiv (2023).Pan, J. et al. Quantifying molecular- to cellular-level forces in living cells. J. Phys. D. Appl. Phys. 54, 483001 (2021).Article

Dumas,L.等人揭示并设计了粘附GPCR ADGRG1增益域的机械性能。bioRxiv(2023)预印本。Pan,J.等人,《定量活细胞中分子到细胞水平的力》。J、 物理。D、 应用。物理。54483001(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pfreundschuh, M. et al. Identifying and quantifying two ligand-binding sites while imaging native human membrane receptors by AFM. Nat. Commun. 6, 8857 (2015).Article

Pfreundschuh,M.等人。通过AFM成像天然人膜受体时,鉴定和定量两个配体结合位点。。68857(2015)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Alsteens, D. et al. Nanomechanical mapping of first binding steps of a virus to animal cells. Nat. Nanotechnol. 12, 177–183 (2017).Article

Alsteens,D.等人。病毒与动物细胞的第一个结合步骤的纳米力学映射。自然纳米技术。12177-183(2017)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ott, W., Jobst, M. A., Schoeler, C., Gaub, H. E. & Nash, M. A. Single-molecule force spectroscopy on polyproteins and receptor–ligand complexes: the current toolbox. J. Struct. Biol. 197, 3–12 (2017).Article

Ott,W.,Jobst,M.A.,Schoeler,C.,Gaub,H.E。&Nash,M.A。多蛋白和受体-配体复合物的单分子力谱:当前的工具箱。J、 结构。生物学杂志197,3-12(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712 (2001).Article

Cukierman,E.,Pankov,R.,Stevens,D.R。&Yamada,K.M。将细胞-基质粘附带到第三维。科学2941708-1712(2001)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Geiger, B. & Bershadsky, A. Exploring the neighborhood: adhesion-coupled cell mechanosensors. Cell 110, 139–142 (2002).Article

Geiger,B。&Bershadsky,A。探索邻域:粘附耦合细胞机械传感器。细胞110139-142(2002)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bershadsky, A. D., Balaban, N. Q. & Geiger, B. Adhesion-dependent cell mechanosensitivity. Annu. Rev. Cell Dev. Biol. 19, 677–695 (2003).Article

Bershadsky,A.D.,Balaban,N.Q。&Geiger,B。粘附依赖性细胞机械敏感性。年。Rev.Cell Dev.Biol。19677-695(2003)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bandekar, S. J. et al. Structure of the extracellular region of the adhesion GPCR CELSR1 reveals a compact module which regulates G protein-coupling. Preprint at bioRxiv (2024).Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).Article .

Bandekar,S.J。等人。粘附GPCR CELSR1细胞外区域的结构揭示了一个调节G蛋白偶联的紧凑模块。bioRxiv预印本(2024)。Tang,G。等人。EMAN2:用于电子显微镜的可扩展图像处理套件。J、 结构。生物学杂志157,38-46(2007)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fellouse, F. A. et al. High-throughput generation of synthetic antibodies from highly functional minimalist phage-displayed libraries. J. Mol. Biol. 373, 924–940 (2007).Article

Fellouse,F.A.等人。从高功能极简噬菌体展示文库高通量生成合成抗体。J、 分子生物学。373924-940(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Miller, K. R. et al. T cell receptor-like recognition of tumor in vivo by synthetic antibody fragment. PLoS ONE 7, e43746 (2012).Article

Miller,K.R。等人。合成抗体片段在体内对肿瘤的T细胞受体样识别。PLoS ONE 7,e43746(2012)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Raman, M. & Martin, K. One solution for cloning and mutagenesis: In-Fusion® HD Cloning Plus. Nat. Methods 11, iii–v (2014).Article

Raman,M。&Martin,K。克隆和诱变的一种解决方案:In-Fusion®HD cloning Plus。Nat。方法11,iii–v(2014)。文章

CAS

中科院

Google Scholar

谷歌学者

Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).Article

Zheng,S.Q.等人。MotionCor2:改进低温电子显微镜的束流诱导运动的各向异性校正。自然方法14331-332(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).Article

。J、 结构。生物学192216-221(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pettersen, E. F. et al. UCSF chimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).Article

Pettersen,E.F.等人,《UCSF chimeraX:研究人员、教育者和开发人员的结构可视化》。。30,70-82(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. Sect. D. Struct. Biol. 75, 861–877 (2019).Article

Liebschner,D.等人,《利用X射线、中子和电子测定大分子结构:Phenix的最新进展》。晶体学报。第节。D、 。生物学75861-877(2019)。文章

ADS

广告

CAS

中科院

Google Scholar

谷歌学者

Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. Sect. D. Biol. Crystallogr. 66, 486–501 (2010).Article

Emsley,P.,Lohkamp,B.,Scott,W.G。和Cowtan,K。Coot的特征和发展。晶体学报。第节。D、 生物。晶体学。66486-501(2010)。文章

ADS

广告

CAS

中科院

Google Scholar

谷歌学者

Bronson, J. E., Fei, J., Hofman, J. M., Gonzalez, R. L. & Wiggins, C. H. Learning rates and states from biophysical time series: a Bayesian approach to model selection and single-molecule FRET data. Biophys. J. 97, 3196–3205 (2009).Article

Bronson,J.E.,Fei,J.,Hofman,J.M.,Gonzalez,R.L。和Wiggins,C.H。生物物理时间序列的学习率和状态:模型选择和单分子FRET数据的贝叶斯方法。生物物理。J、 973196-3205(2009)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, J. et al. Specific structural elements of the T-box riboswitch drive the two-step binding of the tRNA ligand. Elife 7, e39518 (2018).Download referencesAcknowledgementsWe thank Dr. James Fuller and the staff at The University of Chicago Advanced Electron Microscopy Core Facility (RRID:SCR_019198) and Dr.

Zhang,J。等人。T盒核糖开关的特定结构元件驱动tRNA配体的两步结合。Elife 7,e39518(2018)。下载参考文献致谢我们感谢James Fuller博士和芝加哥大学高级电子显微镜核心设施(RRID:SCR\U 019198)的工作人员以及Dr。

Tara L. Fox of the NCEF facility for assistance with cryo-EM data collection. We also thank Dr. Andrew Kruse and Dr. Cheng Zhang for helpful discussions regarding membrane protein expression and purification, Dr. James Fuller, Dr. Jingxian Li, Dr. Navid Bavi, and Dr. Minglei Zhao for valuable advice regarding cryo-EM sample preparation and data processing.

NCEF设施的Tara L.Fox协助冷冻电磁数据收集。我们还感谢Andrew Kruse博士和Cheng Zhang博士就膜蛋白表达和纯化进行了有益的讨论,感谢James Fuller博士,Jingxian Li博士,Navid Bavi博士和Minglei Zhao博士就低温电磁样品制备和数据处理提供了宝贵的建议。

We thank Dr. Michael R. Schamber and Cole J. Wilson for their help with cloning. This work was supported by grants R35 GM148412 (to D.A.), R01 GM134035-01 (to D.A.), R01 GM140272 (to R.V.) F32 GM142266 (to S.J.B.), R01 GM117372 (to A.A.K.), and C-093 from the Chicago Biomedical Consortium (to D.A. and R.V.).

我们感谢Michael R.Schamber博士和Cole J.Wilson博士在克隆方面的帮助。这项工作得到了资助R35 GM148412(授予D.A.),R01 GM134035-01(授予D.A.),R01 GM140272(授予R.V.),F32 GM142266(授予S.J.B.),R01 GM117372(授予A.A.K.)和芝加哥生物医学协会(授予D.A.和R.V.)的C-093的支持。

G.S. is supported by the Molecular Biophysics Training Program from NIGMS/NIH (T32GM140995). This research was, in part, supported by the National Cancer Institute’s National Cryo-EM Facility at the Frederick National Laboratory for Cancer Research under contract HSSN261200800001E.Author informationAuthor notesPrzemysław DutkaPresent address: Department of Structural Biology, Genentech, South San Francisco, CA, USAThese authors contributed equally: Szymon P.

G、 美国由NIGMS/NIH的分子生物物理学培训计划(T32GM140995)支持。根据合同HSSN261200800001E,这项研究部分得到了位于弗雷德里克国家癌症研究实验室的国家癌症研究所国家低温电磁设施的支持。作者信息作者注释Sprzemysław DutkaPresent地址:美国加利福尼亚州南旧金山基因泰克结构生物学系这些作者做出了同样的贡献:Szymon P。

Kordon, Kristina Cechova.Authors and AffiliationsDepartment of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USASzymon P. Kordon, Sumit J. Bandekar, Katherine Leon, Przemysław Dutka, Anthony A. Kossiakoff & Demet AraçNeuroscience Institute, The University of Chicago, Chicago, IL, USASzymon P.

科顿,克里斯蒂娜·切科娃。作者和附属机构芝加哥大学生物化学与分子生物学系,伊利诺伊州芝加哥,USASzymon P.Kordon,Sumit J.Bandekar,Katherine Leon,Przemysław Dutka,Anthony A.Kossiakoff&Demet AraçNeuroscience Institute,芝加哥大学,伊利诺伊州芝加哥,USASzymon P。

Kordon, Sumit J.

苏米特·科登。

PubMed Google ScholarKristina CechovaView author publicationsYou can also search for this author in

PubMed Google ScholarKristina CechovaView作者出版物您也可以在

PubMed Google ScholarSumit J. BandekarView author publicationsYou can also search for this author in

PubMed Google ScholarSumit J.BandekarView作者出版物您也可以在

PubMed Google ScholarKatherine LeonView author publicationsYou can also search for this author in

PubMed Google ScholarKatherine LeonView作者出版物您也可以在

PubMed Google ScholarPrzemysław DutkaView author publicationsYou can also search for this author in

PubMed Google ScholarPrzemysław DutkaView作者出版物您也可以在

PubMed Google ScholarGracie SifferView author publicationsYou can also search for this author in

PubMed Google ScholarGracie SifferView作者出版物您也可以在

PubMed Google ScholarAnthony A. KossiakoffView author publicationsYou can also search for this author in

PubMed Google ScholarAnthony A.KossiakoffView作者出版物您也可以在

PubMed Google ScholarReza VafabakhshView author publicationsYou can also search for this author in

PubMed Google ScholarReza VafabakhshView作者出版物您也可以在

PubMed Google ScholarDemet AraçView author publicationsYou can also search for this author in

PubMed Google ScholarDemet AraçView作者出版物您也可以在

PubMed Google ScholarContributionsS.P.K., K.C., R.V., and D.A. designed all experiments and interpreted results. K.C. and K.L. cloned constructs for smFRET and protein expression and purification experiments. S.P.K. expressed and purified all proteins (with assistance from K.L.), prepared EM samples, and performed specimen screening, data collection and cryo-EM data analysis.

PubMed谷歌学术贡献。P、 K.,K.C.,R.V。和D.A.设计了所有实验并解释了结果。K、 C.和K.L.克隆的构建体,用于smFRET和蛋白质表达和纯化实验。S、 P.K.表达并纯化了所有蛋白质(在K.L.的帮助下),制备了EM样品,并进行了样品筛选,数据收集和冷冻EM数据分析。

S.J.B. assisted with cryo-EM map calculation and built and refined the HormR/GAIN structure. K.C. prepared smFRET specimens and performed smFRET measurements (with assistance from G.S.) and data analysis. P.D. carried out phage display selection and sABs characterization. S.P.K. performed cell-based signaling assays.

S、 J.B.协助低温电磁图计算,并建立和完善了HormR/GAIN结构。K、 C.制备smFRET样品并进行smFRET测量(在G.S.的帮助下)和数据分析。P、 D.进行噬菌体展示选择和sABs表征。S、 P.K.进行了基于细胞的信号传导测定。

D.A., S.P.K., R.V., and K.C. wrote the manuscript with assistance from, S.J.B. and P.D. D.A., R.V., and A.A.K. supervised the project.Corresponding authorsCorrespondence to.

D、 A.,S.P.K.,R.V.和K.C.在S.J.B.和P.D.D.A.,R.V.和A.A.K.的协助下撰写了手稿,并监督了该项目。通讯作者通讯。

Reza Vafabakhsh or Demet Araç.Ethics declarations

Reza Vafabakhsh或Demet Araç。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Communications thanks Antony Boucard and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

《自然通讯》感谢安东尼·布卡德(AntonyBoucard)和另一位匿名审稿人对这项工作的同行评审所做的贡献。同行评审文件可用。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationDescription of Additional Supplementary FilesSupplementary Movie 1Supplementary Movie 2Reporting SummaryTransparent Peer Review fileSource dataSource DataRights and permissions.

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息其他补充文件的描述补充电影1补充电影2报告摘要透明同行评审文件源数据源数据权限。

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleKordon, S.P., Cechova, K., Bandekar, S.J. et al. Conformational coupling between extracellular and transmembrane domains modulates holo-adhesion GPCR function.

转载和许可本文引用本文Kordon,S.P.,Cechova,K.,Bandekar,S.J。等人。细胞外和跨膜结构域之间的构象偶联调节全粘附GPCR功能。

Nat Commun 15, 10545 (2024). https://doi.org/10.1038/s41467-024-54836-4Download citationReceived: 28 January 2024Accepted: 20 November 2024Published: 04 December 2024DOI: https://doi.org/10.1038/s41467-024-54836-4Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Nat Commun 1510545(2024)。https://doi.org/10.1038/s41467-024-54836-4Download引文接收日期:2024年1月28日接受日期:2024年11月20日发布日期:2024年12月4日OI:https://doi.org/10.1038/s41467-024-54836-4Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供