商务合作
动脉网APP
可切换为仅中文
AbstractChronic high-altitude hypoxia (CHH) induces irreversible abnormalities in various organisms. Emerging evidence indicates that CHH markedly suppresses bone mass and bone strength. Targeting senescent cells and the consequent senescence-associated secretory phenotype (SASP) with senolytics is a recently developed novel therapy for multiple age-related diseases.
摘要慢性高原缺氧(CHH)在各种生物体中引起不可逆的异常。新出现的证据表明,CHH显着抑制骨量和骨强度。针对衰老细胞和随之而来的衰老相关分泌表型(SASP)与senolytics是最近开发的一种针对多种年龄相关疾病的新型疗法。
The combination of dasatinib and quercetin (DQ) has been proven to selectively target senescent cells and attenuate SASP in multiple tissues. In this study, experimental mice were subjected to an environment simulating 5,000 m above sea level for 8 weeks to induce CHH conditions. Our results indicated that DQ supplementation was well-tolerated with negligible toxicity.
达沙替尼和槲皮素(DQ)的组合已被证明可选择性靶向衰老细胞并减弱多种组织中的SASP。在这项研究中,将实验小鼠置于模拟海拔5000米的环境中8周,以诱导CHH条件。我们的结果表明,DQ补充剂耐受性良好,毒性可忽略不计。
In vivo, DQ prevented reductions in BMD and BMC and improved bone microarchitecture against CHH-induced changes. Biomechanical testing demonstrated that DQ significantly improved the mechanical properties of femoral bones in CHH-exposed mice. Furthermore, DQ mitigated senescence in LepR + BMSCs and decreased the population of senescent cells, as evidenced by reduced senescence markers and SA-β-Gal staining.
在体内,DQ阻止了BMD和BMC的减少,并改善了针对CHH诱导的变化的骨微结构。生物力学测试表明,DQ显着改善了CHH暴露小鼠股骨的力学性能。此外,DQ减轻了LepR+ BMSCs的衰老,并减少了衰老细胞的数量,衰老标志物减少和SA-β-Gal染色证明了这一点。
An analysis of serum and bone marrow aspirates showed that DQ treatment preserved angiogenic and osteogenic coupling in the bone marrow microenvironment by maintaining type H vessels and angiogenic growth factors. The results suggest that DQ has significant anti-senescence effects on BMSCs and a positive impact on the bone marrow microenvironment, supporting its clinical investigation as a therapeutic agent for CHH-related osteoporosis..
对血清和骨髓抽吸物的分析表明,DQ治疗通过维持H型血管和血管生成生长因子来维持骨髓微环境中的血管生成和成骨偶联。结果表明,DQ对BMSCs具有显着的抗衰老作用,并对骨髓微环境产生积极影响,支持其作为CHH相关性骨质疏松症治疗剂的临床研究。。
IntroductionSudden exposure to high altitudes is well-documented to induce acute mountain sickness, primarily driven by the decreased atmospheric partial pressure of oxygen and resulting in tissue hypoxia1,2,3. Moreover, chronic exposure to such hypoxia contributes to irreversible abnormalities across several systems like respiratory, cardiovascular, haematological, and neurological4,5.
引言有充分证据表明,突然暴露于高海拔地区会诱发急性高原病,主要是由于大气氧分压降低导致组织缺氧1,2,3。此外,长期暴露于这种缺氧会导致呼吸,心血管,血液学和神经学等几个系统的不可逆异常4,5。
Among these, the impact on bone health, specifically bone deterioration due to high-altitude exposure, has increasingly commanded attention6. Evidence from recent studies suggests a notable decrease in bone mass and mechanical strength in rodents subjected to both acute and chronic high-altitude conditions, alongside aberrations in skeletal metabolism marked by escalated bone resorption and diminished bone formation activities7,8,9,10,11.
其中,对骨骼健康的影响,特别是由于高海拔暴露导致的骨骼恶化,越来越受到关注6。最近研究的证据表明,在急性和慢性高海拔条件下,啮齿动物的骨量和机械强度显着下降,骨骼代谢异常以骨吸收增加和骨形成活动减少为特征7,8,9,10,11。
Similarly, clinical studies have corroborated these findings in humans, revealing significant reductions in bone mineral density and bone-forming activity at high to extreme altitudes, with a challenging full recovery post-return to sea level6,12,13. Despite growing interest, the quest for effective and safe interventions against high-altitude-induced bone deterioration remains largely unfulfilled, underscoring an urgent need for novel therapeutic paradigms.The phenomenon of cellular senescence denotes an inevitable fate for aging cells, characterized by an irreversible halt in proliferation, potent mitogenic signals, telomere shortening, DNA damage, and increased reactive oxygen species (ROS) production14,15.
同样,临床研究证实了人类的这些发现,揭示了在高海拔到极端海拔地区骨矿物质密度和骨形成活性的显着降低,并且在返回海平面后具有挑战性的完全恢复6,12,13。尽管人们越来越感兴趣,但对高海拔引起的骨骼恶化的有效和安全干预措施的追求在很大程度上仍未实现,这强调了迫切需要新的治疗范例。细胞衰老现象意味着衰老细胞不可避免的命运,其特征是增殖不可逆停止,有效的促有丝分裂信号,端粒缩短,DNA损伤和活性氧(ROS)产生增加14,15。
Senescent cells exhibit a senescence-associated secretory phenotype (SASP), inherently pro-inflammatory and contributing to various diseases14. Notably, the role of cellular senescence in osteoporosis16, previously underrecognized, has emerged as .
衰老细胞表现出衰老相关的分泌表型(SASP),固有地促炎并导致各种疾病14。值得注意的是,先前未被认识到的细胞衰老在骨质疏松症中的作用16已经出现。
Data availability
数据可用性
The data during the current study are available from the corresponding author, Q.G., upon reasonable request.
本研究期间的数据可根据合理要求从通讯作者Q.G.处获得。
ReferencesLuks, A. M., Swenson, E. R. & Bartsch, P. Acute high-altitude sickness. Eur. Respiratory Rev. 26(143) (2017).Paralikar, S. J. & Paralikar, J. H. High-altitude medicine. Indian J. Occup. Environ. Med. 14(1), 6–12 (2010).Article
参考文献Luks,A.M.,Swenson,E.R。和Bartsch,P。急性高原病。欧洲呼吸杂志第26版(143)(2017)。Paralikar,S.J。和Paralikar,J.H。高原医学。印度J.Occup。环境。医学杂志14(1),6-12(2010)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Imray, C. et al. Acute mountain sickness: Pathophysiology, prevention, and treatment. Prog. Cardiovasc. Dis. 52(6), 467–484 (2010).Article
Imray,C.等人,《急性高原病:病理生理学,预防和治疗》。程序。心血管。Dis。52(6),467-484(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zepeda, A. B. et al. Cellular and molecular mechanisms in the hypoxic tissue: Role of HIF-1 and ROS. Cell Biochem. Funct. 31(6), 451–459 (2013).Article
Zepeda,A.B.等人。缺氧组织中的细胞和分子机制:HIF-1和ROS的作用。细胞生物化学。函数。31(6),451-459(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Farias, J. G. et al. Acclimatization to chronic intermittent hypoxia in mine workers: A challenge to mountain medicine in Chile. Biol. Res. 46(1), 59–67 (2013).Article
Farias,J.G.等人,《矿工慢性间歇性缺氧的适应:智利山地医学面临的挑战》。《生物学》第46(1)号决议,第59-67(2013)号决议。文章
PubMed
PubMed
Google Scholar
谷歌学者
Basu, M. et al. Alterations in different indices of skeletal health after prolonged residency at high altitude. High. Alt. Med. Biol. 15(2), 170–175 (2014).Article
Basu,M.等人。在高海拔地区长期居住后不同骨骼健康指数的变化。高。替代医学生物学。15(2),170-175(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wang, X. M. et al. Rosamultin attenuates acute hypobaric hypoxia-induced bone injuries by regulation of sclerostin and its downstream signals. High Altitude Medicine & Biology 21(3), 273–286 (2020)..Article
Wang,X.M.等人,Rosamultin通过调节硬化蛋白及其下游信号来减轻急性低压缺氧引起的骨损伤。高原医学与生物学21(3),273-286(2020)。。文章
CAS
中科院
Google Scholar
谷歌学者
Brent, M. B. et al. Hypobaric hypoxia deteriorates bone mass and strength in mice. Bone 154, 116203 (2022).Article
Brent,M.B.等人。低压缺氧会恶化小鼠的骨量和强度。骨骼154116203(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wang, W. et al. The hypobaric hypoxia environment impairs bone strength and quality in rats. Int. J. Clin. Exp. Med. 10(6), 9397–9406 (2017).
Wang,W。等人。低压缺氧环境会损害大鼠的骨骼强度和质量。国际J.临床。实验医学杂志10(6),9397-9406(2017)。
Google Scholar
谷歌学者
Bozzini, C. et al. Structural and material mechanical quality of femoral shafts in rats exposed to simulated high altitude from infancy to adulthood. High. Alt. Med. Biol. 17(1), 50–53 (2016).Article
Bozzini,C.等人。从婴儿期到成年期暴露于模拟高海拔地区的大鼠股骨干的结构和材料力学质量。高。替代医学生物学。17(1),50-53(2016)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Bozzini, C. et al. Static biomechanics in bone from growing rats exposed chronically to simulated high altitudes. High. Alt. Med. Biol. 14(4), 367–374 (2013).Article
Bozzini,C.等人。长期暴露于模拟高海拔地区的生长大鼠骨骼的静态生物力学。高。替代医学生物学。14(4),367-374(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
O’Brien, K. A. et al. Human physiological and metabolic responses to an attempted winter crossing of Antarctica: The effects of prolonged hypobaric hypoxia. Physiological Rep. 6(5) (2018).Basu, M. et al. Determination of bone mass using multisite quantitative ultrasound and biochemical markers of bone turnover during residency at extreme altitude: A longitudinal study.
奥布莱恩(O'Brien,K.A.)等人,《人类对冬季穿越南极的生理和代谢反应:长期低压缺氧的影响》。生理学代表6(5)(2018)。Basu,M.等人。在极端海拔地区居住期间,使用多点定量超声和骨转换生化标志物测定骨量:一项纵向研究。
High Altitude Medicine & Biology 14(2), 150–154 (2013).Article .
高原医学与生物学14(2),150-154(2013)。文章。
ADS
广告
CAS
中科院
Google Scholar
谷歌学者
Di Micco, R. et al. Cellular senescence in ageing: From mechanisms to therapeutic opportunities. Nat. Rev. Mol. Cell. Biol. 22(2), 75–95 (2021).Article
Di Micco,R.等人,《衰老中的细胞衰老:从机制到治疗机会》。自然修订摩尔电池。生物学22(2),75-95(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Tchkonia, T. et al. Cellular senescence and the senescent secretory phenotype: Therapeutic opportunities. J. Clin. Invest. 123(3), 966–972 (2013).Article
Tchkonia,T。等人。细胞衰老和衰老分泌表型:治疗机会。J、 临床。投资。123(3),966-972(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Battmann, A., Schulz, A. & Stahl, U. Cellular senescence: A mechanism of the development of osteoporosis?. Orthopade 30(7), 405–411 (2001).Article
Battmann,A.,Schulz,A。&Stahl,U。细胞衰老:骨质疏松症发展的机制?。Orthopade 30(7),405-411(2001)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kassem, M. & Marie, P. J. Senescence-associated intrinsic mechanisms of osteoblast dysfunctions. Aging Cell. 10(2), 191–197 (2011).Article
Kassem,M。&Marie,P.J。衰老相关的成骨细胞功能障碍的内在机制。衰老细胞。10(2),191-197(2011)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Marie, P. J. Bone cell senescence: Mechanisms and perspectives. J. Bone Min. Res. 29(6), 1311–1321 (2014).Article
Marie,P.J。骨细胞衰老:机制和观点。J、 Bone Min.Res.29(6),1311–1321(2014)。文章
CAS
中科院
Google Scholar
谷歌学者
Chen, Q. et al. DNA damage drives accelerated bone aging via an NF-κB-dependent mechanism. J. Bone Min. Res. 28(5), 1214–1228 (2013).Article
Chen,Q。等人。DNA损伤通过NF-κB依赖性机制加速骨衰老。J、 Bone Min.Res.28(5),1214–1228(2013)。文章
ADS
广告
MathSciNet
MathSciNet
CAS
中科院
Google Scholar
谷歌学者
Krishnamurthy, J. et al. Ink4a/Arf expression is a biomarker of aging. J. Clin. Invest. 114(9), 1299–1307 (2004).Article
Krishnamurthy,J。等人。Ink4a/Arf表达是衰老的生物标志物。J、 临床。投资。114(9),1299-1307(2004)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Farr, J. N. et al. Identification of senescent cells in the bone microenvironment. J. Bone Min. Res. 31(11), 1920–1929 (2016).Article
Farr,J.N.等人。骨微环境中衰老细胞的鉴定。J、 Bone Min.Res.31(11),1920–1929(2016)。文章
CAS
中科院
Google Scholar
谷歌学者
Farr, J. N. et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat. Med. 23(9), 1072–1079 (2017).Article
Farr,J.N.等人,靶向细胞衰老可防止小鼠年龄相关的骨质流失。《自然医学》23(9),1072-1079(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dosek, A. et al. High altitude and oxidative stress. Respir Physiol. Neurobiol. 158(2–3), 128–131 (2007).Article
Dosek,A。等人,《高原和氧化应激》。呼吸生理学。神经生物学。158(2-3),128-131(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yan, C. et al. Resveratrol ameliorates high Altitude Hypoxia-Induced osteoporosis by suppressing the ROS/HIF signaling pathway. Molecules 27(17) (2022).Srivastava, S. et al. Insight into the role of myokines and myogenic regulatory factors under hypobaric hypoxia induced skeletal muscle loss.
Yan,C。等人。白藜芦醇通过抑制ROS/HIF信号通路改善高原缺氧诱导的骨质疏松症。分子27(17)(2022)。Srivastava,S.等。深入了解肌因子和肌源性调节因子在低压缺氧引起的骨骼肌损失中的作用。
Biomarkers 27(8), 753–763 (2022).Article .
生物标志物27(8),753-763(2022)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Pasha, Q. et al. The Telomere-Telomerase system is detrimental to health at high-altitude. Int. J. Environ. Res. Public. Health 20(3) (2023).Palmer, A. K. et al. Targeting senescent cells alleviates obesity-induced metabolic dysfunction. Aging Cell. 18(3), e12950 (2019).Article
Pasha,Q。等人。端粒-端粒酶系统对高海拔地区的健康有害。内景J.环境。公共资源。健康20(3)(2023)。Palmer,A.K.等人针对衰老细胞减轻肥胖引起的代谢功能障碍。衰老细胞。18(3),e12950(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Novais, E. J. et al. Long-term treatment with senolytic drugs Dasatinib and Quercetin ameliorates age-dependent intervertebral disc degeneration in mice. Nat. Commun. 12(1), 5213 (2021).Article
Novais,E.J.等人。用解衰老药物达沙替尼和槲皮素长期治疗可改善小鼠年龄依赖性椎间盘退变。国家公社。12(1),5213(2021)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhu, Y. et al. The Achilles’ heel of senescent cells: From transcriptome to senolytic drugs. Aging Cell. 14(4), 644–658 (2015).Article
朱,Y。等人。衰老细胞的致命弱点:从转录组到衰老药物。衰老细胞。14(4),644-658(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, P. et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat. Neurosci. 22(5), 719–728 (2019).Article
Zhang,P。等人。在阿尔茨海默病模型中,解衰老疗法可缓解Aβ相关的少突胶质祖细胞衰老和认知缺陷。自然神经科学。22(5),719-728(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Honda, Y. et al. Augmentation of bone regeneration by depletion of stress-Induced senescent cells using catechin and senolytics. Int. J. Mol. Sci. 21(12) (2020).Kirkland, J. L. & Tchkonia, T. Senolytic drugs: From discovery to translation. J. Intern. Med. 288(5), 518–536 (2020).Article .
Honda,Y.等人。使用儿茶素和senolytics通过消耗应激诱导的衰老细胞来增强骨再生。Int.J.Mol.Sci。21(12)(2020年)。Kirkland,J。L。和Tchkonia,T。Senolytic drugs:从发现到翻译。J、 实习生。医学288(5),518-536(2020)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Partridge, L., Fuentealba, M. & Kennedy, B. K. The quest to slow ageing through drug discovery. Nat. Rev. Drug Discov 19(8), 513–532 (2020).Article
Partridge,L.,Fuentealba,M。和Kennedy,B.K。寻求通过药物发现减缓衰老。《药品目录》第19(8)号,第513-532页(2020年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wang, L. et al. Targeting p21(Cip1) highly expressing cells in adipose tissue alleviates insulin resistance in obesity. Cell. Metab. 34(1), 186 (2022).Article
Wang,L。等人。靶向脂肪组织中p21(Cip1)高表达细胞可减轻肥胖患者的胰岛素抵抗。细胞。代谢。34(1),186(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Roos, C. M. et al. Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell. 15(5), 973–977 (2016).Article
Roos,C.M.等人。慢性溶血素治疗可缓解老年或动脉粥样硬化小鼠已建立的血管舒缩功能障碍。衰老细胞。15(5),973-977(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hickson, L. J. et al. Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine 47, 446–456 (2019).Article
Hickson,L.J.等人,《Senolytics减少人类衰老细胞:达沙替尼联合槲皮素治疗糖尿病肾病患者的临床试验初步报告》。EBioMedicine 47446-456(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Justice, J. N. et al. Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study. EBioMedicine 40, 554–563 (2019).Article
Justice,J.N.等人,《特发性肺纤维化中的溶血素:首次人体开放性初步研究的结果》。EBioMedicine 40554-563(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24(8), 1246–1256 (2018).Article
Xu,M.等人。老年分解剂可改善身体机能并延长寿命。《自然医学》24(8),1246-1256(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Geng, Q. et al. Astaxanthin Attenuates irradiation-induced Osteoporosis in mice by Inhibiting Oxidative Stress, Osteocyte Senescence, and SASP(Food Funct, 2022).Geng, Q. et al. Pyrroloquinoline Quinone prevents estrogen deficiency-induced osteoporosis by inhibiting oxidative stress and Osteocyte Senescence.
Geng,Q。等人。虾青素通过抑制氧化应激,骨细胞衰老和SASP来减轻辐射诱导的小鼠骨质疏松症(Food Funct,2022)。Geng,Q。等人。吡咯喹啉醌通过抑制氧化应激和骨细胞衰老来预防雌激素缺乏引起的骨质疏松症。
Int. J. Biol. Sci. 15(1), 58–68 (2019).Article .
国际生物学杂志。科学。15(1),58-68(2019)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Geng, Q. et al. A soluble bone morphogenetic protein type 1A receptor fusion protein treatment prevents glucocorticoid-Induced bone loss in mice. Am. J. Transl Res. 11(7), 4232–4247 (2019).ADS
Geng,Q。等人。可溶性骨形态发生蛋白1A型受体融合蛋白治疗可预防糖皮质激素诱导的小鼠骨质流失。《美国医学杂志》Transl Res.11(7),4232–4247(2019)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, S. et al. Treatment with soluble bone morphogenetic protein type 1A receptor fusion protein alleviates irradiation-induced bone loss in mice through increased bone formation and reduced bone resorption. Am. J. Transl Res. 12(3), 743–757 (2020).CAS
Wang,S。等人。用可溶性骨形态发生蛋白1A型受体融合蛋白治疗可通过增加骨形成和减少骨吸收来减轻辐射诱导的小鼠骨丢失。《美国医学杂志》Transl Res.12(3),743-757(2020)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhou, B. O. et al. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell. Stem Cell. 15(2), 154–168 (2014).Article
周,B.O。等。表达瘦素受体的间充质基质细胞是成人骨髓形成的主要骨来源。细胞。干细胞。15(2),154-168(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xie, H. et al. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat. Med. 20(11), 1270–1278 (2014).Article
Xie,H。等人。前成骨细胞分泌的PDGF-BB在与成骨偶联过程中诱导血管生成。《自然医学》20(11),1270–1278(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, X. et al. Enhancement of bone-forming ability on Beta-tricalcium phosphate by modulating Cellular Senescence mechanisms using senolytics. Int. J. Mol. Sci. 22(22) (2021).Liu, J. et al. Age-associated callus senescent cells produce TGF-β1 that inhibits fracture healing in aged mice.
Wang,X。等人。通过使用senolytics调节细胞衰老机制来增强β-磷酸三钙的成骨能力。Int.J.Mol.Sci。22(22)(2021)。Liu,J。等人。与年龄相关的愈伤组织衰老细胞产生TGF-β1,抑制老年小鼠的骨折愈合。
J. Clin. Invest. 132(8) (2022).Chandra, A. et al. Targeted reduction of senescent cell Burden alleviates focal Radiotherapy-related bone loss. J. Bone Min. Res. 35(6), 1119–1131 (2020).Article .
J、 临床。投资。132(8)(2022年)。Chandra,A。等人。靶向减少衰老细胞负荷可减轻局灶性放疗相关的骨质流失。J、 Bone Min.Res.35(6),1119–1131(2020)。文章。
CAS
中科院
Google Scholar
谷歌学者
Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479(7372), 232–236 (2011).Article
Baker,D.J.等人。清除p16Ink4a阳性衰老细胞可延缓衰老相关疾病。《自然》479(7372),232-236(2011)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Coppé, J. P. et al. The senescence-associated secretory phenotype: The dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).Article
Coppé,J.P.等人。衰老相关的分泌表型:肿瘤抑制的黑暗面。年。Pathol牧师。5,99-118(2010)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kfoury, Y. & Scadden, D. T. Mesenchymal cell contributions to the stem cell niche. Cell. Stem Cell. 16(3), 239–253 (2015).Article
Kfoury,Y。&Scadden,D.T。间充质细胞对干细胞生态位的贡献。细胞。干细胞。16(3),239-253(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bonyadi, M. et al. Mesenchymal progenitor self-renewal deficiency leads to age-dependent osteoporosis in Sca-1/Ly-6A null mice. Proc. Natl. Acad. Sci. U S A 100(10), 5840–5845 (2003).Article
Bonyadi,M。等人。间充质祖细胞自我更新缺陷导致Sca-1/Ly-6A无效小鼠的年龄依赖性骨质疏松症。程序。纳特尔。阿卡德。科学。美国A 100(10),5840–5845(2003)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, H. et al. FOXP1 controls mesenchymal stem cell commitment and senescence during skeletal aging. J. Clin. Invest. 127(4), 1241–1253 (2017).Article
Li,H。等人。FOXP1控制骨骼衰老过程中间充质干细胞的承诺和衰老。J、 临床。投资。127(4),1241-1253(2017)。文章
MathSciNet
MathSciNet
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rosen, C. J. et al. Marrow fat and the bone microenvironment: Developmental, functional, and pathological implications. Crit. Rev. Eukaryot. Gene Expr 19(2), 109–124 (2009).Article
Rosen,C.J.等人,《骨髓脂肪与骨微环境:发育、功能和病理学意义》。暴击。真核生物Rev。基因表达19(2),109-124(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, Q. et al. Fate decision of mesenchymal stem cells: Adipocytes or osteoblasts? Cell. Death Differ. 23(7), 1128–1139 (2016).Article
Chen,Q。等。间充质干细胞的命运决定:脂肪细胞还是成骨细胞?细胞。死亡不同。23(7),1128-1139(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Su, J. et al. Cellular senescence mediates the detrimental effect of prenatal dexamethasone exposure on postnatal long bone growth in mouse offspring. Stem Cell. Res. Ther. 11(1), 270 (2020).Article
Su,J。等人。细胞衰老介导产前地塞米松暴露对小鼠后代出生后长骨生长的不利影响。干细胞。Res.Ther。11(1),270(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tencerova, M. et al. Obesity-associated hypermetabolism and accelerated senescence of bone marrow stromal stem cells suggest a potential mechanism for bone fragility. Cell. Rep. 27(7), 2050–2062.e6 (2019).Article
Tencerova,M。等人。肥胖相关的高代谢和骨髓基质干细胞的加速衰老提示了骨脆性的潜在机制。细胞。众议员27(7),2050–2062.e6(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gao, B. et al. Local delivery of tetramethylpyrazine eliminates the senescent phenotype of bone marrow mesenchymal stromal cells and creates an anti-inflammatory and angiogenic environment in aging mice. Aging Cell. 17(3), e12741 (2018).Article
Gao,B。等人。川芎嗪的局部递送消除了骨髓间充质基质细胞的衰老表型,并在衰老小鼠中创造了抗炎和血管生成环境。衰老细胞。17(3),e12741(2018)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, T. et al. Targeting cellular senescence prevents glucocorticoid-induced bone loss through modulation of the DPP4-GLP-1 axis. Signal. Transduct. Target. Ther. 6(1), 143 (2021).Article
Wang,T。等人。靶向细胞衰老通过调节DPP4-GLP-1轴来防止糖皮质激素诱导的骨质流失。信号。Transduct公司。目标。他们。6(1),143(2021)。文章
MathSciNet
MathSciNet
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Short, S. et al. Senolytics and senostatics as adjuvant tumour therapy. EBioMedicine 41, 683–692 (2019).Article
Short,S.等人。Senolytics和senostatics作为辅助肿瘤治疗。EBioMedicine 41683-692(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kusumbe, A. P., Ramasamy, S. K. & Adams, R. H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507(7492), 323–328 (2014).Article
Kusumbe,A.P.,Ramasamy,S.K。&Adams,R.H。通过骨中的特定血管亚型耦合血管生成和成骨。《自然》507(7492),323-328(2014)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ramasamy, S. K. et al. Endothelial notch activity promotes angiogenesis and osteogenesis in bone. Nature 507(7492), 376–380 (2014).Article
Ramasamy,S.K.等人。内皮notch活性促进骨中的血管生成和成骨。《自然》507(7492),376-380(2014)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsThis study was supported by the Postdoctoral Research Foundation of China (Grant No. 2020M681739), the Research Funding Project of the Jiangsu Commission of Health (Grant No. Z2021046, LKM2022048), the Research Funding Project of Xuzhou Medical University (Grant No.
下载参考文献致谢本研究得到了中国博士后研究基金(批准号2020M681739),江苏省卫生委员会研究资助项目(批准号Z2021046,LKM2022048),徐州医科大学研究资助项目(批准号:。
XZSYSKF2020004), the Xuzhou Institute of Technology (Grant No. KC22273), Health Commission of Changzhou City (Grant No. ZD202340), and Research project of Qinghai Provincial Health Commission (Grant No.2023-wjzdx-106).Author informationAuthor notesShen Wang and Juan Zhai equally to this work.Authors and AffiliationsCentral Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, ChinaShen Wang, Juan Zhai, Xingchen Song, Huaiyuan Zhai, Chengbai Dai, Jian Li, Fei Teng, Junli Huang, Guoqiang Wang, Rui Geng, Qingguo Lu, Xinfa Nie, Kui Xue, Qilong Wang, Wanying Huang, Huanyu Zhang, Dehong Yu, Yanhong Liu, Yilong Guo & Qinghe GengKey Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, ChinaShen Wang, Juan Zhai, Xingchen Song, Huaiyuan Zhai, Chengbai Dai, Jian Li, Fei Teng, Junli Huang, Guoqiang Wang, Rui Geng, Qingguo Lu, Xinfa Nie, Kui Xue, Qilong Wang, Wanying Huang, Huanyu Zhang, Dehong Yu, Yanhong Liu, Yilong Guo & Qinghe GengKey Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing, 100044, ChinaShen WangTrauma Medicine Center, Peking University People’s Hospital, Beijing, 100044, ChinaShen WangDepartment of Orthopedics, Changzhou Second Hospital, Nanjing Medical University, Changzhou, 213000, ChinaKe HengDepartment of Traditional Chinese Medicine, Pizhou Hospital of Traditional Chinese Medicine, Xuzhou, 221300, ChinaLiangwei ShaXuzhou Vocational College of Bioengineering, Xuzhou, 22130.
XZSYSKF2020004),徐州理工学院(批准号KC22273),常州市卫生委员会(批准号ZD202340)和青海省卫生委员会研究项目(批准号2023-wjzdx-106)。作者信息作者注意到王慎和翟娟同样支持这项工作。作者和所属单位徐州医科大学邳州医院中心实验室,徐州,221300,王慎,翟娟,宋兴晨,翟怀远,戴成白,李健,滕飞,黄俊丽,王国强,耿睿,卢庆国,聂新发,薛奎,王启龙,黄万英,张焕宇,余德宏,刘艳红,郭怡龙和清河耿基骨质疏松症临床研究实验室,徐州医科大学,徐州,221300,王慎,翟娟,宋兴辰,翟怀远,戴成白,李健,滕飞,黄俊丽,王国强,耿睿,卢庆国,聂新发,薛奎,王奇龙,黄万英,张环宇,余德宏,刘艳红,郭怡龙和庆河耿基教育部创伤与神经再生实验室,北京,100044,北京大学人民医院王国申创伤医学中心,北京,100044,王国深南京医科大学常州第二医院骨科,常州213000,徐州邳州中医院中医科,221300,徐州生物工程职业学院,22130。
PubMed Google ScholarJuan ZhaiView author publicationsYou can also search for this author in
PubMed谷歌学者Juan ZhaiView作者出版物您也可以在
PubMed Google ScholarKe HengView author publicationsYou can also search for this author in
PubMed Google ScholarKe HengView作者出版物您也可以在
PubMed Google ScholarLiangwei ShaView author publicationsYou can also search for this author in
PubMed Google ScholarLiangwei ShaView作者出版物您也可以在
PubMed Google ScholarXingchen SongView author publicationsYou can also search for this author in
PubMed Google ScholarXingchen SongView作者出版物您也可以在
PubMed Google ScholarHuaiyuan ZhaiView author publicationsYou can also search for this author in
PubMed谷歌学者翟怀远评论作者出版物您也可以在
PubMed Google ScholarChengbai DaiView author publicationsYou can also search for this author in
PubMed Google ScholarChengbai DaiView作者出版物您也可以在
PubMed Google ScholarJian LiView author publicationsYou can also search for this author in
PubMed Google ScholarJian LiView作者出版物您也可以在
PubMed Google ScholarFei TengView author publicationsYou can also search for this author in
PubMed Google ScholarFei TengView作者出版物您也可以在
PubMed Google ScholarJunli HuangView author publicationsYou can also search for this author in
PubMed Google ScholarJunli HuangView作者出版物您也可以在
PubMed Google ScholarGuoqiang WangView author publicationsYou can also search for this author in
PubMed:<谷歌学术王查看作者发表文章您也可以在
PubMed Google ScholarYinuo GengView author publicationsYou can also search for this author in
PubMed Google ScholarYinuo GengView作者出版物您也可以在
PubMed Google ScholarRui GengView author publicationsYou can also search for this author in
PubMed谷歌学术评论GengView作者出版物您也可以在
PubMed Google ScholarQingguo LuView author publicationsYou can also search for this author in
PubMed Google ScholarQinguo LuView作者出版物您也可以在
PubMed Google ScholarXinfa NieView author publicationsYou can also search for this author in
PubMed Google ScholarXinfa NieView作者出版物您也可以在
PubMed Google ScholarKui XueView author publicationsYou can also search for this author in
PubMed Google ScholarKui XueView作者出版物您也可以在
PubMed Google ScholarQilong WangView author publicationsYou can also search for this author in
PubMed Google ScholarQilong WangView作者出版物您也可以在
PubMed Google ScholarWanying HuangView author publicationsYou can also search for this author in
PubMed谷歌学者Wanying Huang查看作者出版物您也可以在
PubMed Google ScholarHuanyu ZhangView author publicationsYou can also search for this author in
PubMed谷歌学者张焕宇查看作者出版物您也可以在
PubMed Google ScholarYuanji YangView author publicationsYou can also search for this author in
PubMed Google ScholarYuanji YangView作者出版物您也可以在
PubMed Google ScholarJunyun LanView author publicationsYou can also search for this author in
PubMed谷歌学者Junyun LanView作者出版物您也可以在
PubMed Google ScholarDehong YuView author publicationsYou can also search for this author in
PubMed Google ScholarDehong YuView作者出版物您也可以在
PubMed Google ScholarYanhong LiuView author publicationsYou can also search for this author in
PubMed Google ScholarYanhong LiuView作者出版物您也可以在
PubMed Google ScholarYilong GuoView author publicationsYou can also search for this author in
PubMed Google ScholaryLong GuoView作者出版物您也可以在
PubMed Google ScholarQinghe GengView author publicationsYou can also search for this author in
PubMed Google ScholarQinghe GengView作者出版物您也可以在
PubMed Google ScholarContributionsQ.G. and Y.G. wrote the manuscript; Y.G. revised the manuscript; Y.G. conceived and designed the study; Q.G., S.W., J.Z., K.H., L.S., X.S., C.D., H.Z., J.L., F.T., J.H., G.W., Y.G., R.G., Q.L., X.N., K.X., Q.W., W.H., H.Z., Y.Y., J.L., D.Y., and Y.L performed the study and collected the data; Q.G.
PubMed谷歌学术贡献。G、 和Y.G.写了手稿;Y、 G.修改了手稿;Y、 G.构思和设计了这项研究;Q、 G.,S.W.,J.Z.,K.H.,L.S.,X.S.,C.D.,H.Z.,J.L.,F.T.,J.H.,G.W.,Y.G.,R.G.,Q.L.,X.N.,K.X.,Q.W.,W.H.,H.Z.,Y.Y.,J.L.,D.Y。和Y.L进行了研究并收集了数据;Q、 G。
and Y.G. analyzed the data. All authors reviewed the manuscript.Corresponding authorsCorrespondence to.
和Y.G.分析了数据。所有作者都审阅了手稿。通讯作者通讯。
Yilong Guo or Qinghe Geng.Ethics declarations
郭怡龙或耿清河。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Electronic supplementary materialBelow is the link to the electronic supplementary material.Supplementary Material 1Rights and permissions
Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。电子补充材料流是指向电子补充材料的链接。补充材料1权利和许可
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.
开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。
You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..
Reprints and permissionsAbout this articleCite this articleWang, S., Zhai, J., Heng, K. et al. Senolytic cocktail dasatinib and quercetin attenuates chronic high altitude hypoxia associated bone loss in mice.
转载和许可本文引用本文Wang,S.,Zhai,J.,Heng,K。等人。Senolytic鸡尾酒达沙替尼和槲皮素可减轻小鼠慢性高原缺氧相关的骨质流失。
Sci Rep 14, 30417 (2024). https://doi.org/10.1038/s41598-024-82262-5Download citationReceived: 09 July 2024Accepted: 03 December 2024Published: 06 December 2024DOI: https://doi.org/10.1038/s41598-024-82262-5Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Sci Rep 1430417(2024)。https://doi.org/10.1038/s41598-024-82262-5Download引文收到日期:2024年7月9日接受日期:2024年12月3日发布日期:2024年12月6日OI:https://doi.org/10.1038/s41598-024-82262-5Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
KeywordsOsteoporosisChronic hypobaric hypoxia (CHH)Dasatinib and quercetin (DQ)Bone marrow stem cells (BMSCs)AngiogenesisCellular senescenceSenescence-associated secretory phenotype (SASP)
关键词骨质疏松症低压缺氧(CHH)达沙替尼和槲皮素(DQ)骨髓干细胞(BMSCs)血管生成细胞衰老相关分泌表型(SASP)