EN
登录

瘤内递送编码IL-21、IL-7和4-1BBL的脂质纳米颗粒mRNA诱导全身抗肿瘤免疫

Intratumoral delivery of lipid nanoparticle-formulated mRNA encoding IL-21, IL-7, and 4-1BBL induces systemic anti-tumor immunity

Nature 等信源发布 2024-12-06 10:13

可切换为仅中文


AbstractLocal delivery of mRNA-based immunotherapy offers a promising avenue as it enables the production of specific immunomodulatory proteins that can stimulate the immune system to recognize and eliminate cancer cells while limiting systemic exposure and toxicities. Here, we develop and employ lipid-based nanoparticles (LNPs) to intratumorally deliver an mRNA mixture encoding the cytokines interleukin (IL)−21 and IL-7 and the immunostimulatory molecule 4-1BB ligand (Triplet LNP).

摘要基于mRNA的免疫疗法的局部递送提供了一种有前途的途径,因为它能够产生特定的免疫调节蛋白,这些蛋白可以刺激免疫系统识别和消除癌细胞,同时限制全身暴露和毒性。在这里,我们开发并使用基于脂质的纳米颗粒(LNPs)在肿瘤内递送编码细胞因子白细胞介素(IL)-21和IL-7以及免疫刺激分子4-1BB配体(三重态LNP)的mRNA混合物。

IL-21 synergy with IL-7 and 4-1BBL leads to a profound increase in the frequency of tumor-infiltrating CD8+ T cells and their capacity to produce granzyme B and IFN-γ, leading to tumor eradication and the development of long-term immunological memory. Mechanistically, the efficacy of the Triplet LNP depends on tumor-draining lymph nodes to tumor CD8+ T-cell trafficking.

IL-21与IL-7和4-1BBL的协同作用导致肿瘤浸润性CD8+T细胞的频率及其产生颗粒酶B和IFN-γ的能力显着增加,从而导致肿瘤根除和长期免疫记忆的发展。从机制上讲,三联体LNP的功效取决于肿瘤引流淋巴结向肿瘤CD8+T细胞的运输。

Moreover, we highlight the therapeutic potential of the Triplet LNP in multiple tumor models in female mice and its superior therapeutic efficacy to immune checkpoint blockade. Ultimately, the expression of these immunomodulators is associated with better overall survival in patients with cancer..

此外,我们强调了三联体LNP在雌性小鼠多种肿瘤模型中的治疗潜力及其对免疫检查点阻断的优越治疗效果。最终,这些免疫调节剂的表达与癌症患者更好的总体生存率相关。。

IntroductionTherapeutic mRNA is a versatile and precise tool that can be exploited against a wide range of diseases, including cancer1,2. mRNA encoding immunostimulatory proteins, such as cytokines and costimulatory molecules, can boost immune effector cells to target and eradicate cancer cells. Intratumoral administration of therapeutic mRNA increases the concentration of immunostimulatory proteins within the tumor microenvironment (TME), inducing potent anti-tumor responses in preclinical tumor models, while reducing systemic exposure and hence toxicity3,4,5,6.

引言治疗性mRNA是一种多功能且精确的工具,可用于治疗多种疾病,包括癌症1,2。编码免疫刺激蛋白(例如细胞因子和共刺激分子)的mRNA可以增强免疫效应细胞以靶向和根除癌细胞。肿瘤内施用治疗性mRNA可增加肿瘤微环境(TME)内免疫刺激蛋白的浓度,在临床前肿瘤模型中诱导有效的抗肿瘤反应,同时减少全身暴露,从而降低毒性3,4,5,6。

Nonetheless, poor translation efficiency of naked mRNA remains a challenge due to its instability, high susceptibility to degradation by ribonucleases, and limited cellular uptake7. The encapsulation of therapeutic mRNA in lipid-based nanoparticles (LNPs) can overcome these issues, improving its translation efficiency within the TME and overall therapeutic efficacy5,6,8,9.Interleukin (IL)−21, a member of the common γ-chain cytokine family, modulates diverse immune cell subsets, including T cells, B cells, natural killer (NK) cells, macrophages, monocytes, and dendritic cells (DCs)10.

尽管如此,裸mRNA的翻译效率差仍然是一个挑战,因为它不稳定,对核糖核酸酶降解的高度敏感性以及有限的细胞摄取7。将治疗性mRNA包封在基于脂质的纳米颗粒(LNPs)中可以克服这些问题,提高其在TME中的翻译效率和总体治疗效果5,6,8,9。白细胞介素(IL)-21是常见γ链细胞因子家族的成员,调节多种免疫细胞亚群,包括T细胞,B细胞,自然杀伤(NK)细胞,巨噬细胞,单核细胞和树突状细胞(DC)10。

IL-21 was shown to promote NK and T-cell proliferation and regulate their effector functions including their cytotoxic capacity and secretion of interferon (IFN)-γ, eliciting anti-tumor responses in multiple preclinical tumor models11,12,13,14,15,16. In these studies, either recombinant IL-2111,12,13,14 or oncolytic viruses armed with IL-2115,16 were used.

显示IL-21促进NK和T细胞增殖并调节其效应功能,包括其细胞毒性能力和干扰素(IFN)-γ的分泌,在多种临床前肿瘤模型中引发抗肿瘤反应11,12,13,14,15,16。在这些研究中,使用重组IL-2111,12,13,14或携带IL-2115,16的溶瘤病毒。

Recombinant IL-21 exhibits a short half-life of 0.2 h in mice17 and 2 h in humans18, which has limited its therapeutic efficacy in clinical trials19. On the other hand, the use of viral vectors is associated with the risk of insertional mutagenesis and the development of anti-vec.

重组IL-21在小鼠中表现出0.2小时的短半衰期17,在人类中表现出2小时的短半衰期18,这限制了其在临床试验中的治疗效果19。另一方面,病毒载体的使用与插入突变的风险和抗vec的发展有关。

Data availability

数据可用性

The CITE-seq raw data generated in this study has been deposited in the GEO database (NCBI) under accession code GSE249674. Survival analysis of cancer patients was performed using the survival analysis web-based tool KM plotter – immunotherapy [https://kmplot.com/analysis/index.php?p=service&cancer=immunotherapy].

本研究中产生的CITE-seq原始数据已保存在GEO数据库(NCBI)中,登录号为GSE249674。使用基于网络的生存分析工具KM绘图仪-免疫疗法对癌症患者进行生存分析[https://kmplot.com/analysis/index.php?p=service&cancer=immunotherapy]。

The remaining data are available within the Article, Supplementary Information or Source Data file.  Source data are provided with this paper..

其余数据可在文章,补充信息或源数据文件中找到。本文提供了源数据。。

ReferencesQin, S. et al. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct. Target. Ther. 7, 166 (2022).Article

参考文献Qin,S。等人。基于mRNA的疗法:对抗疾病的强大而通用的工具。信号传输管。目标。他们。7166(2022年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Beck, J. D. et al. mRNA therapeutics in cancer immunotherapy. Mol. Cancer 20, 69 (2021).Article

Beck,J.D.等人,《癌症免疫治疗中的mRNA治疗学》。分子癌症20,69(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Van Lint, S. et al. Intratumoral Delivery of TriMix mRNA Results in T-cell Activation by Cross-Presenting Dendritic Cells. Cancer Immunol. Res. 4, 146–156 (2016).Article

Van Lint,S。等人。TriMix mRNA的肿瘤内递送通过交叉呈递树突状细胞导致T细胞活化。癌症免疫。第4146-156号决议(2016年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Hotz, C. et al. Local delivery of mRNA-encoding cytokines promotes antitumor immunity and tumor eradication across multiple preclinical tumor models. Sci. Transl. Med. 13, eabc7804 (2021).Article

Hotz,C。等人。编码细胞因子的mRNA的局部递送在多种临床前肿瘤模型中促进抗肿瘤免疫和肿瘤根除。科学。翻译。医学杂志13,eabc7804(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hewitt, S. L. et al. Intratumoral IL12 mRNA Therapy Promotes TH1 Transformation of the Tumor Microenvironment. Clin. Cancer Res. 26, 6284–6298 (2020).Article

Hewitt,S.L.等人。肿瘤内IL12 mRNA治疗促进肿瘤微环境的TH1转化。临床。癌症研究266284-6298(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hewitt, S. L. et al. Durable anticancer immunity from intratumoral administration of IL-23, IL-36γ, and OX40L mRNAs. Sci. Transl. Med. 11, eaat9143 (2019).Article

Hewitt,S.L.等人。肿瘤内施用IL-23,IL-36γ和OX40L mRNA的持久抗癌免疫力。科学。翻译。医学杂志11,eaat9143(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Huang, X. et al. The landscape of mRNA nanomedicine. Nat. Med. 28, 2273–2287 (2022).Article

Huang,X。等人。mRNA纳米医学的前景。《自然医学》282273-2287(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).Article

Hou,X.,Zaks,T.,Langer,R。&Dong,Y。用于mRNA递送的脂质纳米颗粒。自然修订材料。61078-1094(2021)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bevers, S. et al. mRNA-LNP vaccines tuned for systemic immunization induce strong antitumor immunity by engaging splenic immune cells. Mol. Ther. 30, 3078–3094 (2022).Article

Bevers,S。等人。针对全身免疫进行调整的mRNA-LNP疫苗通过参与脾脏免疫细胞诱导强烈的抗肿瘤免疫力。摩尔热。303078-3094(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Leonard, W. J. & Wan, C. K. IL-21 Signaling in Immunity. F1000Research 5, (F1000 Faculty Rev):224 (2016).Moroz, A. et al. IL-21 Enhances and Sustains CD8+ T Cell Responses to Achieve Durable Tumor Immunity: Comparative Evaluation of IL-2, IL-15, and IL-211. J. Immunol. 173, 900–909 (2004).Article .

Leonard,W.J。&Wan,C.K。免疫中的IL-21信号传导。F1000Research 5,(F1000 Faculty Rev):224(2016)。Moroz,A。等人。IL-21增强并维持CD8+T细胞应答以实现持久的肿瘤免疫:IL-2,IL-15和IL-211的比较评估。J、 免疫。173900–909(2004)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Søndergaard, H. et al. Intratumoral Interleukin-21 Increases Antitumor Immunity, Tumor-infiltrating CD8+ T-cell Density and Activity, and Enlarges Draining Lymph Nodes. J. Immunother. 33, 236–249 (2010).Article

Søndergaard,H。等人。肿瘤内白细胞介素-21增加抗肿瘤免疫力,肿瘤浸润性CD8+T细胞密度和活性,并扩大引流淋巴结。J、 免疫疗法。33236-249(2010)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Skak, K., Søndergaard, H., Frederiksen, K. S. & Ehrnrooth, E. In vivo antitumor efficacy of interleukin-21 in combination with chemotherapeutics. Cytokine 48, 231–238 (2009).Article

Skak,K.,Søndergaard,H.,Frederiksen,K.S。&Ehrnrooth,E。白细胞介素-21与化学疗法组合的体内抗肿瘤功效。细胞因子48231-238(2009)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Seo, H. et al. IL21 Therapy Combined with PD-1 and Tim-3 Blockade Provides Enhanced NK Cell Antitumor Activity against MHC Class I–Deficient Tumors. Cancer Immunol. Res. 6, 685–695 (2018).Article

Seo,H。等人。IL21疗法联合PD-1和Tim-3阻断剂可增强NK细胞对MHC I类缺陷肿瘤的抗肿瘤活性。癌症免疫。第6685-695号决议(2018年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chen, T. et al. IL-21 arming potentiates the anti-tumor activity of an oncolytic vaccinia virus in monotherapy and combination therapy. J. Immunother. Cancer 9, e001647 (2021).Article

在单一疗法和联合疗法中,IL-21武装增强了溶瘤痘苗病毒的抗肿瘤活性。J、 免疫疗法。癌症9,e001647(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, Y. et al. CCL21/IL21-armed oncolytic adenovirus enhances antitumor activity against TERT-positive tumor cells. Virus Res. 220, 172–178 (2016).Article

Li,Y。等人。CCL21/IL21武装的溶瘤腺病毒增强了对TERT阳性肿瘤细胞的抗肿瘤活性。Virus Res.220172-178(2016)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bhatt, S. et al. Anti-CD20-interleukin-21 fusokine targets malignant B cells via direct apoptosis and NK-cell–dependent cytotoxicity. Blood 129, 2246–2256 (2017).Article

Bhatt,S。等人。抗CD20-白细胞介素-21融合激酶通过直接凋亡和NK细胞依赖性细胞毒性靶向恶性B细胞。血液1292246-2256(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Thompson, J. A. et al. Phase I study of recombinant interleukin-21 in patients with metastatic melanoma and renal cell carcinoma. J. Clin. Oncol. 26, 2034–2039 (2008).Article

Thompson,J.A.等人。重组白细胞介素-21在转移性黑色素瘤和肾细胞癌患者中的I期研究。J、 临床。Oncol公司。262034–2039(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Berraondo, P. et al. Cytokines in clinical cancer immunotherapy. Br. J. Cancer 120, 6–15 (2019).Article

Berraondo,P。等。临床癌症免疫治疗中的细胞因子。Br.J.Cancer 120,6-15(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Schluns, K. S., Kieper, W. C., Jameson, S. C. & Lefrançois, L. Interleukin-7 mediates the homeostasis of naïve and memory CD8 T cells in vivo. Nat. Immunol. 1, 426–432 (2000).Article

Schluns,K.S.,Kieper,W.C.,Jameson,S.C。&Lefrançois,L。白细胞介素-7介导体内幼稚和记忆CD8 T细胞的稳态。自然免疫。1426-432(2000)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tan, J. T. et al. IL-7 is critical for homeostatic proliferation and survival of naïve T cells. Proc. Natl. Acad. Sci. 98, 8732–8737 (2001).Article

Tan,J。T。等人。IL-7对于幼稚T细胞的稳态增殖和存活至关重要。程序。纳特尔。阿卡德。科学。988732-8737(2001)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kieper, W. C. et al. Overexpression of Interleukin (IL)-7 Leads to IL-15–independent Generation of Memory Phenotype CD8+ T Cells. J. Exp. Med. 195, 1533–1539 (2002).Article

白细胞介素(IL)-7的过表达导致不依赖IL-15的记忆表型CD8+T细胞的产生。J、 实验医学1951533-1539(2002)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lynch, D. H., Namen, A. E. & Miller, R. E. In vivo evaluation of the effects of interleukins 2, 4 and 7 on enhancing the immunotherapeutic efficacy of anti-tumor cytotoxic T lymphocytes. Eur. J. Immunol. 21, 2977–2985 (1991).Article

Lynch,D.H.,Namen,A.E。&Miller,R.E。体内评估白细胞介素2,4和7对增强抗肿瘤细胞毒性T淋巴细胞免疫治疗功效的影响。欧洲免疫学杂志。212977-2985(1991)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Koyas, A. et al. Interleukin-7 protects CD8+ T cells from adenosine-mediated immunosuppression. Sci. Signal. 14, eabb1269 (2021).Article

Koyas,A。等人。白细胞介素-7保护CD8+T细胞免受腺苷介导的免疫抑制。科学。信号。14,eabb1269(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rosenberg, S. A. et al. IL-7 Administration to Humans Leads to Expansion of CD8+ and CD4+ Cells but a Relative Decrease of CD4+ T-Regulatory Cells. J. Immunother. 29, 313–319 (2006).Article

Rosenberg,S.A。等人。IL-7对人类的施用导致CD8+和CD4+细胞的扩增,但CD4+T调节细胞的相对减少。J、 免疫疗法。29313-319(2006)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sportès, C. et al. Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets. J. Exp. Med. 205, 1701–1714 (2008).Article

Sportès,C。等人。在人体内施用rhIL-7通过优先扩增幼稚T细胞亚群来增加体内TCR库的多样性。J、 实验医学2051701-1714(2008)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lee, K.-J. et al. IL-7-primed bystander CD8 tumor-infiltrating lymphocytes optimize the antitumor efficacy of T cell engager immunotherapy. Cell Rep. Med. 5, 101567 (2024).Article

Lee,K.-J.等人。IL-7引发的旁观者CD8肿瘤浸润淋巴细胞优化了T细胞参与者免疫疗法的抗肿瘤功效。Cell Rep.Med.5101567(2024)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kim, A. M. J., Nemeth, M. R. & Lim, S.-O. 4-1BB: A promising target for cancer immunotherapy. Front. Oncol. 12, 968360 (2022).Article

Kim,A.M.J.,Nemeth,M.R。&Lim,S.-O.4-1BB:癌症免疫治疗的有希望的靶标。正面。Oncol公司。12968360(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Seong, A. J., Sang-Min, P., Sang-Chul, L., Byoung, S. K. & Byung-Sam, K. Marked Expansion of CD11c+CD8+ T-Cells in Melanoma-bearing Mice Induced by Anti-4-1BB Monoclonal Antibody. Molecules Cells 24, 132–138 (2007).Article

Seong,A.J.,Sang Min,P.,Sang Chul,L.,Byoung,S.K。和Byung Sam,K。抗4-1BB单克隆抗体诱导的荷黑色素瘤小鼠中CD11c+CD8+T细胞的显着扩增。分子细胞24132-138(2007)。文章

Google Scholar

谷歌学者

Ju, S.-A. et al. Immunity to melanoma mediated by 4-1BB is associated with enhanced activity of tumour-infiltrating lymphocytes. Immunol. Cell Biol. 83, 344–351 (2005).Article

Ju,S.-A.等人。由4-1BB介导的对黑素瘤的免疫力与肿瘤浸润淋巴细胞的活性增强有关。免疫。细胞生物学。83344-351(2005)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Segal, N. H. et al. Results from an Integrated Safety Analysis of Urelumab, an Agonist Anti-CD137 Monoclonal Antibody. Clin. Cancer Res. 23, 1929–1936 (2017).Article

Segal,N.H.等人对Urelumab(一种激动剂抗CD137单克隆抗体)的综合安全性分析结果。临床。癌症研究231929-1936(2017)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Segal, N. H. et al. Phase I Study of Single-Agent Utomilumab (PF-05082566), a 4-1BB/CD137 Agonist, in Patients with Advanced Cancer. Clin. Cancer Res. 24, 1816–1823 (2018).Article

Segal,N.H.等人,4-1BB/CD137激动剂单药Utomilumab(PF-05082566)在晚期癌症患者中的I期研究。临床。癌症研究241816-1823(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

De Lombaerde, E. et al. Combinatorial Screening of Biscarbamate Ionizable Lipids Identifies a Low Reactogenicity Lipid for Lipid Nanoparticle mRNA Delivery. Adv. Funct. Mater. 34, 2310623 (2024).Article

De Lombaerde,E。等人。双氨基甲酸酯可电离脂质的组合筛选鉴定了用于脂质纳米颗粒mRNA递送的低反应原性脂质。高级职能。马特。342310623(2024)。文章

Google Scholar

谷歌学者

Lamoot, A. et al. Successful batch and continuous lyophilization of mRNA LNP formulations depend on cryoprotectants and ionizable lipids. Biomater. Sci. 11, 4327–4334 (2023).Article

mRNA-LNP制剂的成功分批和连续冻干取决于冷冻保护剂和可电离脂质。生物计。科学。114327–4334(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Di, J. et al. Biodistribution and Non-linear Gene Expression of mRNA LNPs Affected by Delivery Route and Particle Size. Pharm. Res. 39, 105–114 (2022).Article

Di,J。等人。受递送途径和粒径影响的mRNA LNP的生物分布和非线性基因表达。《药学》第39105-114号决议(2022年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zeng, R. et al. Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J. Exp. Med. 201, 139–148 (2005).Article

Zeng,R。等。IL-21和IL-15在调节CD8+T细胞扩增和功能中的协同作用。J、 实验医学201139-148(2005)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gu, Y.-Z. et al. Forced co-expression of IL-21 and IL-7 in whole-cell cancer vaccines promotes antitumor immunity. Sci. Rep. 6, 32351 (2016).Article

Gu,Y.-Z.等人。在全细胞癌症疫苗中强制共表达IL-21和IL-7可促进抗肿瘤免疫力。科学。代表63351(2016)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, S. et al. IL-21 synergizes with IL-7 to augment expansion and anti-tumor function of cytotoxic T cells. Int. Immunol. 19, 1213–1221 (2007).Article

Liu,S。等人。IL-21与IL-7协同作用以增强细胞毒性T细胞的扩增和抗肿瘤功能。内部免疫。191213-1221(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, X. et al. Immunological therapy: A novel thriving area for triple-negative breast cancer treatment. Cancer Lett. 442, 409–428 (2019).Article

Wang,X。等。免疫疗法:三阴性乳腺癌治疗的新兴领域。癌症Lett。442409-428(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bartkowiak, T. et al. Activation of 4-1BB on Liver Myeloid Cells Triggers Hepatitis via an Interleukin-27-Dependent Pathway. Clin. cancer Res. 24, 1138–1151 (2018).Article

Bartkowiak,T。等人。肝髓样细胞上4-1BB的激活通过白细胞介素-27依赖性途径触发肝炎。临床。癌症研究241138-1151(2018)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yamauchi, T. et al. T-cell CX3CR1 expression as a dynamic blood-based biomarker of response to immune checkpoint inhibitors. Nat. Commun. 12, 1402 (2021).Article

Yamauchi,T。等人。T细胞CX3CR1表达作为免疫检查点抑制剂反应的动态血液生物标志物。国家公社。121402(2021)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pauken, K. E. et al. Single-cell analyses identify circulating anti-tumor CD8 T cells and markers for their enrichment. J. Exp. Med. 218, e20200920 (2021).Article

Pauken,K.E。等人。单细胞分析鉴定循环抗肿瘤CD8 T细胞及其富集标记。J、 实验医学218,E2020920(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Andreatta, M. et al. Interpretation of T cell states from single-cell transcriptomics data using reference atlases. Nat. Commun. 12, 2965 (2021).Article

Andreatta,M。等人。使用参考地图集从单细胞转录组学数据解释T细胞状态。国家公社。122965(2021)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gungabeesoon, J. et al. A neutrophil response linked to tumor control in immunotherapy. Cell 186, 1448–1464.e1420 (2023).Article

Gungabeesoon,J。等人。免疫治疗中与肿瘤控制相关的中性粒细胞反应。细胞1861448-1464.e1420(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Di Pilato, M. et al. CXCR6 positions cytotoxic T cells to receive critical survival signals in the tumor microenvironment. Cell 184, 4512–4530.e4522 (2021).Article

Di Pilato,M。等人,CXCR6定位细胞毒性T细胞以在肿瘤微环境中接收关键的存活信号。细胞1844512-4530.e4522(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kovács, S. A., Fekete, J. T. & Győrffy, B. Predictive biomarkers of immunotherapy response with pharmacological applications in solid tumors. Acta Pharmacologica Sin. 44, 1879–1889 (2023).Article

Kovács,S.A.,Fekete,J.T。&Győrffy,B。在实体瘤中具有药理学应用的免疫治疗反应的预测性生物标志物。药理学学报。441879-1889(2023)。文章

Google Scholar

谷歌学者

Connors, J. et al. Lipid nanoparticles (LNP) induce activation and maturation of antigen presenting cells in young and aged individuals. Commun. Biol. 6, 188 (2023).Article

Connors,J。等人。脂质纳米颗粒(LNP)诱导年轻和老年个体中抗原呈递细胞的活化和成熟。Commun公司。生物学6188(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zeng, Y., Escalona-Rayo, O., Knol, R., Kros, A. & Slütter, B. Lipid nanoparticle-based mRNA candidates elicit potent T cell responses. Biomater. Sci. 11, 964–974 (2023).Article

Zeng,Y.,Escalona-Rayo,O.,Knol,R.,Kros,A。&Slütter,B。基于脂质纳米颗粒的mRNA候选物引发有效的T细胞应答。生物计。科学。11964-974(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, Y. et al. Immunotherapy of Tumor RNA-Loaded Lipid Nanoparticles Against Hepatocellular Carcinoma. Int. J. Nanomed. 16, 1553–1564 (2021).Article

Zhang,Y.等。肿瘤RNA脂质纳米粒对肝细胞癌的免疫治疗。内景J.Nanomed。161553-1564(2021)。文章

Google Scholar

谷歌学者

Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).Article

Chen,D.S。&Mellman,I。肿瘤学与免疫学相遇:癌症免疫周期。免疫39,1-10(2013)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Roberts, E. W. et al. Critical Role for CD103+/CD141+ Dendritic Cells Bearing CCR7 for Tumor Antigen Trafficking and Priming of T Cell Immunity in Melanoma. Cancer Cell 30, 324–336 (2016).Article

Roberts,E.W.等人。携带CCR7的CD103+/CD141+树突状细胞在黑色素瘤中肿瘤抗原运输和引发T细胞免疫的关键作用。癌细胞30324-336(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Binnewies, M. et al. Unleashing Type-2 Dendritic Cells to Drive Protective Antitumor CD4+ T Cell Immunity. Cell 177, 556–571.e516 (2019).Article

Binnewies,M.等人释放2型树突状细胞以驱动保护性抗肿瘤CD4+T细胞免疫。细胞177556-571.e516(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hong, W. X. et al. Intratumoral Immunotherapy for Early-stage Solid Tumors. Clin. Cancer Res. 26, 3091–3099 (2020).Article

Hong,W.X.等。早期实体瘤的瘤内免疫治疗。临床。癌症研究263091-3099(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, F. et al. The association between CD8+ tumor-infiltrating lymphocytes and the clinical outcome of cancer immunotherapy: A systematic review and meta-analysis. EClinicalMedicine 41, 101134 (2021).Article

Li,F。等人。CD8+肿瘤浸润淋巴细胞与癌症免疫治疗临床结果之间的关联:系统综述和荟萃分析。EClinicalMedicine 41101134(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chamucero-Millares, J. A., Bernal-Estévez, D. A. & Parra-López, C. A. Usefulness of IL-21, IL-7, and IL-15 conditioned media for expansion of antigen-specific CD8+ T cells from healthy donor-PBMCs suitable for immunotherapy. Cell. Immunol. 360, 104257 (2021).Article

Chamucero-Millares,J.A.,Bernal Estévez,D.A。&Parra-López,C.A。IL-21,IL-7和IL-15条件培养基用于扩增抗原特异性CD8+T细胞的有用性来自适合免疫治疗的健康供体PBMC。细胞。免疫。360104257(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hashimoto-Kataoka, T. et al. Interleukin-6/interleukin-21 signaling axis is critical in the pathogenesis of pulmonary arterial hypertension. Proc. Natl Acad. Sci. 112, E2677–E2686 (2015).Article

Hashimoto Kataoka,T。等人。白细胞介素-6/白细胞介素-21信号轴在肺动脉高压的发病机制中至关重要。程序。国家科学院。科学。112,E2677–E2686(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Miki, H., Han, K. H., Scott, D., Croft, M. & Kang, Y. J. 4-1BBL Regulates the Polarization of Macrophages, and Inhibition of 4-1BBL Signaling Alleviates Imiquimod-Induced Psoriasis. J. Immunol. 204, 1892–1903 (2020).Article

Miki,H.,Han,K.H.,Scott,D.,Croft,M。&Kang,Y.J。4-1BBL调节巨噬细胞的极化,抑制4-1BBL信号传导减轻咪喹莫特诱导的牛皮癣。J、 免疫。2041892-1903(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Prokhnevska, N. et al. CD8+ T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor. Immunity 56, 107–124.e5 (2022).Connolly, K. A. et al. A reservoir of stem-like CD8+ T cells in the tumor-draining lymph node preserves the ongoing antitumor immune response.

Prokhnevska,N。等人。癌症中的CD8+T细胞活化包括淋巴结的初始活化阶段,然后是肿瘤内的效应分化。免疫力56107–124.e5(2022)。Connolly,K.A。等人。肿瘤引流淋巴结中的干细胞样CD8+T细胞库保留了持续的抗肿瘤免疫反应。

Sci. Immunol. 6, eabg7836 (2021).Article .

科学。免疫。6,eabg7836(2021)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yamauchi, T. et al. CX3CR1-CD8+ T cells are critical in antitumor efficacy but functionally suppressed in the tumor microenvironment. JCI insight 5, e133920 (2020).Article

Yamauchi,T。等人,CX3CR1-CD8+T细胞在抗肿瘤功效中至关重要,但在肿瘤微环境中功能受到抑制。JCI insight 5,e133920(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pombo Antunes, A. R. et al. Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nat. Neurosci. 24, 595–610 (2021).Article

Pombo-Antunes,A.R.等人。胶质母细胞瘤中髓样细胞在物种和疾病阶段的单细胞分析揭示了巨噬细胞的竞争和特化。自然神经科学。24595-610(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Scheyltjens, I. et al. Single-cell RNA and protein profiling of immune cells from the mouse brain and its border tissues. Nat. Protoc. 17, 2354–2388 (2022).Article

Scheyltjens,I。等人。来自小鼠大脑及其边界组织的免疫细胞的单细胞RNA和蛋白质分析。自然协议。172354-2388(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wu, T. et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).CAS

Wu,T。等人。clusterProfiler 4.0:用于解释组学数据的通用富集工具。创新2100141(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Geeraerts, X. et al. Macrophages are metabolically heterogeneous within the tumor microenvironment. Cell Rep. 37, 110171 (2021).Article

Geeraerts,X。等人。巨噬细胞在肿瘤微环境中具有代谢异质性。细胞代表37110171(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsWe thank Nadia Abou, Constantinos Papadopoulos, Eleonora Omasta, Ellen Vaneetvelde, and Maité Schuurmans for administrative and technical assistance. We are thankful to the VIB single cell core for providing access to RNA sequencing technologies and the Flow Cytometry Core Facility of Vrije Universiteit Brussel for the use of the Symphony A3 Flow Cytometer.

下载参考文献致谢我们感谢Nadia Abou,Constantinos Papadopoulos,Eleonora Omasta,Ellen Vaneetvelde和MaitéSchuurmans提供的行政和技术援助。我们感谢VIB单细胞核心提供RNA测序技术的使用,感谢布鲁塞尔Vrije大学流式细胞仪核心设施使用Symphony A3流式细胞仪。

A.E.I.H., J.F., E.B., A.D., L.J., I.V., M.C., S.D.K. and F.L. are supported by a grant from VLAIO (Flanders innovation & entrepreneurship (HBC.2019.2737). J.F., E.B., L.J., I.V., M.C., M.E.S., R.S., S.D.K. and F.L. were supported by the EXPERT project, which has received Funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No.

A、 E.I.H.,J.F.,E.B.,A.D.,L.J.,I.V.,M.C.,S.D.K.和F.L.得到了VLAIO的资助(法兰德斯创新与创业(HBC。2019.2737)。J、 F.,E.B.,L.J.,I.V.,M.C.,M.E.S.,R.S.,S.D.K.和F.L.得到了专家项目的支持,该项目已获得欧盟地平线2020研究与创新计划的资助。

825828. P.M.R.B, L.A., A.A.C. and A.G.P. are supported by predoctoral grants from FWO Vlaanderen (1154720 N, 11P1824N, 1169521 N, 1SH0424N). E.K and LAvG are funded by grants from the FWO and Vrije Universiteit Brussel. M.G. and B.G.D.G. are supported by grants from Stichting tegen kanker and Ghent University.

825828.P.M.R.B,L.A.,A.A.C.和A.G.P.得到了FWO Vlaanderen(1154720 N,11P1824N,1169521 N,1SH0424N)的博士前资助。E、 K和LAvG由FWO和布鲁塞尔弗里耶大学的资助。M、 G.和B.G.D.G.得到了Stichting tegen kanker和根特大学的资助。

F.C and L.F are supported by Vrije Universiteit Brussel. E.H. is supported by a postdoctoral grant from FWO Vlaanderen (12Y1922N). F.A.N is supported by the Fonds de la Recherche Scientifique FNRS (Belgium) Grants and Fellowships, S.D.S is supported by a postdoctoral grant from Stichting tegen kanker (2021-023).

F、 C和L.F得到了布鲁塞尔自由大学的支持。E、 H.得到了FWO Vlaanderen(12Y1922N)的博士后资助。F、 A.N得到了比利时科学研究基金会(Fonds de la Recherche Scientifique FNRS)的资助和研究金,S.D.S得到了Stichting tegen kanker(2021-023)的博士后资助。

D.L. is supported by grants from FWO, Kom op tegen Kanker, Stichting tegen kanker, VIB and Vrije Universiteit Brussel.Author informationAuthor notesThese authors contributed equally: Jessica Filtjens, Elisabeth Brabants.These authors jointly supervised this work: Florence Lambolez, Damya Laoui.Authors and AffiliationsLab of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center .

D、 L.得到了FWO、Kom op tegen Kanker、Stichting tegen Kanker、VIB和布鲁塞尔自由大学的资助。作者信息作者注意到这些作者做出了同样的贡献:杰西卡·菲尔特金斯(JessicaFiltjens),伊丽莎白·布拉班茨(ElisabethBrabants)。这些作者共同监督了这项工作:佛罗伦萨·兰博雷斯(Florence Lambolez),达米亚·拉乌伊(Damya Laoui)。VIB中心树突状细胞生物学和癌症免疫治疗的作者和附属机构。

PubMed Google ScholarJessica FiltjensView author publicationsYou can also search for this author in

PubMed Google ScholarJessica FiltjensView作者出版物您也可以在

PubMed Google ScholarElisabeth BrabantsView author publicationsYou can also search for this author in

PubMed Google ScholarElisabeth BrabantsView作者出版物您也可以在

PubMed Google ScholarDaliya KanchevaView author publicationsYou can also search for this author in

PubMed Google ScholarDaliya KanchevaView作者出版物您也可以在

PubMed Google ScholarAyla DebraekeleerView author publicationsYou can also search for this author in

PubMed Google ScholarAyla DebraekeleerView作者出版物您也可以在

PubMed Google ScholarJan BrughmansView author publicationsYou can also search for this author in

PubMed Google ScholarJan BrughmansView作者出版物您也可以在

PubMed Google ScholarLotte JacobsView author publicationsYou can also search for this author in

PubMed Google ScholarLotte JacobsView作者出版物您也可以在

PubMed Google ScholarPauline M. R. BardetView author publicationsYou can also search for this author in

PubMed Google ScholarPauline M.R.BardetView作者出版物您也可以在

PubMed Google ScholarElisabeth KnetemannView author publicationsYou can also search for this author in

PubMed Google ScholarelisabethKnetemannview作者出版物您也可以在

PubMed Google ScholarPierre LefesvreView author publicationsYou can also search for this author in

PubMed Google ScholarPierre LefesvreView作者出版物您也可以在

PubMed Google ScholarLize AllonsiusView author publicationsYou can also search for this author in

PubMed Google ScholarLize AllonsiusView作者出版物您也可以在

PubMed Google ScholarMark GontsarikView author publicationsYou can also search for this author in

PubMed Google ScholarMark GontsarikView作者出版物您也可以在

PubMed Google ScholarIsmael VarelaView author publicationsYou can also search for this author in

PubMed Google ScholarIsmael VarelaView作者出版物您也可以在

PubMed Google ScholarMarian CrabbéView author publicationsYou can also search for this author in

PubMed谷歌学者CrabbéView作者出版物您也可以在

PubMed Google ScholarEmile J. ClappaertView author publicationsYou can also search for this author in

PubMed Google ScholarEmile J.ClappaertView作者出版物您也可以在

PubMed Google ScholarFederica CappellessoView author publicationsYou can also search for this author in

PubMed Google ScholarFederica CappellessoView作者出版物您也可以在

PubMed Google ScholarAarushi A. CaroView author publicationsYou can also search for this author in

PubMed Google ScholarAarushi A.CaroView作者出版物您也可以在

PubMed Google ScholarAlícia Gordún PeiróView author publicationsYou can also search for this author in

PubMed Google ScholarAlícia Gordún PeiróView作者出版物您也可以在

PubMed Google ScholarLuna FredericqView author publicationsYou can also search for this author in

PubMed Google ScholarLuna FredericqView作者出版物您也可以在

PubMed Google ScholarEva HadadiView author publicationsYou can also search for this author in

PubMed Google ScholarEva HadadiView作者出版物您也可以在

PubMed Google ScholarMariona Estapé SentiView author publicationsYou can also search for this author in

PubMed Google ScholarMariona EstapéSentiView作者出版物您也可以在

PubMed Google ScholarRaymond SchiffelersView author publicationsYou can also search for this author in

PubMed Google ScholarRaymond SchiffelersView作者出版物您也可以在

PubMed Google ScholarLeo A. van GrunsvenView author publicationsYou can also search for this author in

PubMed Google ScholarLeo A.van GrunsvenView作者出版物您也可以在

PubMed Google ScholarFrank Aboubakar NanaView author publicationsYou can also search for this author in

PubMed Google ScholarFrank Aboubakar NanaView作者出版物您也可以在

PubMed Google ScholarBruno G. De GeestView author publicationsYou can also search for this author in

PubMed Google ScholarBruno G.De GeestView作者出版物您也可以在

PubMed Google ScholarSofie DeschoemaekerView author publicationsYou can also search for this author in

PubMed Google ScholarSofie DeschoemaekerView作者出版物您也可以在

PubMed Google ScholarStefaan De KokerView author publicationsYou can also search for this author in

PubMed Google ScholarStefaan De KokerView作者出版物您也可以在

PubMed Google ScholarFlorence LambolezView author publicationsYou can also search for this author in

PubMed谷歌学者Florence LambolezView作者出版物您也可以在

PubMed Google ScholarDamya LaouiView author publicationsYou can also search for this author in

PubMed Google ScholarDamya LaouiView作者出版物您也可以在

PubMed Google ScholarContributionsConceptualization: A.E.I.H., S.D.K., F.L., D.L. Investigation: A.E.I.H., J.F., E.B., A.D., J.B., L.J., P.M.R.B., E.K., L.A., M.G., I.V., M.C., E.J.C., F.C., A.A.C., A.G.P., L.F., E.H., M.E.S., R.S., S.D. Formal analysis: A.E.I.H., J.F., E.B., D.K., E.K., P.L., M.G., L.Av.G.

PubMed谷歌学术贡献概念:A.E.I.H.,S.D.K.,F.L.,D.L.调查:A.E.I.H.,J.F.,E.B.,A.D.,J.B.,L.J.,P.M.R.B.,E.K.,L.A.,M.G.,I.V.,M.C.,E.J.C.,F.C.,A.A.C.,A.G.P.,L.F.,E.H.,M.E.S.,R.S.,S.D.正式分析:A.E.I.H.,J.F.,E.B.,D.K.,E.K.,P.L.,M.G.,L.Av。G。

Providing human samples: F.A.N. Visualization: A.E.I.H., J.F., D.K., B.G.D.G. Writing – original draft: A.E.I.H. Writing – review and editing: A.E.I.H., F.L., D.L. with input of all authors. Supervision: F.L., D.L. Funding acquisition: S.D.K., B.G.D.G., F.L., D.L.Corresponding authorsCorrespondence to.

提供人体样本:F.A.N.可视化:A.E.I.H.,J.F.,D.K.,B.G.D.G.写作-原稿:A.E.I.H.写作-审查和编辑:A.E.I.H.,F.L.,D.L.所有作者的投入。监督:F.L.,D.L。资金获取:S.D.K.,B.G.D.G.,F.L.,D.L。通讯作者通讯。

Florence Lambolez or Damya Laoui.Ethics declarations

佛罗伦萨·兰博雷斯或达米亚·拉乌伊。道德宣言

Competing interests

相互竞争的利益

J.F., E.B., S.D.K., and F.L. are employees of etherna. J.F., E.B., S.D.K., and F.L. have applied for a patent related to the study (Compositions and methods for delivery of agents to immune cells; WO2023118411A1). S.D.K. and B.G.D.G. have applied for a patent related to the ionizable lipids used in this work (Ionizable lipids; WO2022136641A1).

J、 F.,E.B.,S.D.K.和F.L.是etherna的员工。J、 F.,E.B.,S.D.K.和F.L.已经申请了与该研究相关的专利(用于向免疫细胞递送药剂的组合物和方法;WO2023118411A1)。S、 D.K.和B.G.D.G.已申请与本工作中使用的可电离脂质(可电离脂质;WO2022136641A1)相关的专利。

All other authors declare no potential conflicts of interest..

所有其他作者声明没有潜在的利益冲突。。

Peer review

同行评审

Peer review information

同行评审信息

Nature Communications thanks Zhiliang Bai, Alvaro Teijeira, Xiaoyang Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

《自然通讯》感谢白志良、阿尔瓦罗·泰耶拉、徐晓阳和另一位匿名审稿人对这项工作的同行评审做出的贡献。可以获得同行评审文件。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationReporting SummaryTransparent Peer Review fileSource dataSource DataRights and permissions

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息报告摘要透明的同行评审文件源数据源数据权限

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleHamouda, A.E.I., Filtjens, J., Brabants, E. et al. Intratumoral delivery of lipid nanoparticle-formulated mRNA encoding IL-21, IL-7, and 4-1BBL induces systemic anti-tumor immunity.

转载和许可本文引用本文Hamouda,A.E.I.,Filtjens,J.,Brabants,E。等人。肿瘤内递送编码IL-21,IL-7和4-1BBL的脂质纳米颗粒配制的mRNA诱导全身抗肿瘤免疫。

Nat Commun 15, 10635 (2024). https://doi.org/10.1038/s41467-024-54877-9Download citationReceived: 01 December 2023Accepted: 25 November 2024Published: 06 December 2024DOI: https://doi.org/10.1038/s41467-024-54877-9Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Nat Commun 1510635(2024)。https://doi.org/10.1038/s41467-024-54877-9Download引文接收日期:2023年12月1日接收日期:2024年11月25日发布日期:2024年12月6日OI:https://doi.org/10.1038/s41467-024-54877-9Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供