EN
登录

MARCO靶向PLGA纳米颗粒减轻皮肤损伤

Attenuation of skin injury by a MARCO targeting PLGA nanoparticle

Nature 等信源发布 2024-12-06 10:14

可切换为仅中文


AbstractCutaneous exposure to the DNA alkylating class of chemotherapeutic agents including nitrogen mustard (NM) leads to both skin injury and systemic inflammation. Circulating myeloid subsets recruited to the skin act to further exacerbate local tissue damage while interfering with the wound healing process.

摘要皮肤暴露于DNA烷化类化学治疗剂(包括氮芥(NM))会导致皮肤损伤和全身炎症。募集到皮肤的循环骨髓亚群进一步加剧局部组织损伤,同时干扰伤口愈合过程。

We demonstrate herein that intravenous delivery of poly(lactic-co-glycolic acid) immune-modifying nanoparticles (PLGA-IMPs) shortly after NM exposure restricts accumulation of macrophages and inflammatory monocytes at the injury site, resulting in attenuated skin pathology. Furthermore, PLGA-IMPs induce an early influx and local enrichment of Foxp3+ regulatory T cells (Treg) in the skin lesions critical for the suppression of myeloid cell-pro-inflammatory responses via induction of IL-10 and TGF-β in the cutaneous milieu.

我们在此证明,在NM暴露后不久静脉内递送聚(乳酸-共-乙醇酸)免疫修饰纳米颗粒(PLGA-IMP)限制了巨噬细胞和炎性单核细胞在损伤部位的积累,导致皮肤病理减弱。此外,PLGA-IMPs在皮肤损伤中诱导Foxp3+调节性T细胞(Treg)的早期流入和局部富集,这对于通过在皮肤环境中诱导IL-10和TGF-β来抑制骨髓细胞促炎反应至关重要。

Functional depletion of CD4+ Tregs ablates the efficacy of PLGA-IMPs accompanied by a loss of local accumulation of anti-inflammatory cytokines essential for wound healing. Thus, in severe skin trauma, PLGA-IMPs may have therapeutic potential via modulation of inflammatory myeloid cells and regulatory T lymphocytes..

CD4+Tregs的功能性消耗消除了PLGA-IMP的功效,伴随着伤口愈合所必需的抗炎细胞因子的局部积累的丧失。因此,在严重的皮肤创伤中,PLGA-IMP可能通过调节炎性骨髓细胞和调节性T淋巴细胞而具有治疗潜力。。

IntroductionBeing the largest organ in the body, the skin is commonly exposed to numerous environmental insults and works with immune processes to resolve acute injury1. Circulating innate immune cells respond to injury-induced chemokines and danger signals by infiltrating damaged tissue to clear debris and initiate tissue repair1.

引言作为体内最大的器官,皮肤通常会受到许多环境污染,并与免疫过程一起解决急性损伤1。循环先天免疫细胞通过浸润受损组织清除碎片并启动组织修复来响应损伤诱导的趋化因子和危险信号1。

However, chemokines and inflammatory cytokines produced by activated inflammatory cells, often lead to bystander tissue damage resulting in amplified immune-mediated pathology2.Nitrogen mustard (NM) was the first chemotherapeutic agent discovered in 1942 for the treatment of Hodgkin’s lymphoma and other hematologic cancers3,4.

然而,由活化的炎性细胞产生的趋化因子和炎性细胞因子经常导致旁观者组织损伤,导致免疫介导的病理学扩增2。氮芥(NM)是1942年发现的第一种用于治疗霍奇金淋巴瘤和其他血液学癌症的化学治疗剂3,4。

Along with its numerous derivatives, this class of alkylating agents bind to and crosslink DNA and are frequently used in cancer therapy5. However, drug-induced toxicities are common and often necessitate treatment cessation. NM treatment for skin lymphoma (mycosis fungoides) can result in severe dermatitis and blister formation6.

这类烷基化剂与其众多衍生物一起与DNA结合并交联,经常用于癌症治疗5。然而,药物引起的毒性很常见,通常需要停止治疗。NM治疗皮肤淋巴瘤(蕈样肉芽肿)可导致严重的皮炎和水疱形成6。

Based on historical accounts of victims exposed to the infamous, related sulfur-containing compound, mustard gas, these cytotoxic effects can cause severe injury and death. We and others have shown that the damage resulting from exposure to alkylating agents is not solely attributable to the “1st hit” direct cytotoxicity of the chemical agent7,8,9.

根据受害者接触臭名昭著的含硫化合物芥子气的历史记录,这些细胞毒性作用可能导致严重的伤害和死亡。我们和其他人已经表明,暴露于烷化剂所造成的损害不仅仅归因于化学试剂的“第一次打击”直接细胞毒性7,8,9。

Damaged keratinocytes in the epidermal barrier release high levels of TNF-α, iNOS, ROS, chemokines and proteolytic enzymes creating a highly pro-inflammatory milieu7,10,11,12,13,14. Subsequent recruitment of innate immune cells, specifically inflammatory monocytes and macrophages, to the inflamed site represents an important “2nd hit” that further exacerbates tissue damage7,10,11,12,13,14.In prior studies, we demonstrated that clodronate-mediated ma.

表皮屏障中受损的角质形成细胞释放高水平的TNF-α,iNOS,ROS,趋化因子和蛋白水解酶,形成高度促炎的环境7,10,11,12,13,14。随后将先天免疫细胞,特别是炎性单核细胞和巨噬细胞募集到发炎部位代表了一个重要的“第二次打击”,进一步加剧了组织损伤7,10,11,12,13,14。在先前的研究中,我们证明了氯膦酸盐介导的ma。

Data availability

数据可用性

All data generated or analyzed during this study are included in this published article [and its supplementary information files]. Bulk RNA-seq data are deposited to Gene Expression Omnibus (GEO) accession number GSE218810.

本研究期间生成或分析的所有数据均包含在本文[及其补充信息文件]中。大量RNA-seq数据保存到Gene Expression Omnibus(GEO)登录号GSE218810。

ReferencesNguyen, A. V. & Soulika, A. M. The dynamics of the skin’s immune system. Int. J. Mol. Sci. 20. https://doi.org/10.3390/ijms20081811 (2019).Pasparakis, M., Haase, I. & Nestle, F. O. Mechanisms regulating skin immunity and inflammation. Nat. Rev. Immunol. 14, 289–301 (2014).Article

参考文献Nguyen,A.V。和Soulika,A.M。皮肤免疫系统的动态。Int.J.Mol.Sci。20https://doi.org/10.3390/ijms20081811(2019年)。Pasparakis,M.,Haase,I。&Nestle,F.O。调节皮肤免疫和炎症的机制。国家免疫修订版。14289-301(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wintrobe, M. M. et al. Nitrogen mustard as a therapeutic agent for Hodgkin’s disease, lymphosarcoma and leukemia. Ann. Intern Med. 27, 529–540 (1947).Article

Wintrobe,M.M.等人。氮芥作为霍奇金病、淋巴肉瘤和白血病的治疗剂。《实习医学》27529-540(1947)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Singh, R. K., Kumar, S., Prasad, D. N. & Bhardwaj, T. R. Therapeutic journery of nitrogen mustard as alkylating anticancer agents: Historic to future perspectives. Eur. J. Med. Chem. 151, 401–433 (2018).Article

Singh,R.K.,Kumar,S.,Prasad,D.N。和Bhardwaj,T.R。氮芥作为烷基化抗癌剂的治疗杂志:历史到未来的观点。欧洲医学化学杂志。151401-433(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

DeVita, V. T. Jr. & Chu, E. A history of cancer chemotherapy. Cancer Res. 68, 8643–8653 (2008).Article

DeVita,V.T.Jr。&Chu,E。癌症化疗史。癌症研究688643-8653(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lessin, S. R. et al. Topical chemotherapy in cutaneous T-cell lymphoma: positive results of a randomized, controlled, multicenter trial testing the efficacy and safety of a novel mechlorethamine, 0.02%, gel in mycosis fungoides. JAMA Dermatol. 149, 25–32 (2013).Article

Lessin,S.R.等人,《皮肤T细胞淋巴瘤的局部化疗:一项随机,对照,多中心试验的阳性结果,该试验测试了一种新型0.02%甲氯乙胺凝胶在蕈样肉芽肿中的疗效和安全性。JAMA皮肤病。149,25-32(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Au, L. et al. Suppression of hyperactive immune responses protects against nitrogen mustard injury. J. Investig. Dermatol. 135, 2971–2981 (2015).Article

Au,L。等人。抑制过度活跃的免疫反应可以防止氮芥损伤。J、 调查。皮肤病。1352971–2981(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Requena, L. et al. Chemical warfare. Cutaneous lesions from mustard gas. J. Am. Acad. Dermatol. 19, 529–536 (1988).Article

Requena,L.等人,《化学战》。芥子气引起的皮肤病变。J、 美国科学院。皮肤病。19529-536(1988)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sharma, M., Pant, S. C., Pant, J. C. & Vijayaraghavan, R. Nitrogen and sulphur mustard induced histopathological observations in mouse visceral organs. J. Environ. Biol. 31, 891–905 (2010).PubMed

Sharma,M.,Pant,S.C.,Pant,J.C。&Vijayaraghavan,R。氮和硫芥诱导小鼠内脏器官的组织病理学观察。J、 环境。生物学31891-905(2010)。PubMed出版社

Google Scholar

谷歌学者

Shakarjian, M. P. et al. Mechanisms mediating the vesicant actions of sulfur mustard after cutaneous exposure. Toxicol. Sci. 114, 5–19 (2010).Article

Shakarjian,M.P.等人。皮肤暴露后介导硫芥发泡作用的机制。毒理学。科学。114,5-19(2010)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wahler, G. et al. Antioxidant/stress response in mouse epidermis following exposure to nitrogen mustard. Exp. Mol. Pathol. 114, 104410 (2020).Article

Wahler,G。等人。暴露于氮芥后小鼠表皮的抗氧化/应激反应。实验分子病理学。114104410(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chang, Y. C. et al. Expression of cytokines and chemokines in mouse skin treated with sulfur mustard. Toxicol. Appl. Pharm. 355, 52–59 (2018).Article

Chang,Y.C.等人。用硫芥处理的小鼠皮肤中细胞因子和趋化因子的表达。毒理学。应用。Pharm.355,52-59(2018)。文章

CAS

中科院

Google Scholar

谷歌学者

Laskin, D. L., Sunil, V. R., Gardner, C. R. & Laskin, J. D. Macrophages and tissue injury: agents of defense or destruction? Annu. Rev. Pharm. Toxicol. 51, 267–288 (2011).Article

Laskin,D.L.,Sunil,V.R.,Gardner,C.R。&Laskin,J.D。巨噬细胞和组织损伤:防御剂还是破坏剂?年。药物毒理学牧师。51267-288(2011)。文章

CAS

中科院

Google Scholar

谷歌学者

Biyashev, D. et al. Topical application of synthetic melanin promotes tissue repair. npj Regen. Med. 8, 61 (2023).Article

Biyashev,D。等人。局部应用合成黑色素促进组织修复。npj再生。医学杂志8,61(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Getts, D. R. et al. Therapeutic inflammatory monocyte modulation using immune-modifying microparticles. Sci. Transl. Med. 6, 219ra217 (2014).Article

Getts,D.R.等人。使用免疫修饰微粒的治疗性炎性单核细胞调节。科学。翻译。医学杂志6219RA217(2014)。文章

Google Scholar

谷歌学者

Xu, D. et al. PLG nanoparticles target fibroblasts and MARCO+ monocytes to reverse multiorgan fibrosis. JCI Insight 7. https://doi.org/10.1172/jci.insight.151037 (2022).Jeong, S. J. et al. Intravenous immune-modifying nanoparticles as a therapy for spinal cord injury in mice. Neurobiol.

Xu,D。等人。PLG纳米颗粒靶向成纤维细胞和MARCO+单核细胞以逆转多器官纤维化。JCI Insight 7。https://doi.org/10.1172/jci.insight.151037(2022年)。Jeong,S.J.等人。静脉注射免疫修饰纳米颗粒治疗小鼠脊髓损伤。神经生物学。

Dis. 108, 73–82 (2017).Article .

Dis。108,73-82(2017)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sharma, S. et al. Intravenous immunomodulatory nanoparticle treatment for traumatic brain injury. Ann. Neurol. 87, 442–455 (2020).Article

Sharma,S。等人。静脉注射免疫调节纳米粒子治疗创伤性脑损伤。安。神经病学。87442-455(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Das, L. M., Binko, A. M., Traylor, Z. P., Peng, H. & Lu, K. Q. Vitamin D improves sunburns by increasing autophagy in M2 macrophages. Autophagy 15, 813–826 (2019).Article

Das,L.M.,Binko,A.M.,Traylor,Z.P.,Peng,H。&Lu,K.Q。维生素D通过增加M2巨噬细胞的自噬来改善晒伤。自噬15813-826(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ernst, M. K. et al. Vitamin D3 and deconvoluting a rash. JCI Insight 8. https://doi.org/10.1172/jci.insight.163789 (2023).Kohm, A. P. et al. Cutting Edge: Anti-CD25 monoclonal antibody injection results in the functional inactivation, not depletion, of CD4+CD25+ T regulatory cells. J.

Ernst,M.K。等人。维生素D3和去卷积皮疹。JCI Insight 8。https://doi.org/10.1172/jci.insight.163789(2023年)。Kohm,A.P.等人。前沿:抗CD25单克隆抗体注射导致CD4+CD25+T调节细胞的功能失活,而不是耗竭。J。

Immunol. 176, 3301–3305 (2006).Article .

免疫。1763301–3305(2006)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kratofil, R. M., Kubes, P. & Deniset, J. F. Monocyte conversion during inflammation and injury. Arterioscler. Thromb. Vasc. Biol. 37, 35–42 (2017).Article

Kratofil,R.M.,Kubes,P。&Deniset,J.F。炎症和损伤期间的单核细胞转化。动脉硬化。血栓。Vasc。生物学37,35-42(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Capucha, T. et al. Distinct murine mucosal Langerhans cell subsets develop from pre-dendritic cells and monocytes. Immunity 43, 369–381 (2015).Article

Capucha,T。等人。不同的鼠粘膜朗格汉斯细胞亚群由前树突状细胞和单核细胞发育而来。豁免43369-381(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Musumeci, A., Lutz, K., Winheim, E. & Krug, A. B. What makes a pDC: recent advances in understanding plasmacytoid DC development and heterogeneity. Front. Immunol. 10, 1222 (2019).Article

Musumeci,A.,Lutz,K.,Winheim,E。&Krug,A.B。是什么造就了pDC:了解浆细胞样DC发育和异质性的最新进展。正面。免疫。101222(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jaffar, Z., Ferrini, M. E., Girtsman, T. A. & Roberts, K. Antigen-specific Treg regulate Th17-mediated lung neutrophilic inflammation, B-cell recruitment and polymeric IgA and IgM levels in the airways. Eur. J. Immunol. 39, 3307–3314 (2009).Article

Jaffar,Z.,Ferrini,M.E.,Girtsman,T.A。&Roberts,K。抗原特异性Treg调节Th17介导的肺中性粒细胞炎症,B细胞募集以及气道中的聚合物IgA和IgM水平。欧洲免疫学杂志。393307-3314(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Munoz, L. D., Sweeney, M. J. & Jameson, J. M. Skin resident gammadelta T cell function and regulation in wound repair. Int. J. Mol. Sci. 21. https://doi.org/10.3390/ijms21239286 (2020).Casetti, R. et al. Cutting edge: TGF-beta1 and IL-15 Induce FOXP3+ gammadelta regulatory T cells in the presence of antigen stimulation.

Munoz,L.D.,Sweeney,M.J。和Jameson,J.M。皮肤居民gammadelta T细胞在伤口修复中的功能和调节。Int.J.Mol.Sci。21https://doi.org/10.3390/ijms21239286(2020年)。Casetti,R。等人。前沿:TGF-β1和IL-15在抗原刺激存在下诱导FOXP3+gammadelta调节性T细胞。

J. Immunol. 183, 3574–3577 (2009).Article .

J、 免疫。1833574-3577(2009)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Panduro, M., Benoist, C. & Mathis, D. Tissue tregs. Annu. Rev. Immunol. 34, 609–633 (2016).Article

Panduro,M.,Benoist,C。&Mathis,D。组织tregs。年。免疫修订版。34609-633(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kalekar, L. A. & Rosenblum, M. D. Regulatory T cells in inflammatory skin disease: from mice to humans. Int. Immunol. 31, 457–463 (2019).Article

Kalekar,L.A。和Rosenblum,M.D。炎症性皮肤病中的调节性T细胞:从小鼠到人类。内部免疫。31457-463(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Debes, G. F. & McGettigan, S. E. Skin-associated B cells in health and inflammation. J. Immunol. 202, 1659–1666 (2019).Article

Debes,G.F。&McGettigan,S.E。健康和炎症中的皮肤相关B细胞。J、 免疫。2021659-1666(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Podojil, J. R. et al. Biodegradable nanoparticles induce cGAS/STING-dependent reprogramming of myeloid cells to promote tumor immunotherapy. Front. Immunol. 13, 887649 (2022).Article

Podojil,J.R。等人。可生物降解的纳米颗粒诱导骨髓细胞的cGAS/STING依赖性重编程以促进肿瘤免疫疗法。正面。免疫。13887649(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Raghani, R. M. et al. Myeloid cell reprogramming alleviates immunosuppression and promotes clearance of metastatic lesions. Front. Oncol. 12, 1039993 (2022).Article

Raghani,R.M。等人。骨髓细胞重编程减轻免疫抑制并促进转移性病变的清除。正面。Oncol公司。121039993(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kelly, C. P. et al. TAK-101 nanoparticles induce gluten-specific tolerance in celiac disease: a randomized, double-blind, placebo-controlled study. Gastroenterology 161, 66–80 e68 (2021).Article

Kelly,C.P.等人。TAK-101纳米颗粒在乳糜泻中诱导面筋特异性耐受:一项随机,双盲,安慰剂对照研究。胃肠病学161,66-80 e68(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Aran, D., Hu, Z. & Butte, A. J. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 18, 220 (2017).Article

Aran,D.,Hu,Z.&Butte,A.J.xCell:数字描绘组织细胞异质性景观。基因组生物学。18220(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAcknowledgementsWe are grateful for access to de-identified tissue from the published clinical trial and to the subjects who had participated in the original study. We also thank the Northwestern University Skin Biology and Diseases Resource-Cased Center (SBDRC, P30 AR075049) for their help with tissue processing, the Robert H.

下载参考文献致谢我们非常感谢从已发表的临床试验中获得去识别的组织以及参与原始研究的受试者。我们还要感谢西北大学皮肤生物学和疾病资源案例中心(SBDRC,P30 AR075049)在组织处理方面的帮助,RobertH。

Lurie Comprehensive Cancer Center Flow Core for providing the instrumentation and expertise for the flow cytometric analysis, and the Center for Advanced Molecular Imaging (CAMI, NCI CCSG P30 CA060553) for providing access to imaging modalities. Research reported in this publication was supported by the National Institutes of Health Chemical Countermeasures Research Program (CCRP) executed by the National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), and the National Institutes of Health Office of the Director (NIH OD) under award number U54AR079795 (K.Q.L., S.D.M., I.C.L., and N.C.G.) and U01AR071168 (K.Q.L.

Lurie综合癌症中心Flow Core为流式细胞仪分析提供仪器和专业知识,高级分子成像中心(CAMI,NCI CCSG P30 CA060553)提供成像模式。本出版物中报道的研究得到了美国国立卫生研究院化学对策研究计划(CCRP)的支持,该计划由美国国家过敏与传染病研究所(NIAID),美国国家关节炎和肌肉骨骼与皮肤病研究所(NIAMS)以及美国国立卫生研究院主任办公室(NIH OD)执行,奖项编号为U54AR079795(K.Q.L.,S.D.M.,I.C.L。和N.C.G。)和U01AR071168(K.Q.L.)。

and S.D.M.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The funder played no role in study design, data collection, analysis and interpretation of data, or the writing of this manuscript.Author informationAuthor notesThese authors contributed equally: Ummiye V.

和S.D.M.)。内容完全由作者负责,不一定代表美国国立卫生研究院的官方观点。资助者在研究设计,数据收集,数据分析和解释或撰写本手稿方面没有发挥任何作用。作者信息作者注意到这些作者做出了同样的贡献:Ummiye V。

Onay, Dan Xu.These authors jointly supervised this work: Stephen D. Miller, Kurt Q. Lu.Authors and AffiliationsDepartment of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USAUmmiye V. Onay, Dauren Biyashev, Spencer T. Evans, Michael M. Demczuk, I. Caroline Le Poole, Stephen D.

Onay,Dan Xu。这些作者共同监督了这项工作:Stephen D.Miller,Kurt Q.Lu。作者和附属机构西北大学范伯格医学院皮肤科,伊利诺伊州芝加哥,USAUmmiye V.Onay,Dauren Biyashev,Spencer T.Evans,Michael M.Demczuk,I。卡罗琳·勒·普尔(CarolineLePoole),斯蒂芬·德(StephenD。

Miller & Kurt Q. LuDepartment od Microbiology-Immuno.

Miller&Kurt Q.LuDepartment od微生物学免疫。

PubMed Google ScholarDan XuView author publicationsYou can also search for this author in

PubMed Google ScholarDan XuView作者出版物您也可以在

PubMed Google ScholarDauren BiyashevView author publicationsYou can also search for this author in

PubMed Google ScholarDauren BiyashevView作者出版物您也可以在

PubMed Google ScholarSpencer T. EvansView author publicationsYou can also search for this author in

PubMed Google ScholarSpencer T.EvansView作者出版物您也可以在

PubMed Google ScholarMichael M. DemczukView author publicationsYou can also search for this author in

PubMed Google Scholarmamichael M.DemczukView作者出版物您也可以在

PubMed Google ScholarTobias NeefView author publicationsYou can also search for this author in

PubMed Google ScholarTobias NeefView作者出版物您也可以在

PubMed Google ScholarJoseph R. PodojilView author publicationsYou can also search for this author in

PubMed谷歌学者Joseph R.PodojilView作者出版物您也可以在

PubMed Google ScholarSara BeddowView author publicationsYou can also search for this author in

PubMed Google ScholarSara BeddowView作者出版物您也可以在

PubMed Google ScholarNathan C. GianneschiView author publicationsYou can also search for this author in

PubMed Google ScholarNathan C.GianneschiView作者出版物您也可以在

PubMed Google ScholarI. Caroline Le PooleView author publicationsYou can also search for this author in

PubMed Google ScholarI。Caroline Le PooleView作者出版物您也可以在

PubMed Google ScholarStephen D. MillerView author publicationsYou can also search for this author in

PubMed Google ScholarStephen D.MillerView作者出版物您也可以在

PubMed Google ScholarKurt Q. LuView author publicationsYou can also search for this author in

PubMed Google ScholarKurt Q.LuView作者出版物您也可以在

PubMed Google ScholarContributionsThis work was conceptualized by K.Q.L. and S.D.M. Methodology was determined and study investigation by U.V.O., D.X., D.B., S.E., M.M.D., T.N., J.P., S.B., S.D.M., and K.Q.L. Visualization of results was performed by U.V.O., D.X., and S.E. Funding was acquired by K.Q.L.

PubMed谷歌学术贡献这项工作由K.Q.L.和S.D.M.概念化。方法论由U.V.O.,D.X.,D.B.,S.E.,M.M.D.,T.N.,J.P.,S.B.,S.D.M.和K.Q.L.确定,研究调查由U.V.O.,D.X.进行,S.E.资助由K.Q.L.获得。

S.D.M. and K.Q.L. jointly supervised this work. The original manuscript draft was written by D.X., U.V.O., S.D.M., and K.Q.L. The manuscript was reviewed and edited by U.V.O., D.X., D.B., S.E., M.M.D., T.N., J.P., N.G.C., I.C.L., S.D.M., and K.Q.L.Corresponding authorsCorrespondence to.

S、 D.M.和K.Q.L.共同监督了这项工作。原稿草稿由D.X.,U.V.O.,S.D.M。和K.Q.L.撰写。原稿由U.V.O.,D.X.,D.B.,S.E.,M.M.D.,T.N.,J.P.,N.G.C.,I.C.L.,S.D.M。和K.Q.L.审查和编辑。通讯作者。

Stephen D. Miller or Kurt Q. Lu.Ethics declarations

Stephen D.Miller或Kurt Q.Lu。道德宣言

Competing interests

相互竞争的利益

S.D.M. is a co-founder of, member of the Scientific Advisory Board, grantee of, and holds stock options in COUR Pharmaceutical Development Company and on COUR Pharma, Inc., which holds the patent for the PLG nanoparticle technology. J.P. is an employee of COUR Pharmaceutical, Inc. The remaining authors declare no conflicts..

S、 D.M.是COUR Pharmaceutical Development Company和on COUR Pharma,Inc.的联合创始人、科学顾问委员会成员、受让人,并持有其股票期权,后者持有PLG纳米颗粒技术的专利。J、 P.是COUR Pharmaceutical,Inc.的员工。其余作者声明没有冲突。。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationRights and permissions

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息权限

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleOnay, U.V., Xu, D., Biyashev, D. et al. Attenuation of skin injury by a MARCO targeting PLGA nanoparticle.

转载和许可本文引用本文Ay,U.V.,Xu,D.,Biyashev,D。等人。通过MARCO靶向PLGA纳米颗粒减轻皮肤损伤。

npj Regen Med 9, 37 (2024). https://doi.org/10.1038/s41536-024-00381-zDownload citationReceived: 12 December 2023Accepted: 19 November 2024Published: 06 December 2024DOI: https://doi.org/10.1038/s41536-024-00381-zShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

npj Regen Med 9,37(2024)。https://doi.org/10.1038/s41536-024-00381-zDownload引文接收日期:2023年12月12日接收日期:2024年11月19日发布日期:2024年12月6日OI:https://doi.org/10.1038/s41536-024-00381-zShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供