商务合作
动脉网APP
可切换为仅中文
AbstractThe charring tissue generated by the high temperature during microwave ablation can affect the therapeutic effect, such as limiting the volume of the coagulation zone and causing rejection. This paper aimed to prevent tissue carbonization while delivering an appropriate thermal dose for effective ablations by employing a treatment protocol with real-time bioelectrical impedance monitoring.
微波消融过程中高温产生的炭化组织会影响治疗效果,例如限制凝固区的体积并引起排斥反应。本文旨在通过采用具有实时生物电阻抗监测的治疗方案来防止组织碳化,同时提供适当的热剂量以进行有效消融。
Firstly, the current field response under different microwave ablation statuses is analyzed based on finite element simulation. Next, the change of impedance measured by the electrodes is correlated with the physical state of the ablated tissue, and a microwave ablation carbonization control protocol based on real-time electrical impedance monitoring was established.
首先,基于有限元仿真分析了不同微波烧蚀状态下的电流场响应。接下来,将电极测量的阻抗变化与消融组织的物理状态相关联,并建立了基于实时电阻抗监测的微波消融碳化控制协议。
The finite element simulation results show that the dielectric properties of biological tissues changed dynamically during the ablation process. Finally, the relative change rule of the electrical impedance magnitude of the ex vivo porcine liver throughout the entire MWA process and the reduction of the central zone carbonization were obtained by the MWA experiment.
有限元模拟结果表明,生物组织的介电性能在消融过程中动态变化。最后,通过MWA实验获得了离体猪肝在整个MWA过程中电阻抗幅度的相对变化规律以及中心区碳化的减少。
Charring tissue was eliminated without water cooling at 40 W and significantly reduced at 50 W and 60 W. The carbonization during MWA can be reduced according to the changes in tissue electrical impedance to optimize microwave thermal ablation efficacy..
碳化组织在40 W时无需水冷即可消除,在50 W和60 W时显着减少。可以根据组织电阻抗的变化减少MWA期间的碳化,以优化微波热消融功效。。
IntroductionMicrowave ablation (MWA), known for its broad ablation range, wide indications, and minimal heat deposition effect, has been widely used in treating solid tumors such as liver tumors1,2,3,4. In MWA, direct energy deposition in the ablation zone leads to elevated temperatures in surrounding tissues.
引言微波消融(MWA)以其广泛的消融范围,广泛的适应症和最小的热沉积效应而闻名,已被广泛用于治疗实体瘤,如肝肿瘤1,2,3,4。在MWA中,消融区的直接能量沉积导致周围组织的温度升高。
The ablated zone is prone to carbonization, resulting in dehydrated carbonized tissue. The “carbonized” zone is close to the antenna axis, at higher temperatures, the tissue appears charred, highly desiccated, and black. A more peripheral zone of complete thermal denaturation of proteins is known as “white coagulation”5.
消融区容易碳化,导致碳化组织脱水。“碳化”区域靠近天线轴,在较高温度下,组织会出现烧焦,高度干燥和黑色。蛋白质完全热变性的更外围区域被称为“白色凝固”5。
Previous studies have shown that in the MWA of some organs, such as the spleen6, the crushing and avulsion of charring tissues in the course of needle withdrawal can cause bleeding. Carbonized tissue impedes heat dispersion, causing the ablation zone to adopt an ellipsoidal shape rather than spherical7.
先前的研究表明,在某些器官(如脾脏)的MWA中,拔针过程中炭化组织的挤压和撕脱会导致出血。碳化组织阻碍热扩散,导致消融区采用椭球形状而不是球形7。
The carbonization phenomenon may also induce both regional and systemic inflammatory responses and other unwanted side effects8,9,10. Precise control of microwave output for ablating tumors effectively while avoiding tissue carbonization is important for clinical MWA.Researchers propose minimally invasive thermometry to prevent carbonization by inserting single-point or multipoint thermometry needles for local temperature measurement11,12.
碳化现象也可能诱发区域和全身炎症反应以及其他不必要的副作用8,9,10。精确控制微波输出以有效消融肿瘤,同时避免组织碳化对于临床MWA很重要。研究人员提出微创测温法,通过插入单点或多点测温针进行局部温度测量来防止碳化11,12。
Ultrasound-based thermometry remains insufficient for deep temperature field distribution measurement in liver tissue13. Additionally, the degree of tissue inactivation, as per the kinetic properties of thermal injury in biological tissues, necessitates evaluation based on temperature and exposure duration, indicating that assessing tissue ablation efficacy solely based on temperature is insufficient14,15.
基于超声波的温度计仍然不足以测量肝组织中的深部温度场分布13。此外,根据生物组织热损伤的动力学特性,组织失活的程度需要基于温度和暴露持续时间进行评估,这表明仅基于温度评估组织消融效果是不够的14,15。
Some r.
一些r。
(1)
(1)
where µ is the magnetic permeability, σ is the conductivity, ε is the relative dielectric permittivity, and E is the electric field strength.The Pennes heat transfer equation is expressed as:$$\rho C\frac{{\partial T}}{{\partial t}}=\nabla (k\nabla T)+{Q_{{\text{ext}}}}$$
其中µ是磁导率,σ是电导率,ε是相对介电常数,E是电场强度。Pennes传热方程表示为:$$$\ rho C \ frac{{\ partial T}}{\ partial T}=\ nabla(k \ nabla T)+{Q \ uu{\ text{ext}}$$
(2)
(2)
where ρ is the density, C is the specific heat capacity, k is the thermal conductivity, and Qext is the external heat source. Qext is microwave energy absorbed by biological tissues, and a process of converting microwave energy into thermal energy can be expressed as:$${Q_{{\text{ext}}}}=\frac{{\sigma {{\left| E \right|}^2}}}{2}$$.
其中ρ是密度,C是比热容,k是导热系数,Qext是外部热源。Qext是生物组织吸收的微波能量,将微波能量转换为热能的过程可以表示为:$${Q{\ text{ext}}}=\frac{\ sigma{\ left | E \ right |}^ 2}}{2}$$。
(3)
(3)
Set the simulation parameters. It mainly includes the dielectric property parameters, the biological heat conduction parameters of liver tissue, and the material parameters of the MWA antenna. The thermal conductivity (k), density (ρ), relative dielectric permittivity (ε), conductivity (σ), and specific heat capacity (C) of the liver are as follows24:$$k(T)=\left\{ \begin{array}{l} 0.512;\; 293.15\; K \leq T \leq 363.15\; K \hfill \\ 0.2027\; T - 17.933;\; 363.15\; K<T \leq 373.15\; K \\ 0.0053\; {T^2} - 1.727\; T+64.681;\; 373.15\; K<T \leq 386.15\; K \\ 0.21;\; 386.15\; K <T \leq 473.15\; K \hfill \\ \end{array} \right.$$.
设置模拟参数。它主要包括介电性能参数,肝组织的生物热传导参数以及MWA天线的材料参数。肝脏的热导率(k),密度(ρ),相对介电常数(ε),电导率(σ)和比热容(C)如下24:$$k(T)=\ left \ \ begin{array}{l}0.512;\;293.15英寸;K\leq T\leq 363.15 \;K\h填充\\ 0.2027 \;T-17.933;\;363.15英寸;K<T\leq 373.15 \;K\\0.0053 \;{T^2}-1.727 \;电话+64.681;\;373.15英寸;K<T\leq 386.15 \;K\\0.21;\;386.15英寸;K<T\leq 473.15 \;K\h填充\ \结束{数组}\右。$$。
(4)
(4)
$$\rho (T)=\left\{ \begin{array}{l} 1050;\quad 293.15\; K \leq T \leq 373.15\; K \hfill \\ 294;\quad 373.15\; K<T \leq 473.15\; K \end{array} \right.$$
$$\ rho(T)=\左\{\开始{数组}{l}1050;\quad 293.15英寸;K\leq T\leq 373.15 \;填充294;\四联373.15英寸;K<T\leq 473.15 \;K \结束{数组}\正确$$
(5)
(5)
$$\begin{aligned} \varepsilon (T)&=48.391\left\{ {1 - \frac{1}{{1+\exp [0.0764(82.271 - T+273.15)]}}} \right\} \\ &\quad +1;\; 293.15\; K \leq T \leq 473.15\; K \end{aligned}$$
$$\开始{对齐}\varepsilon(T)&=48.391 \左{1-\frac{1}{1+\exp[0.0764(82.271-T+273.15)]}}\右;293.15英寸;K\leq T\leq 473.15 \;K \结束{对齐}$$
(6)
(6)
$$\begin{aligned} \sigma (T)&=2.713\left\{ {1 - \frac{1}{{1+\exp [0.0697(85.375 - T+273.15)]}}} \right\}; \\ &\quad 293.15{\text{ }}K \leq T \leq 473.15{\text{ }}K \end{aligned}$$
$$\开始{对齐}\ sigma(T)&=2.713 \左\{{1-\ frac{1}{{1+\ exp[0.0697(85.375-T+273.15)]}}\右\;\ \&\四元组293.15{\文本{}}K \ leq T \ leq 473.15{\文本{}}K \结束{对齐}$$
(7)
(7)
$$C(T)=\left\{ \begin{array}{l} 3600;\; 273.15\; K \leq T \leq 373.15\; K \hfill \\ 327800;\; 373.15\; K<T \leq 378.15\; K \hfill \\ 2103;\; 378.15\; K<T \leq 473.15\; K \end{array} \right.$$
$$C(T)=\left\{\begin{array}{l}3600;\;273.15\;K\leq T\leq 373.15;327800韩元;373.15\;K<T\leq 378.15\;K\hfill 2103;378.15\;K<T\leq 473.15\;K\end{array}\right$$
(8)
(8)
The dielectric property parameters and tissue heat conduction parameters used in the simulation model are shown in Table 219,24.Table 2 Parameters used in the simulation model.Full size tableStep 2: Set the current field control equations under impedance measurement. This results in minimal conduction current and negligible magnetic field generation due to the low frequency, which allows for considering a quasi-static electric field without compromising engineering calculation accuracy.
模拟模型中使用的介电性能参数和组织热传导参数如表219、24所示。表2模拟模型中使用的参数。全尺寸表步骤2:在阻抗测量下设置电流场控制方程。由于频率较低,这导致最小的传导电流和可忽略的磁场产生,这允许在不影响工程计算精度的情况下考虑准静态电场。
When the current with angular frequency\(\omega\)is applied, the mathematical equation is expressed as:$$\left\{ \begin{array}{l} \nabla \cdot ((\sigma +j\omega \varepsilon )\nabla \varphi )=0 \hfill \\ \delta =\sigma +j\omega \varepsilon \hfill \\ \end{array} \right.$$.
当施加角频率电流(ω)时,数学方程表示为:$$左{开始{数组}{l}\ nabla \ cdot((\sigma+j \ω\ varepsilon)\nabla \ varphi)=0 \ hfill \ \ delta=\sigma+j \ω\ varepsilon \ hfill \ \ end{数组}\右。$$。
(9)
(9)
where j denotes the vector sign,\(\delta\)is the complex conductivity, and\(\varphi\)is the potential.The Dirichlet boundary condition is defined as:$$\varphi (x,y)=f(x,y)\quad (x,y) \in \partial \Omega$$
其中j表示矢量符号,\(\ delta \)是复数电导率,\(\ varphi \)是电势。Dirichlet边界条件定义为:$$\ varphi(x,y)=f(x,y)\ quad(x,y)\ in \ partial \ Omega$$
(10)
(10)
The Neumann boundary condition is defined as:$$- \delta (x,y)\frac{{\partial \varphi (x,y)}}{{\partial n}}=J(x,y) \quad (x,y) \in \partial \Omega$$
Neumann边界条件定义为:$$-\ delta(x,y)\frac{\ partial \ varphi(x,y)}}{\ partial n}=J(x,y)\ quad(x,y)\ in \ partial \ Omega$$
(11)
(11)
where ∂Ω is the boundary of the field, f is the Dirichlet boundary condition function, and n is the direction of the normal outside the boundary.The articulation condition of the sub-interface within the field is expressed as:$${\delta _1}\frac{{\partial {\varphi _1}}}{{\partial n}}={\delta _2}\frac{{\partial {\varphi _2}}}{{\partial n}}$$.
其中∂Ω是场的边界,f是Dirichlet边界条件函数,n是边界外法线的方向。字段内子接口的连接条件表示为:$${\ delta \u 1}\ frac{\ partial{\ varphi \u 1}}{\ partial n}={\ delta \u 2}\ frac{\ partial{\ varphi \u 2}}{\ partial n}}$$。
(12)
(12)
Setting up the current field control equations, including the boundary conditions, calculated the potential value. The impedance value was also derived since the current was used as an excitation source.Step 3: Set the microwave frequency (2450 MHz), ablation power, and ablation time to start the MWA simulation.
建立电流场控制方程,包括边界条件,计算电位值。由于电流被用作激励源,因此还导出了阻抗值。步骤3:设置微波频率(2450 MHz),消融功率和消融时间以开始MWA模拟。
Due to the probe’s limited spatial coverage and the minimal impact of electrode size on the current field compared to electrode spacing was kept at a constant length. Electrodes A1–A2 were spaced 26 mm apart, electrodes B1–B2 were spaced 18 mm apart, and electrodes C1–C2 were spaced 10 mm apart. The excitation electrode frequency was set to 20 kHz, and the current magnitude was 0.5 mA in this paper25.For enhanced visualization of differences, the magnitude of measured impedances under different excitation electrodes is shown in Fig. 2.
由于探针的空间覆盖范围有限,并且与电极间距相比,电极尺寸对电流场的影响最小,因此保持恒定长度。电极A1-A2间隔26毫米,电极B1-B2间隔18毫米,电极C1-C2间隔10毫米。本文将激发电极频率设置为20 kHz,电流幅度为0.5 mA。为了增强差异的可视化,不同激发电极下测量阻抗的幅度如图2所示。
For example, in Fig. 2, when A1–A2 are set as the excitation electrodes, the measured impedances are obtained for electrodes B1–B2 and C1–C2, respectively. The simulation results also showed that the impedance measurements at the moments of 120 s, 150 s, and 180 s were different and showed an increasing trend with time, i.e., the electrical properties of different ablation zone states influence the potential distribution.
例如,在图2中,当将A1–A2设置为激发电极时,分别获得电极B1–B2和C1–C2的测量阻抗。仿真结果还表明,120 s,150 s和180 s时刻的阻抗测量值不同,并且随着时间的推移呈现出增加的趋势,即不同烧蚀区状态的电特性会影响电位分布。
Additionally, the differences in impedance changes between different electrode pairs may be due to the different positions in which they are located.Fig. 2Impedance magnitudes with various excitation electrodes.Full size imageSystem for measuring bioelectrical impedance during MWAAs shown in Fig. 3, the MWA system is composed of a microwave solid state source (Bada Microwave Technology Co., Ltd., Hangzhou, China), a microwave ablation antenna (Kangyou Medical Instruments, Nanjing, China), a person.
另外,不同电极对之间阻抗变化的差异可能是由于它们所在的位置不同。图2各种激发电极的阻抗大小。用于测量MWAA期间生物电阻抗的全尺寸成像系统如图3所示,MWA系统由微波固态源(巴达微波技术有限公司,中国杭州),微波消融天线(康友医疗器械,南京,中国),一个人。
(13)
(13)
$$\text{S}\text{N}\text{R}=10{\log _{10}} \left(\frac{{\sum\nolimits_{m} {v_{{i,j}}^{2}} }}{{\sum\nolimits_{m} {{{({v_{i,j}} - {{\bar {v}}_{i,j}})}^2}} }} \right)$$
$$\text{S}\text{N}\text{R}=10{\log{10}}\left(\frac{\sum\nolimits\uu{m}{v\u{{{i,j}}^{2}}}}{\sum\nolimits\u{{{{{{v\u{i,j}}-{\bar{v}}}{i,j}}^ 2}}}}\右)$$
(14)
(14)
where\({v_{i,j}}\)denotes the voltage value acquired on the jth pair of electrodes when the ith pair of electrodes is excited, and m denotes the number of acquisition frames (m = 50). \({\bar {v}_{i,j}}\)denotes the average value of the repetitively acquired voltage of the corresponding channel.The average RSD of the measurement results below 0.04% and an average SNR of 70 dB or higher are good enough for impedance measurements, as shown in Fig. 4a and b.
其中\({v{i,j}}\)表示当第i对电极被激发时在第j对电极上获得的电压值,m表示采集帧数(m=50)\({\bar{v}_{i,j}}\)表示相应通道重复获取的电压的平均值。测量结果的平均RSD低于0.04%,平均SNR为70 dB或更高,足以进行阻抗测量,如图4a和b所示。
So, the hardware provides good acquisition accuracy and reliable impedance detection.Fig. 4(a) Measurement results of RSD. (b) Measurement results of SNR.Full size imageElectrical impedance measurement during MWAAs shown in Fig. 5a, the structural section of the bioelectrical impedance probe was devised in this study.
因此,硬件提供了良好的采集精度和可靠的阻抗检测。图4(a)RSD测量结果。(b)SNR测量结果。全尺寸图像电阻抗测量在MWAA期间如图5a所示,本研究设计了生物电阻抗探针的结构部分。
Six electrodes (blue) were added near the insulating medium sleeve of the microwave ablation antenna. Initially, a transparent heat-shrinkable tube layer was applied to the rear end of the insulating medium sleeve. Subsequently, metal-copper electrodes were wound onto the heat-shrinkable tube’s surface, enabling the setup of excitation and measurement electrodes in six configurations (A1A2–B1B2, A1A2–C1C2, B1B2–A1A2, B1B2–C1C2, C1C2–A1A2, C1C2–B1B2).
在微波消融天线的绝缘介质套管附近添加了六个电极(蓝色)。最初,将透明热收缩管层施加到绝缘介质套管的后端。随后,将金属铜电极缠绕在热缩管的表面上,可以在六种配置(A1A2–B1B2,A1A2–C1C2,B1B2–A1A2,B1B2–C1C2,C1C2–A1A2,C1C2–A1A2,C1C2–B1B2)中设置激发和测量电极。
Next, the metal electrodes were connected to the bioelectrical impedance measurement circuit board.The current path traversed the ablated lesion zone, enabling precise characterization of local tissue status by measuring impedance changes. Typically, electrical impedance testing utilizes a four-electrode system to mitigate the contact impedance effects observed in a two-electrode system27,28.
接下来,将金属电极连接到生物电阻抗测量电路板。电流路径穿过消融的病变区,通过测量阻抗变化可以精确表征局部组织状态。通常,电阻抗测试利用四电极系统来减轻在两电极系统中观察到的接触阻抗效应27,28。
As shown in Fig. 5a, each can serve as excitation or measurement electrodes during a measurement cycle. Figure 5b shows the current injection at electrod.
如图5a所示,每个电极都可以在测量周期中用作激发或测量电极。图5b显示了电极上的电流注入。
Ex vivo porcine liver impedance measurement experiments during MWAFresh ex vivo porcine liver was obtained from the local slaughterhouse and used the same day. The experiment was carried out at a room temperature of 25 ℃. Before ablation, the microwave power was set to 40 W, 50 W, and 60 W, respectively, and the cumulative effective ablation duration was 360 s.
MWAFresh期间的离体猪肝阻抗测量实验从当地屠宰场获得离体猪肝,并在同一天使用。实验在25℃的室温下进行。消融前,微波功率分别设置为40 W,50 W和60 W,累积有效消融持续时间为360 s。
The water-cooling function of the microwave ablation antenna was not used in the experiment. An initial collection of electrical impedance magnitude preceded ablation. Intermittent pausing for 1 s per every 10 s of ablation aimed to simulate continuous mode effects closely, with impedance magnitude recorded during these pauses.
实验中未使用微波消融天线的水冷功能。消融之前最初收集的电阻抗幅度。每10秒消融间歇暂停1秒,旨在紧密模拟连续模式效应,并在这些暂停期间记录阻抗幅度。
Chapters 1 to 6 were also assigned to different excitation and measurement electrode configurations. Each ablation mode (continuous group and impedance group) involved in this article has been repeated four times (n = 4 for each condition) for a total of 24 groups of experiments to ensure the reliability and repeatability of the results.
第1章至第6章也被分配到不同的激发和测量电极配置。本文涉及的每种消融模式(连续组和阻抗组)已经重复了四次(每种条件n=4),总共进行了24组实验,以确保结果的可靠性和可重复性。
The final data were averaged. To minimize discrepancies arising from liver variability and probe placement, a variable representing the relative change in impedance magnitude pre- and post-ablation, the relative change magnitude of electrical impedance, was used as an index to determine the occurrence of carbonization.
最终数据取平均值。为了最大限度地减少肝脏变异性和探针放置引起的差异,使用代表消融前后阻抗幅度相对变化的变量,即电阻抗的相对变化幅度作为确定碳化发生的指标。
Available representing the relative change in impedance magnitude pre-ablation and post-ablation\({Z_{{\text{diff}}}}\)is defined as:$${Z_{{\text{diff}}}}=\frac{{{{Z^{\prime}}_{{\text{real}}}} - {Z_{{\text{real}}}}}}{{{Z_{{\text{real}}}}}}$$.
可用表示消融前和消融后阻抗幅度的相对变化({Z{{{text{diff}}}}})定义为:$${Z{{{text{diff}}}=\frac{{{{{Z ^{\ prime}}}u{{\ text{real}}}-{Z{{{\ text{real}}}}}{{{Z}{{\文本{实}}}}$$。
(15)
(15)
where\({Z^{\prime}_{{\text{real}}}}\)is the electrical impedance magnitude at each time point after ablation, and \({Z_{{\text{real}}}}\)is the electrical impedance magnitude before ablation.ResultsChanges in electrical impedance of porcine liver during MWA under 40 WFigure 6a and f shows the temporal variation of the average electrical impedance magnitude and temperature of six measurement experiments with continuous ablation of the ex vivo porcine liver for 360 s at a microwave power of 40 W.
其中\({Z ^{\ prime}}uuu{\ text{real}}}})是消融后每个时间点的电阻抗幅度,而\({Z{\ text{real}}}})是消融前的电阻抗幅度。结果在40 W下MWA期间猪肝电阻抗的变化图6a和f显示了在40 W的微波功率下连续消融离体猪肝360 s的六个测量实验的平均电阻抗幅度和温度的时间变化。
The trend in each channel indicated primarily two notable increases in electrical impedance magnitude. During the pre-ablation period, the electrical impedance magnitude initially rises, peaks around 60 ℃, and then declines while the temperature ascends steadily. In the mid-ablation stage, the electrical impedance magnitude rapidly increases after briefly stabilizing at its nadir, while the temperature stabilizes at around 90% of its peak.
每个通道的趋势主要表明电阻抗幅度有两个显着增加。在预烧蚀期间,电阻抗幅度最初上升,在60℃左右达到峰值,然后随着温度的稳定上升而下降。在消融中期,电阻抗幅度在短暂稳定在最低点后迅速增加,而温度稳定在其峰值的90%左右。
Towards the ablation’s conclusion, the electrical impedance magnitude surges to higher resistance levels while the temperature nearly stabilizes at its peak. After pausing the ablation, the electrical impedance magnitude and temperature rapidly decrease from their peak values. The trend in electrical impedance magnitude exhibits resemblances to findings in the literature29,30,31.
对于消融的结论,电阻抗幅度激增到更高的电阻水平,而温度几乎稳定在其峰值。停止消融后,电阻抗幅度和温度从峰值迅速下降。电阻抗幅度的趋势与文献29,30,31中的发现相似。
Additionally, variations in electrical impedance magnitude and temperatures among liver tissue in each experimental group stemmed from discrepancies in the ex vivo porcine liver and the diverse placements of electrical impedance probes. Nonetheless, the majority of experiments progressed through the four ablations as mentioned above stages.Fig.
此外,每个实验组肝组织电阻抗大小和温度的变化源于离体猪肝的差异和电阻抗探针的不同放置。尽管如此,大多数实验都是通过上述四个阶段进行的。图。
6Trend of electrical impedance magnitude versus temperature over time for 6 channels. (a) Channel (1), (b) cha.
6 6个通道的电阻抗幅度与温度随时间的变化趋势。(a) 频道(1),(b)cha。
Data availability
数据可用性
The data that support the findings of this study are available upon request from the corresponding author.
支持本研究结果的数据可应通讯作者的要求提供。
ReferencesChu, K. & Dupuy, D. Thermal ablation of tumors: biological mechanisms and advances in therapy. Nat. Rev. Cancer 14, 199–208 (2014).Article
参考文献Chu,K。&Dupuy,D。肿瘤的热消融:生物学机制和治疗进展。《国家癌症评论》第14199-208页(2014年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Jin, X. et al. Study on the relationship between reduced scattering coefficient and Young’s modulus of tumors in microwave ablation. Minim. Invasive Ther. Allied Technol. 30, 347–355 (2021).Article
Jin,X。等。微波消融中肿瘤的散射系数降低与杨氏模量关系的研究。最小值。侵入性治疗。联合技术公司。30347-355(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Li, G., An, C., Yu, J. & Huang, Q. H. Radiomics analysis of ultrasonic image predicts sensitive effects of microwave ablation in treatment of patient with benign breast tumors. Biomed. Signal Process. Control. 76, 103722 (2022).Article
Li,G.,An,C.,Yu,J。&Huang,Q.H。超声图像的放射组学分析预测微波消融治疗良性乳腺肿瘤患者的敏感效果。生物医学。信号处理。控制。76103722(2022)。文章
Google Scholar
谷歌学者
Bressem, K. K. et al. Exploring patterns of dynamic size changes of lesions after hepatic microwave ablation in an in vivo porcine model. Sci. Rep. 10, 805 (2020).Article
Bressem,K.K.等人。在体内猪模型中探索肝脏微波消融后病变动态大小变化的模式。科学。代表10805(2020)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lopresto, V., Pinto, R. & Cavagnaro, M. Experimental characterisation of the thermal lesion induced by microwave ablation. Int. J. Hyperth. 30(2), 110–118 (2014).Article
Lopresto,V.,Pinto,R。&Cavagnaro,M。微波消融引起的热损伤的实验表征。内景J.Hyper。30(2),110–118(2014)。文章
Google Scholar
谷歌学者
Fei, G. et al. Experimental study of destruction to porcine spleen in vivo by microwave ablation. World J. Gastroenterol. 17(45), 5014–5020 (2011).Article
Fei,G.等人。微波消融对猪脾脏体内破坏的实验研究。世界J.胃肠病学。17(45),5014–5020(2011)。文章
Google Scholar
谷歌学者
Ai, H. M. et al. Temperature distribution analysis of tissue water vaporization during microwave ablation: experiments and simulations. Int. J. Hyperth. 28, 674–685 (2012).Article
Ai,H.M.等人。微波消融过程中组织水蒸发的温度分布分析:实验和模拟。内景J.Hyper。28674-685(2012)。文章
Google Scholar
谷歌学者
Salwa, Y., Edgard, J., Sami, E. T. & Antoine, C. Histological study of induced incisions on rabbits’ tongues with three diode lasers with different wavelengths in continuous mode. Scientifica 1–8 (2018).Liu, F. et al. Ultrasonography-guided percutaneous microwave ablation for large hepatic cavernous haemangiomas.
Salwa,Y.,Edgard,J.,Sami,E.T。&Antoine,C。在连续模式下用三种不同波长的二极管激光器在兔子舌头上诱导切口的组织学研究。科学1-8(2018)。Liu,F。等。超声引导下经皮微波消融治疗大型肝海绵状血管瘤。
Int. J. Hyperth. 34, 1061–1066 (2018).Article .
内景J.Hyper。341061-1066(2018)。文章。
Google Scholar
谷歌学者
Cui, R. et al. Microwave ablation assisted by three-dimensional visualization system as local therapy for relapsed hepatoblastoma: a small pilot study. Abdom. Radiol. 44, 2909–2915 (2019).Article
Cui,R.等。三维可视化系统辅助微波消融作为复发性肝母细胞瘤的局部治疗:一项小型试点研究。阿布多姆。放射性。442909-2915(2019)。文章
Google Scholar
谷歌学者
Vita, E. D. et al. Multipoint temperature monitoring of microwave thermal ablation in bones through fiber bragg grating sensor arrays. Sensors 20, 3200 (2020).Article
Vita,E.D.等人。通过光纤布拉格光栅传感器阵列对骨骼中微波热消融的多点温度监测。传感器203200(2020)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schena, E. et al. Solutions to improve the outcomes of thermal treatments in oncology: multipoint temperature monitoring. IEEE J. Electromag. RF 2, 172–178 (2018).
Schena,E.等人,《改善肿瘤学热治疗结果的解决方案:多点温度监测》。IEEE J.Electromag。RF 2172-178(2018)。
Google Scholar
谷歌学者
Guo, X., Zhou, J., Du, C. & Wang, X. Optical fiber ultrasound probe for radiofrequency ablation temperature monitoring: in-vitro results. IEEE Photonics Technol. Lett. 32, 689–692 (2020).Article
Guo,X.,Zhou,J.,Du,C。&Wang,X。用于射频消融温度监测的光纤超声探头:体外结果。IEEE光子学技术。利特。32689-692(2020)。文章
ADS
广告
Google Scholar
谷歌学者
Ni, Y., Mulier, S., Miao, Y., Michel, L. & Marchal, G. A review of the general aspects of radiofrequency ablation. Abdom. Imaging. 30, 381–400 (2005).Article
Ni,Y.,Mulier,S.,Miao,Y.,Michel,L。&Marchal,G。射频消融一般方面的综述。阿布多姆。成像。30381-400(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yero, D. D., Gonzalez, F. G., Troyen, D. V. & Vandenbosch, G. Dielectric properties of ex vivo porcine liver tissue characterized at frequencies between 5 and 500 kHz when heated at different rates. IEEE Trans. Biomed. Eng. 65, 2560–2568 (2018).Article
Yero,D.D.,Gonzalez,F.G.,Troyen,D.V。&Vandenbosch,G。离体猪肝组织的介电特性,当以不同速率加热时,其频率在5至500 kHz之间。IEEE Trans。生物医学。工程652560-2568(2018)。文章
Google Scholar
谷歌学者
Hui, T. et al. Microwave ablation of the liver in a live porcine model: the impact of power, time and total energy on ablation zone size and shape. Int. J. Hyperth. 37, 668–676 (2020).Article
Hui,T.等人。活体猪模型中肝脏的微波消融:功率,时间和总能量对消融区大小和形状的影响。内景J.Hyper。37668-676(2020)。文章
Google Scholar
谷歌学者
Radosevic, A. et al. Short pulsed microwave ablation: computer modeling and ex vivo experiments. Int. J. Hyperth. 38, 409–420 (2021).Article
Radosevic,A。等人。短脉冲微波消融:计算机建模和离体实验。内景J.Hyper。38409-420(2021)。文章
CAS
中科院
Google Scholar
谷歌学者
Bedoya, M., Rio, A. D., Chiang, J. & Brace, C. Microwave ablation energy delivery: influence of power pulsing on ablation results in an ex vivo and in vivo liver model. Med. Phys. 41, 123301 (2014).Article
Bedoya,M.,Rio,A.D.,Chiang,J。&Brace,C。微波消融能量传递:功率脉冲对离体和体内肝脏模型中消融结果的影响。医学物理。41123301(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jin, X. et al. Temperature control and intermittent time-set protocol optimization for minimizing tissue carbonization in microwave ablation. Int. J. Hyperth. 39, 868–879 (2022).Article
Jin,X。等人。微波消融中最小化组织碳化的温度控制和间歇时间设置方案优化。内景J.Hyper。39868-879(2022)。文章
Google Scholar
谷歌学者
Granchi, S., Vannacci, E., Breschi, L. & Biagi, E. Advantages of cooled fiber for monitoring laser tissue ablation through temporal and spectral analysis of RF ultrasound signal: a case study. Ultrasonics 82, 49–56 (2018).Article
Granchi,S.,Vannacci,E.,Breschi,L。&Biagi,E。冷却光纤通过射频超声信号的时间和频谱分析监测激光组织消融的优势:案例研究。超声波82,49-56(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Amini, M., Hisdal, J. & Kalvøy, H. Applications of bioimpedance measurement techniques in tissue engineering. J. Electr. Bioimpedance 9, 142–158 (2018).Article
Amini,M.,Hisdal,J。&Kalvøy,H。生物阻抗测量技术在组织工程中的应用。J.Electr。生物阻抗9142-158(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Leung, K. W. et al. Micro-electrodes for in situ temperature and bio-impedance measurement. Nano Select 2, 1986–1996 (2021).Article
Leung,K.W.等人。用于原位温度和生物阻抗测量的微型电极。Nano Select 21986–1996(2021)。文章
CAS
中科院
Google Scholar
谷歌学者
Zhao, Y. et al. Ablation outcome of irreversible electroporation on potato monitored by impedance spectrum under multi-electrode system. Biomed. Eng. Online 17, 1–13 (2018).Article
赵,Y。等。多电极系统下阻抗谱监测马铃薯不可逆电穿孔的消融结果。生物医学。《工程在线》17,1-13(2018)。文章
Google Scholar
谷歌学者
Jin, X. et al. Evaluation method of ex vivo porcine liver reduced scattering coefficient during microwave ablation based on temperature. Biomed. Tech. (Berl) 67(6), 491–501 (2022).Article
Jin,X。等人。基于温度的离体猪肝微波消融过程中散射系数降低的评估方法。生物医学。技术(Berl)67(6),491-501(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, X. et al. Simulation study of microwave ablation carbonization regulation based on electrical impedance detection. The Proceedings of the 18th Annual Conference of the China Electrotechnical Society, vol. 1165, 641–650 (2024).Kassanos, P. Bioimpedance sensors: a tutorial. IEEE Sens.
Zhang,X。等。基于电阻抗检测的微波烧蚀碳化规律模拟研究。中国电工学会第十八届年会论文集,第1165卷,641-650(2024)。Kassanos,P。生物阻抗传感器:教程。IEEE传感器。
J. 21, 22190–22219 (2021).Article .
J、 2122190–22219(2021)。文章。
ADS
广告
CAS
中科院
Google Scholar
谷歌学者
Ma, G., Hao, Z., Wu, X. & Wang, X. An optimal electrical impedance tomography drive pattern for human-computer interaction applications. IEEE Trans. Biomed. Circ. Syst. 14, 402–411 (2020).
Ma,G.,Hao,Z.,Wu,X。&Wang,X。用于人机交互应用的最佳电阻抗断层扫描驱动模式。IEEE Trans。生物医学。保监会。系统。14402-411(2020)。
Google Scholar
谷歌学者
McEwan, A., Cusick, G. & Holder, D. S. A review of errors in multi-frequency EIT instrumentation. Physiol. Meas. 28, S197 (2007).Article
McEwan,A.,Cusick,G。&Holder,D.S。对多频率EIT仪器错误的回顾。生理学。米亚斯。28,S197(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Trujillo, M. & Berjano, E. Review of the mathematical functions used to model the temperature dependence of electrical and thermal conductivities of biological tissue in radiofrequency ablation. Int. J. Hyperth. 29, 590–597 (2013).Article
Trujillo,M。&Berjano,E。回顾用于模拟射频消融中生物组织的电导率和热导率的温度依赖性的数学函数。内景J.Hyper。29590-597(2013)。文章
Google Scholar
谷歌学者
Trujillo, M., Alba, J. & Berjano, E. Relationship between roll-off occurrence and spatial distribution of dehydrated tissue during RF ablation with cooled electrodes. Int. J. Hyperth. 28, 62–68 (2012).Article
Trujillo,M.,Alba,J。&Berjano,E。在使用冷却电极的射频消融过程中,脱落发生与脱水组织的空间分布之间的关系。内景J.Hyper。28,62-68(2012)。文章
Google Scholar
谷歌学者
Fonseca, R. D. et al. Parametric evaluation of impedance curve in radiofrequency ablation: a quantitative description of the asymmetry and dynamic variation of impedance in bovine ex vivo model. PLoS One 16, e0245145 (2021).Article
Fonseca,R.D.等人。射频消融中阻抗曲线的参数评估:牛离体模型中阻抗不对称和动态变化的定量描述。PLoS One 16,e0245145(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chang, I. A. & Nguyen, U. D. Thermal modeling of lesion growth with radiofrequency ablation devices. Biomed. Eng. Online. 3, 27 (2004).Article
Chang,I.A.&Nguyen,U.D。射频消融装置对病变生长的热模拟。生物医学。工程在线。3,27(2004)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu, H., Chen, B. & Peng, B. Effects of intratumoral injection of immunoactivator after microwave ablation on antitumor immunity in a mouse model of hepatocellular carcinoma. Exp. Ther. Med. 15, 1914–1917 (2018).CAS
Wu,H.,Chen,B。&Peng,B。微波消融后瘤内注射免疫激活剂对肝细胞癌小鼠模型抗肿瘤免疫的影响。实验温度。医学杂志151914-1917(2018)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Andreozzi, A., Iasiello, M. & Tucci, C. An overview of mathematical models and modulated-heating protocols for thermal ablation. Adv. Heat. Transf. 52, 489–541 (2020).Article
Andreozzi,A.,Iasiello,M。和Tucci,C。热消融的数学模型和调制加热协议概述。高级加热。变压器。52489-541(2020)。文章
Google Scholar
谷歌学者
Nijland, H., Zhu, J., Kwee, T. & Jutte, P. Experiments on physical ablation of long bone using microwave ablation; defining optimal settings using ex-and in-vivo experiments. PLoS One 18, e0284027 (2023).Article
Nijland,H.,Zhu,J.,Kwee,T。&Jutte,P。使用微波消融物理消融长骨的实验;使用体外和体内实验定义最佳设置。PLoS One 18,e0284027(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rhim, H. et al. Essential techniques for successful radio-frequency thermal ablation of malignant hepatic tumors. Radiographics 21, S17–S35 (2001).Article
Rhim,H。等人。成功射频热消融恶性肝肿瘤的基本技术。射线照相21,S17–S35(2001)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Liu, K. & Chen, T. M. Comparative study of heat transfer and thermal damage assessment models for hyperthermia treatment. J. Therm. Biol. 98, 102907 (2021).Article
Liu,K.&Chen,T.M。热疗传热和热损伤评估模型的比较研究。J、 热。生物学98102907(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Jones, C., Badger, S. A. & Ellis, G. The role of microwave ablation in the management of hepatic colorectal metastases. Surg. J. R. Coll. Serg E 9(1), 33–37 (2011).CAS
Jones,C.,Badger,S.A。&Ellis,G。微波消融在肝结直肠转移管理中的作用。Surg.J.R.Coll。Serg E 9(1),33-37(2011)。中科院
Google Scholar
谷歌学者
Hall, S. K., Ooi, E. H. & Payne, S. J. Cell death, perfusion and electrical parameters are critical in models of hepatic radiofrequency ablation. Int. J. Hyperth. 31(5), 538–550 (2015).Article
Hall,S.K.,Ooi,E.H。&Payne,S.J。细胞死亡,灌注和电参数在肝脏射频消融模型中至关重要。内景J.Hyper。31(5),538-550(2015)。文章
Google Scholar
谷歌学者
Download referencesAcknowledgementsThis work was supported in part by the National Major Scientific Instruments and Equipment Development Project Funded by National Natural Science Foundation of China under Grant 81827803, in part by the National Natural Science Foundation of China under Grant 82151311, in part by the Fundamental Research Funds for the Central Universities under Grant NP2024102, NJ2024016 and NJ2024029, in part by the Jiangsu Funding Program for Excellent Postdoctoral Talent under Grant 2024ZB661, and in part by the Nanjing University of Aeronautics and Astronautics Research and Practice Innovation Program under Grant xcxjh20230333.Author informationAuthors and AffiliationsDepartment of Electrical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, ChinaXiao Zhang, Wei Wei & Lidong XingDepartment of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, ChinaLu Qian, Liuye Yao, Xiaofei Jin & Zhiyu QianKey Laboratory of Multi-modal Brain-Computer Precision Drive, Industry and Information Technology Ministry, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, ChinaXiao Zhang, Wei Wei, Lu Qian, Liuye Yao, Xiaofei Jin, Lidong Xing & Zhiyu QianAuthorsXiao ZhangView author publicationsYou can also search for this author in.
下载参考文献致谢这项工作部分得到了国家自然科学基金81827803资助的国家重大科学仪器设备开发项目的支持,部分得到了国家自然科学基金82151311资助的支持,部分得到了中央大学基础研究基金NP2024102、NJ2024016和NJ2024029资助的支持,部分得到了江苏省优秀博士后人才资助计划2024ZB661资助的支持,部分得到了南京航空航天大学研究与实践创新计划xcxjh20230333资助的支持。作者信息作者和所属南京大学自动化工程学院电气工程系南京航空航天大学自动化工程学院生物医学工程系,南京航空航天大学,211106,南京航空航天大学工业和信息技术部多模式脑计算机精密驱动重点实验室,南京,211106,中国小张,魏伟,路茜,刘业尧,金晓飞,邢立东和钱志宇作者小张观点作者出版物你也可以在中搜索这位作者。
PubMed Google ScholarWei WeiView author publicationsYou can also search for this author in
PubMed Google ScholarWeiView作者出版物您也可以在
PubMed Google ScholarLu QianView author publicationsYou can also search for this author in
PubMed Google ScholarLu QianView作者出版物您也可以在
PubMed Google ScholarLiuye YaoView author publicationsYou can also search for this author in
PubMed Google ScholarLiuye YaoView作者出版物您也可以在
PubMed Google ScholarXiaofei JinView author publicationsYou can also search for this author in
PubMed Google ScholarXiaofei JinView作者出版物您也可以在
PubMed Google ScholarLidong XingView author publicationsYou can also search for this author in
PubMed Google ScholarLidong XingView作者出版物您也可以在
PubMed Google ScholarZhiyu QianView author publicationsYou can also search for this author in
PubMed谷歌学者Zhiyu QianView作者出版物您也可以在
PubMed Google ScholarContributionsZ. X., W. W., X. L., and J. X. were responsible for the ablation performance, conceptualization and methodology, and for the bioelectrical impedance system setup. Z. X. and Q. L. contributed to the MWA system and data analysis. Y. L. produced high-quality charts and graphs.
PubMed谷歌学术贡献。十、 ,W.W.,X.L。和J.X。负责消融性能,概念化和方法学,以及生物电阻抗系统设置。Z、 X.和Q.L.为MWA系统和数据分析做出了贡献。Y、 L.制作了高质量的图表。
X. L., J. X., and Q. Z. contributed to the review of the work critically for important intellectual content and final approval of the version to be published. All authors reviewed the manuscript.Corresponding authorsCorrespondence to.
十、 L.,J.X。和Q.Z.对重要的知识内容和即将出版的版本的最终批准做出了至关重要的贡献。所有作者都审阅了手稿。通讯作者通讯。
Xiaofei Jin or Lidong Xing.Ethics declarations
金晓飞或李东星。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Additional information
其他信息
None of the experiments were performed on in vivo animals. All ex vivo porcine liver was chosen as the material for the experiment. Fresh ex vivo porcine liver was obtained from the local slaughterhouse and used the same day.
没有一个实验是在体内动物上进行的。选择所有离体猪肝作为实验材料。新鲜的离体猪肝是从当地屠宰场获得的,并在同一天使用。
Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions
Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。权限和权限
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.
开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。
You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..
Reprints and permissionsAbout this articleCite this articleZhang, X., Wei, W., Qian, L. et al. Real-time monitoring of bioelectrical impedance for minimizing tissue carbonization in microwave ablation of porcine liver.
转载和许可本文引用本文Zhang,X.,Wei,W.,Qian,L。等人。实时监测生物电阻抗,以最大程度地减少猪肝微波消融中的组织碳化。
Sci Rep 14, 30404 (2024). https://doi.org/10.1038/s41598-024-80725-3Download citationReceived: 26 April 2024Accepted: 21 November 2024Published: 06 December 2024DOI: https://doi.org/10.1038/s41598-024-80725-3Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Sci Rep 1430404(2024)。https://doi.org/10.1038/s41598-024-80725-3Download引文收到日期:2024年4月26日接受日期:2024年11月21日发布日期:2024年12月6日OI:https://doi.org/10.1038/s41598-024-80725-3Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
KeywordsMicrowave ablationCarbonizationElectrical impedanceTemperature
关键词微波烧蚀碳化电阻温度