商务合作
动脉网APP
可切换为仅中文
AbstractThe view of neutrophils has shifted from simple phagocytic cells, whose main function is to kill pathogens, to very complex cells that are also involved in immune regulation and tissue repair. These cells are essential for maintaining and regaining tissue homeostasis. Neutrophils can be viewed as double-edged swords in a range of situations.
摘要中性粒细胞的观点已经从主要功能是杀死病原体的简单吞噬细胞转变为也参与免疫调节和组织修复的非常复杂的细胞。这些细胞对于维持和恢复组织稳态至关重要。在一系列情况下,中性粒细胞可以被视为双刃剑。
The potent killing machinery necessary for immune responses to pathogens can easily lead to collateral damage to host tissues when inappropriately controlled. Furthermore, some subtypes of neutrophils are potent pathogen killers, whereas others are immunosuppressive or can aid in tissue healing. Finally, in tumor immunology, many examples of both protumorigenic and antitumorigenic properties of neutrophils have been described.
当不适当的控制时,对病原体的免疫反应所必需的有效杀伤机制很容易导致宿主组织的附带损伤。此外,一些中性粒细胞亚型是有效的病原体杀手,而另一些亚型是免疫抑制性的或可以帮助组织愈合。最后,在肿瘤免疫学中,已经描述了嗜中性粒细胞的促肿瘤发生和抗肿瘤发生特性的许多例子。
This has important consequences for cancer therapy, as targeting neutrophils can lead to either suppressed or stimulated antitumor responses. This review will discuss the current knowledge regarding the pro- and antitumorigenic roles of neutrophils, leading to the concept of a confused state of neutrophil-driven pro-/antitumor responses..
这对癌症治疗具有重要影响,因为靶向嗜中性粒细胞可导致抑制或刺激的抗肿瘤反应。这篇综述将讨论目前关于嗜中性粒细胞的促肿瘤和抗肿瘤作用的知识,导致中性粒细胞驱动的促肿瘤/抗肿瘤反应的混乱状态的概念。。
IntroductionNeutrophils as double-edged swords in the effector phase of the immune responseThe effector cells of the immune system have two faces as their beneficial functions are carried out via tissue damaging mechanisms [1]. The toxic effector functions associated with antimicrobial defense easily cause collateral damage to the host tissue, and in the case of hyperactivation, the increased damage outweighs the benefits [2].
引言中性粒细胞作为免疫反应效应阶段的双刃剑免疫系统的效应细胞具有两面性,因为它们的有益功能是通过组织损伤机制进行的。与抗菌防御相关的毒性效应功能很容易对宿主组织造成附带损害,在过度活化的情况下,增加的损害超过了益处(2)。
In addition to toxic effector neutrophils, other neutrophil phenotypes appear during wound healing, which aids in angiogenesis and tissue repair [3]. Tumors have also been described as wounds that never heal, and they can hijack the normal wound healing response for their own growth and spread [4]. A third two-sided role of neutrophils is found in tumor immunology, as the cells can be pro- and antitumorigenic depending on the phenotype of the neutrophil, the timing and the tumor type.Most mechanistic studies on the role of neutrophils in tumorigenesis are performed with mouse models.
除了毒性效应中性粒细胞外,其他中性粒细胞表型也出现在伤口愈合过程中,这有助于血管生成和组织修复。肿瘤也被描述为永远不会愈合的伤口,它们可以劫持正常的伤口愈合反应,使其自身生长和扩散。中性粒细胞的第三个双向作用是在肿瘤免疫学中发现的,因为根据中性粒细胞的表型,时间和肿瘤类型,细胞可以是促肿瘤和抗肿瘤的。大多数关于嗜中性粒细胞在肿瘤发生中的作用的机制研究是用小鼠模型进行的。
Unfortunately, the neutrophil compartment in mice is very different with respect to neutrophil functions. It is beyond the scope of this article to review them all [5, 6]. However, some differences, such as the number of cells, kinetics, receptors, phenotypes and nuclear morphology, are crucial for the translation of murine data related to neutrophil-mediated tumor immunology to humans.
不幸的是,小鼠的中性粒细胞区室在中性粒细胞功能方面非常不同。对它们进行审查超出了本文的范围[5,6]。然而,一些差异,例如细胞数量,动力学,受体,表型和核形态,对于将与嗜中性粒细胞介导的肿瘤免疫学相关的鼠数据翻译为人类至关重要。
First, the number of neutrophils in the peripheral murine blood is much lower (≈10% in spf mice vs ≈60% in humans) [5, 6]. The differentiation time from the last division in the bone marrow and exit to the blood is <1 day in mice and 6 days in humans [7, 8]. Although the lifespan of human neutrophils is debated, as discussed later in this review, it is generally accepted that human neu.
首先,外周小鼠血液中嗜中性粒细胞的数量要低得多(spf小鼠约为10%,人类约为60%)[5,6]。从骨髓最后一次分裂到血液的分化时间在小鼠中小于1天,在人类中小于6天[7,8]。尽管人们对人类中性粒细胞的寿命存在争议,但正如本综述后面所讨论的,人们普遍认为人类中性粒细胞的寿命。
The mitotic pool of proliferative progenitors
增殖祖细胞的有丝分裂池
Despite the multitude of studies focusing on the neutrophil compartment in the bone marrow, little if any consensus is present on the pool sizes of the different neutrophil progenitors. The pool sizes of early progenitors, multipotential progenitors and myeloblasts are clearly small, and a large proportion of the more undifferentiated progenitor cells are not in the cycle [32].
尽管有大量研究关注骨髓中的中性粒细胞区室,但对于不同中性粒细胞祖细胞的池大小几乎没有共识。早期祖细胞、多能祖细胞和成髓细胞的池大小明显较小,大部分未分化的祖细胞不在周期中。
Therefore, these cells are important in maintaining the compartment but are not the main source of neutrophils, as the ‘flux’ through these cells is limited [9, 32, 33]. The largest population of neutrophil progenitors that highly proliferate are promyelocytes [19, 34]. As such, these promyelocytes are the main producers of cells of the mature neutrophil compartment, and their kinetics are rate limiting [9].
因此,这些细胞在维持隔室中很重要,但不是中性粒细胞的主要来源,因为通过这些细胞的“通量”是有限的[9,32,33]。高度增殖的中性粒细胞祖细胞数量最多的是早幼粒细胞[19,34]。因此,这些早幼粒细胞是成熟中性粒细胞区室细胞的主要生产者,其动力学是限速的。
Unfortunately, the size of the pool of promyelocytes is currently unclear. Multiple studies applying different technologies have attempted to estimate this number, and the data range is approximately twofold from 44 × 109 cells/individual to 72 × 109 cells [9, 25, 34]. There are multiple reasons for this difference.
不幸的是,早幼粒细胞库的大小目前尚不清楚。应用不同技术的多项研究试图估计这个数字,数据范围大约是44×109个细胞/个体到72×109个细胞的两倍[9,25,34]。这种差异有多种原因。
An important issue is the source of the bone marrow, as this tissue consists of a fluid phase and a bone niche. Many studies use bone marrow aspirates, which might overrepresent cells from the fluid phase and be relatively deficient in cells present in the bone niche [35]. Another way of collecting bone marrow is through trephine biopsies [36], but these biopsies are difficult to quantify and extrapolate.
一个重要的问题是骨髓的来源,因为这种组织由液相和骨龛组成。许多研究使用骨髓抽吸物,这可能会使液相细胞过度表达,而骨龛中存在的细胞相对缺乏。另一种收集骨髓的方法是通过环钻活检(36),但这些活检很难量化和推断。
Few studies have compared the two methods, but those that have been published conclude that the percentages of different progenitors in aspirates and trephine biopsies are similar [36]. Another complicating factor in the interpretation of bone marrow aspirates is hemodilution of .
很少有研究比较这两种方法,但已发表的研究得出结论,抽吸物和环钻活检中不同祖细胞的百分比相似(36)。解释骨髓抽吸物的另一个复杂因素是血液稀释。
The postmitotic pool of nonproliferative progenitors
非增殖祖细胞的有丝分裂后池
Next, the cells lose their capacity to divide and enter a differentiation/maturation program via meta-myelocytes and banded cells toward mature neutrophils that are mobilized to peripheral blood. For reasons similar to those for promyelocytes, only a few studies have determined the absolute pool sizes of postmitotic progenitors [28, 38].
接下来,细胞失去分裂的能力,并通过间充质骨髓细胞和带状细胞向动员到外周血的成熟嗜中性粒细胞进入分化/成熟程序。由于与早幼粒细胞相似的原因,只有少数研究确定了有丝分裂后祖细胞的绝对池大小[28,38]。
Most studies describe percentages of progenitors in aspirates rather than absolute numbers and show that the pool sizes of myelocytes, metamyelocytes and banded cells are similar [19, 25, 32]. The issue of the pool size of the last step, mature neutrophils, is unresolved. The estimates in the literature range from 99 × 109 cells to 415 × 109 cells in the total bone marrow [19, 25, 34, 39,40,41].
大多数研究描述了抽吸物中祖细胞的百分比,而不是绝对数量,并表明骨髓细胞,间充质细胞和带状细胞的池大小相似[19,25,32]。最后一步成熟中性粒细胞的池大小问题尚未解决。文献中的估计范围从总骨髓中的99×109个细胞到415×109个细胞[19,25,34,39,40,41]。
Together, a twofold difference in the estimated promyelocyte pool and a fourfold difference in the estimated mature neutrophil pool result in an eightfold range of estimated production. This lack of consensus precludes a detailed understanding of the neutrophil compartment..
总之,估计的早幼粒细胞库的两倍差异和估计的成熟中性粒细胞库的四倍差异导致估计产量的八倍范围。由于缺乏共识,无法对中性粒细胞区室进行详细了解。。
Basic kineticsIn addition to determining pool sizes, measuring the kinetics and tissue distribution can help clarify the potential roles and limitations of mature neutrophils. In particular, the relative longevity (t½ of multiple days) of neutrophils supports their role in immune regulation and in tumor immunology.
基本动力学除了确定池大小外,测量动力学和组织分布还有助于阐明成熟中性粒细胞的潜在作用和局限性。特别是,中性粒细胞的相对寿命(多天的t½)支持它们在免疫调节和肿瘤免疫学中的作用。
However, in the late fifties/early sixties of the last century, sizeable literature led to textbook knowledge that human neutrophils are short-lived in the peripheral blood (t½ of 7 h) [34, 42,43,44]. All these studies used essentially the same experimental approach of labeling neutrophils in vivo or in vitro with radioactive diisopropyl fluorophosphate (DFP), which irreversibly binds to neutrophil elastase [45] and followed the decay in radioactivity in blood neutrophils in time.
然而,在上个世纪五十年代末/六十年代初,大量文献导致教科书上的知识,即人类中性粒细胞在外周血中的寿命很短(t½为7小时)[34,42,43,44]。所有这些研究都使用了基本相同的实验方法,在体内或体外用放射性氟磷酸二异丙酯(DFP)标记嗜中性粒细胞,DFP不可逆地与嗜中性粒细胞弹性蛋白酶(45)结合,并随着血液嗜中性粒细胞放射性的衰减。
The implicit underlying hypothesis was that the half-life in peripheral blood equals the death of the cells in the neutrophil compartment. However, an alternative hypothesis of dilution of cells in a large population of neutrophils outside the peripheral blood (e.g., bone marrow) can explain the data at least equally well [9].More recent analyses applying stable isotope labeling in humans also did not support such a short half-life [7] but did not lead to a consensus on the lifetime of a mature neutrophil [8], leading to estimates between 1 and 5.6 days.
隐含的潜在假设是外周血中的半衰期等于中性粒细胞区室中细胞的死亡。然而,在外周血(例如骨髓)外的大量嗜中性粒细胞中稀释细胞的替代假设可以至少同样很好地解释数据(9)。最近在人类中应用稳定同位素标记的分析也不支持如此短的半衰期,但并没有就成熟中性粒细胞的寿命达成共识,导致估计在1至5.6天之间。
The reason for these contradictory findings lies in the uncertainties with respect to pool sizes and the unknown kinetics of promyelocytes [46, 47, 10].Tissue distributionApart from pool size and kinetics, the tissue distribution of the neutrophil compartment in homeostasis has not been well described.
这些矛盾发现的原因在于池大小的不确定性和早幼粒细胞的未知动力学[46,47,10]。组织分布从池的大小和动力学来看,中性粒细胞区室在体内平衡中的组织分布尚未得到很好的描述。
Here, two mutually exclusive hypotheses exist: the ‘tissue surveillance’ model and the ‘peripheral blood surveillance’ model.The fir.
在这里,存在两个相互排斥的假设:“组织监测”模型和“外周血监测”模型。冷杉。
Antitumor responses are characterized by immune mechanisms typical for chronic conditions and seem to be modulated mainly by N-MDSCs. However, it is possible that suppressive neutrophils characterized by CD11bbright/CD11cbright/CD62Ldim that are quickly mobilized during acute and chronic inflammation [111, 167] are also involved in the suppression of T-cell responses in and around tumors [168].
抗肿瘤反应的特征在于慢性病典型的免疫机制,并且似乎主要由N-MDSC调节。然而,在急性和慢性炎症期间迅速动员的以CD11bbright/CD11cbright/CD62Ldim为特征的抑制性中性粒细胞也可能参与抑制肿瘤内和周围的T细胞反应[111167]。
Although this concept has not been directly tested, CD62Llow neutrophils have been connected with immune suppression in and near tumors [169]. L-selectin is a complex marker because it is quickly shed upon stimulation of cells [170]. This makes it difficult to discriminate between CD62Llow cells originating from the bone marrow and cells that have been activated near or in the tumor.
虽然这一概念尚未直接测试,但CD62Llow中性粒细胞与肿瘤及其附近的免疫抑制有关(169)。L-选择素是一种复杂的标记物,因为它在刺激细胞时会迅速脱落。这使得很难区分源自骨髓的CD62Llow细胞和在肿瘤附近或肿瘤中被激活的细胞。
However, CD62Llow cells have been shown to be potent suppressors of T-cell function through the formation of an immune synapse and the production of ROS [111, 171]. This finding is very reminiscent of the suppressive mechanisms described for N-MDSCs. Notably, CD11bbright/CD11cbright/CD62Ldim cells are not immature but are similar in age to normal neutrophils and are 2 days older than banded neutrophils [128].Suppressive neutrophils characterized by differential expression of CD10CD10 (also called neprilysin, CALLA, neutral endopeptidase and enkephalinase) is a complex marker, as it is both a marker of late differentiation [107, 172] and an activation marker [108, 173].
然而,通过形成免疫突触和产生ROS,CD62Llow细胞已被证明是T细胞功能的有效抑制剂[111171]。这一发现让人想起了针对N-MDSC描述的抑制机制。值得注意的是,CD11bbright/CD11cbright/CD62Ldim细胞并不不成熟,但与正常嗜中性粒细胞的年龄相似,比带状嗜中性粒细胞大2天(128)。以CD10CD10(也称为中性溶酶,CALLA,中性内肽酶和脑啡肽酶)差异表达为特征的抑制性中性粒细胞是一种复杂的标志物,因为它既是晚期分化的标志物[107172]又是活化标志物[108173]。
The enhanced expression of CD10 upon stimulation in vitro follows the expression of Mac-1 (CD11b/CD18), suggesting that both markers are expressed in the same subcellular compartment [108, 174]. In addition to being expressed on the cell surface at low levels in resting neutrophils, intracellular Mac-1 is located in secretory vesicles .
体外刺激后CD10的增强表达遵循Mac-1(CD11b/CD18)的表达,表明两种标记物均在相同的亚细胞区室中表达[108174]。除了在静息中性粒细胞中以低水平在细胞表面表达外,细胞内Mac-1还位于分泌囊泡中。
ReferencesSmith JA. Neutrophils, host defense, and inflammation: a double-edged sword. J Leukoc Biol. 1994;56:672–86.Article
参考史密斯JA。中性粒细胞,宿主防御和炎症:一把双刃剑。J Leukoc Biol。1994年;56:672–86.文章
PubMed
PubMed
Google Scholar
谷歌学者
Bruijnzeel PLB, Uddin M, Koenderman L. Targeting neutrophilic inflammation in severe neutrophilic asthma: can we target the disease-relevant neutrophil phenotype? J Leukoc Biol. 2015;98:549–56.Article
Bruijnzeel PLB,Uddin M,Koenderman L.针对严重中性粒细胞性哮喘中的中性粒细胞炎症:我们可以针对疾病相关的中性粒细胞表型吗?J Leukoc Biol。2015年;98:549–56.文章
PubMed
PubMed
Google Scholar
谷歌学者
Martin P, Leibovich SJ Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol. 2005;15. https://doi.org/10.1016/j.tcb.2005.09.002.Dvorak HF Tumors: Wounds that do not heal-redux. Cancer Immunol Res. 2015;3. https://doi.org/10.1158/2326-6066.CIR-14-0209.Nauseef WM Human neutrophils ≠ murine neutrophils: Does it matter? Immunol Rev.
Martin P,Leibovich SJ伤口修复过程中的炎症细胞:好的,坏的和丑陋的。趋势细胞生物学。2005年;15https://doi.org/10.1016/j.tcb.2005.09.002.DvorakHF肿瘤:不能治愈复发的伤口。癌症免疫研究2015;3https://doi.org/10.1158/2326-6066.CIR-14-0209.NauseefWM人类中性粒细胞≠小鼠中性粒细胞:这有关系吗?免疫修订版。
2023;314. https://doi.org/10.1111/imr.13154.Hidalgo A, Chilvers ER, Summers C, Koenderman L. The neutrophil life cycle. Trends Immunol. 2019;40:584–97.Article .
2023年;314https://doi.org/10.1111/imr.13154.HidalgoA,Chilvers ER,Summers C,Koenderman L.中性粒细胞生命周期。趋势免疫。2019年;40:584-97。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Pillay J, den Braber I, Vrisekoop N, Kwast LM, de Boer RJ, Borghans JAM, et al. In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood. 2010;116:625–7.Article
Pillay J,den Braber I,Vrisekoop N,Kwast LM,de Boer RJ,Borghans JAM等。用2H2O体内标记显示人中性粒细胞的寿命为5.4天。血。2010年;116:625–7.文章
PubMed
PubMed
Google Scholar
谷歌学者
Lahoz-Beneytez J, Elemans M, Zhang Y, Ahmed R, Salam A, Block M, et al. Human neutrophil kinetics: modeling of stable isotope labeling data supports short blood neutrophil half-lives. Blood. 2016;127:3431–8.Article
Lahoz-Beneytez J,Elemans M,Zhang Y,Ahmed R,Salam A,Block M等。人类中性粒细胞动力学:稳定同位素标记数据的建模支持短血液中性粒细胞半衰期。血。2016年;127:3431–8.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Koenderman L, Tesselaar K, Vrisekoop N Human neutrophil kinetics: a call to revisit old evidence. Trends Immunol. 2022;43. https://doi.org/10.1016/j.it.2022.09.008.Ravetch JV, Luster AD, Weinshank R, Kochan J, Pavlovec A, Portnoy DA et al. Structural heterogeneity and functional domains of murine immunoglobulin G Fc receptors.
Koenderman L,Tesselar K,Vrisekoop N人类中性粒细胞动力学:呼吁重新审视旧证据。趋势免疫。2022年;43https://doi.org/10.1016/j.it.2022.09.008.RavetchJV,Luster AD,Weinshank R,Kochan J,Pavlovec A,Portnoy DA等。鼠免疫球蛋白G Fc受体的结构异质性和功能域。
Science (1979). 1986;234. https://doi.org/10.1126/science.2946078.Nimmerjahn F, Ravetch JV .Fcγ receptors as regulators of immune responses. Nat Rev Immunol. 2008;8. https://doi.org/10.1038/nri2206.Monteiro RC, Van De Winkel JGJ. IgA Fc receptors. Annu Rev Immunol. 2003;21:177–204.Article .
科学(1979)。1986年;234https://doi.org/10.1126/science.2946078.NimmerjahnF,Ravetch合资公司。Fcγ受体作为免疫反应的调节剂。Nat Rev免疫。2008年;8https://doi.org/10.1038/nri2206.MonteiroRC,Van De Winkel JGJ。IgA Fc受体。Annu Rev免疫。2003年;21:177-204。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Huang X, Nepovimova E, Adam V, Sivak L, Heger Z, Valko M et al. Neutrophils in cancer immunotherapy: friends or foes? Mol Cancer. 2024;23:107–133.Wu G, Pan B, Shi H, Yi Y, Zheng X, Ma H, et al. Neutrophils’ dual role in cancer: from tumor progression to immunotherapeutic potential. Int Immunopharmacol.
Huang X,Nepovinova E,Adam V,Sivak L,Heger Z,Valko M等。癌症免疫治疗中的中性粒细胞:朋友还是敌人?摩尔癌症。2024年;23:107–133.Wu G,Pan B,Shi H,Yi Y,Zheng X,Ma H等。中性粒细胞在癌症中的双重作用:从肿瘤进展到免疫治疗潜力。国际免疫药理学。
2024;140:112788.Article .
2024年;140:112788。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Danilova N. The evolution of immune mechanisms. J Exp Zool B Mol Dev Evol. 2006;306. https://doi.org/10.1002/jez.b.21102.Snyder GA, Eliachar S, Connelly MT, Talice S, Hadad U, Gershoni-Yahalom O et al. Functional characterization of hexacorallia phagocytic cells. Front Immunol. 2021;12.
Danilova N.免疫机制的进化。J Exp Zool B Mol Dev Evol。2006年;306https://doi.org/10.1002/jez.b.21102.SnyderGA,Eliachar S,Connelly MT,Talice S,Hadad U,Gershoni-Yahalom O等。六角体吞噬细胞的功能表征。前免疫。2021年;12
https://doi.org/10.3389/fimmu.2021.662803.Sasseville VG, Hotchkiss CE, Levesque PC, Mankowski JL Hematopoietic, Cardiovascular, Lymphoid and Mononuclear Phagocyte Systems of Nonhuman Primates. In: Nonhuman Primates in Biomedical Research: Diseases: Second Edition. 2012. https://doi.org/10.1016/B978-0-12-381366-4.00007-9.Koenderman L, Buurman W, Daha MR.
https://doi.org/10.3389/fimmu.2021.662803.SassevilleVG,Hotchkiss CE,Levesque PC,Mankowski JL非人灵长类动物的造血,心血管,淋巴和单核吞噬细胞系统。在:生物医学研究中的非人灵长类动物:疾病:第二版。2012https://doi.org/10.1016/B978-0-12-381366-4.00007-9.KoendermanL,Buurman W,Daha先生。
The innate immune response. Immunol Lett. 2014;162. https://doi.org/10.1016/j.imlet.2014.10.010.DONOHUE DM, REIFF RH, HANSON ML, BETSON Y, FINCH CA. Quantitative measurement of the erythrocytic and granulocytic cells of the marrow and blood. J Clin Invest. 1958;37:1571–6.Article .
先天免疫反应。免疫Lett。2014年;162https://doi.org/10.1016/j.imlet.2014.10.010.DONOHUEDM,REIFF RH,HANSON ML,BETSON Y,FINCH CA。骨髓和血液中红细胞和粒细胞的定量测量。J临床投资。1958年;37:1571-6。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
De Filippo K, Rankin SM. The secretive life of neutrophils revealed by intravital microscopy. Front Cell Dev Biol. 2020;8. https://doi.org/10.3389/fcell.2020.603230.Strydom N, Rankin SM. Regulation of circulating neutrophil numbers under homeostasis and in disease. J Innate Immun. 2013;5:304–14.Article .
De Filippo K,Rankin SM。通过活体显微镜揭示中性粒细胞的分泌生命。前细胞开发生物学。2020年;8https://doi.org/10.3389/fcell.2020.603230.StrydomN,Rankin SM。体内平衡和疾病中循环中性粒细胞数量的调节。J先天免疫。2013年;5: 304-14条。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Diacovo TG, Roth SJ, Buccola JM, Bainton DF, Springer TA Neutrophil rolling, arrest, and transmigration across activated, surface-adherent platelets via sequential action of P-selectin and the β2- integrin CD11b/CD18. Blood. 1996;88. https://doi.org/10.1182/blood.v88.1.146.bloodjournal881146.Middleton J, Patterson AM, Gardner L, Schmutz C, Ashton BA.
Diacovo TG,Roth SJ,Buccola JM,Bainton DF,Springer TA中性粒细胞通过P-选择素和β2-整联蛋白CD11b/CD18的顺序作用在活化的表面粘附血小板上滚动,停滞和迁移。血。1996年;88https://doi.org/10.1182/blood.v88.1.146.bloodjournal881146.MiddletonJ,Patterson AM,Gardner L,Schmutz C,Ashton BA。
Leukocyte extravasation: Chemokine transport and presentation by the endothelium. Blood. 2002;100. https://doi.org/10.1182/blood.V100.12.3853.Woodfin A, Voisin MB, Beyrau M, Colom B, Caille D, Diapouli FM et al. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo.
白细胞外渗:内皮细胞的趋化因子转运和呈递。血。2002年;100https://doi.org/10.1182/blood.V100.12.3853.WoodfinA,Voisin MB,Beyrau M,Colom B,Caille D,Diapouli FM等。连接粘附分子JAM-C调节体内中性粒细胞的极化跨内皮迁移。
Nat Immunol. 2011;12. https://doi.org/10.1038/ni.2062.Matarraz S, Fernandez C, Albors M, Teodosio C, López A, Jara-Acevedo M, et al. Cell-cycle distribution of different cell compartments in normal versus reactive bone marrow: a frame of reference for the study of dysplastic hematopoiesis. Cytom B Clin Cytom.
Nat免疫。2011年;12https://doi.org/10.1038/ni.2062.MatarrazS,Fernandez C,Albors M,Teodosio C,López A,Jara Acevedo M等。正常与反应性骨髓中不同细胞区室的细胞周期分布:发育不良造血研究的参考框架。Cytom B临床Cytom。
2011;80:354–61.Article .
2011年;80:354-61。文章。
Google Scholar
谷歌学者
Wolock SL, Krishnan I, Tenen DE, Matkins V, Camacho V, Patel S, et al. Mapping distinct bone marrow niche populations and their differentiation paths. Cell Rep. 2019;28:302–.e5.Article
Wolock SL,Krishnan I,Tenen DE,Matkins V,Camacho V,Patel S等。绘制不同的骨髓生态位种群及其分化途径。细胞代表2019;28:302–.e5.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Evrard M, Kwok IWH, Chong SZ, Teng KWW, Becht E, Chen J, et al. Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions. Immunity. 2018;48:364–.e8.Article
Evrard M,Kwok IWH,Chong SZ,Teng KWW,Becht E,Chen J等。骨髓嗜中性粒细胞的发育分析揭示了专门从事扩增,运输和效应功能的人群。豁免。2018年;48:364–.e8.文章
PubMed
PubMed
Google Scholar
谷歌学者
Overbeeke C, Tak T, Koenderman L The journey of neutropoiesis: how complex landscapes in bone marrow guide continuous neutrophil lineage determination. Blood. 2022;139. https://doi.org/10.1182/blood.2021012835.Nguyen LT, Zimmermann K, Kowenz-Leutz E, Lim R, Hofstätter M, Mildner A et al.
Overbeeke C,Tak T,Koenderman L中性粒细胞生成的旅程:骨髓中复杂的景观如何指导持续的中性粒细胞谱系测定。血。2022年;139https://doi.org/10.1182/blood.2021012835.NguyenLT,Zimmermann K,Kowenz-Leutz E,Lim R,Hofstätter M,Mildner A等。
C/EBPβ-induced lymphoid-to-myeloid transdifferentiation emulates granulocyte-monocyte progenitor biology. Stem Cell Reports. 2024;19. https://doi.org/10.1016/j.stemcr.2023.11.011.Zhu YP, Padgett L, Dinh HQ, Marcovecchio P, Blatchley A, Wu R, et al. Identification of an early unipotent neutrophil progenitor with pro-tumoral activity in mouse and human bone marrow.
C/EBPβ诱导的淋巴样-骨髓转分化模拟粒细胞-单核细胞祖细胞生物学。干细胞报告。2024年;19https://doi.org/10.1016/j.stemcr.2023.11.011.ZhuYP,Padgett L,Dinh HQ,Marcovecchio P,Blatchley A,Wu R等。鉴定在小鼠和人骨髓中具有促肿瘤活性的早期单能中性粒细胞祖细胞。
Cell Rep. 2018;24:2329–.e8.Article .
细胞代表2018;24:2329–。e8。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Calzetti F, Finotti G, Tamassia N, Bianchetto-Aguilera F, Castellucci M, Canè S et al. CD66b−CD64dimCD115− cells in the human bone marrow represent neutrophil-committed progenitors. Nat Immunol. 2022;23. https://doi.org/10.1038/s41590-022-01189-z.Behbehani GK, Bendall SC, Clutter MR, Fantl WJ, Nolan GP.
Calzetti F,Finotti G,Tamassia N,Bianchetto-Aguilera F,Castellucci M,CanèS等人。人骨髓中的CD66b-CD64dimCD115-细胞代表嗜中性粒细胞定向祖细胞。Nat免疫。2022年;23https://doi.org/10.1038/s41590-022-01189-z.BehbehaniGK,本德尔SC,克拉特先生,范特尔WJ,诺兰GP。
Single-cell mass cytometry adapted to measurements of the cell cycle. Cytometry Part A 2012;81 A. https://doi.org/10.1002/cyto.a.22075.Pietras EM, Reynaud D, Kang YA, Carlin D, Calero-Nieto FJ, Leavitt AD, et al. Functionally distinct subsets of lineage-biased multipotent progenitors control blood production in normal and regenerative conditions.
单细胞质量细胞计数法适用于细胞周期的测量。细胞计数A部分2012;公元81年。https://doi.org/10.1002/cyto.a.22075.PietrasEM,Reynaud D,Kang YA,Carlin D,Calero Nieto FJ,Leavitt AD等。谱系偏向的多能祖细胞的功能不同子集控制正常和再生条件下的血液产生。
Cell Stem Cell. 2015;17:35–46.Article .
细胞干细胞。2015年;17: 第35-46条。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dancey JT, Deubelbeiss KA, Harker LA, Finch CA. Neutrophil kinetics in man. J Clin Invest. 1976;58:705–15.Article
Dancey JT,Deubelbeiss KA,Harker LA,Finch CA。人类中性粒细胞动力学。临床投资杂志。1976年;58:705–15.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Riley RS, Williams D, Ross M, Zhao S, Chesney A, Clark BD, et al. Bone marrow aspirate and biopsy: a pathologist’s perspective. II. Interpretation of the bone marrow aspirate and biopsy. J Clin Lab Anal. 2009;23:259–307.Article
Riley RS,Williams D,Ross M,Zhao S,Chesney A,Clark BD等。骨髓抽吸和活检:病理学家的观点。二。骨髓抽吸和活检的解释。J临床实验室肛门。2009年;23:259–307.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gilotra M, Gupta M, Singh S, Sen R. Comparison of bone marrow aspiration cytology with bone marrow trephine biopsy histopathology: an observational study. J Lab Physicians. 2017;9:182–9.Article
Gilotra M,Gupta M,Singh S,Sen R.骨髓穿刺细胞学与骨髓环钻活检组织病理学的比较:一项观察性研究。J实验室医生。2017年;9: 182-9.条款
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Loken MR, Chu S-C, Fritschle W, Kalnoski M, Wells DA. Normalization of bone marrow aspirates for hemodilution in flow cytometric analyses. Cytom B Clin Cytom. 2009;76:27–36.Article
Loken MR,Chu S-C,Fritschle W,Kalnoski M,Wells DA。流式细胞术分析中用于血液稀释的骨髓抽吸物的标准化。Cytom B临床Cytom。2009年;76:27–36.文章
Google Scholar
谷歌学者
Tak T, Tesselaar K, Pillay J, Borghans JAM, Koenderman L. What’s your age again? Determination of human neutrophil half-lives revisited. J Leukoc Biol. 2013;94:595–601.Article
Tak T,Tesselaar K,Pillay J,Borghans JAM,Koenderman L.你又多大了?重新确定人类中性粒细胞的半衰期。J Leukoc Biol。2013年;94:595–601.文章
PubMed
PubMed
Google Scholar
谷歌学者
BIERMAN HR, MARSHALL GJ, KELLY KH, BYRON RL. Leucapheresis in man. II. Changes in circulating granulocytes, lymphocytes and plateletes in the blood. Br J Hematol. 1962;8:77–85.Article
BIERMAN HR,MARSHALL GJ,KELLY KH,BYRON RL。人类白细胞分离术。II。血液中循环粒细胞,淋巴细胞和血小板的变化。Br J血液学。1962年;8: 77-85.文章
Google Scholar
谷歌学者
CRADDOCK CG, PERRY S, VENTZKE LE, LAWRENCE JS. Evaluation of marrow granulocytic reserves in normal and disease states. Blood. 1960;15:840–55.Article
CRADDOCK CG,PERRY S,VENTZKE LE,LAWRENCE JS。正常和疾病状态下骨髓粒细胞储备的评估。血。1960年;15: 840-55.文章
PubMed
PubMed
Google Scholar
谷歌学者
Boll IT, Fuchs G. A kinetic model of granulocytopoiesis. Exp Cell Res. 1970;61:147–52.Article
Boll-IT,Fuchs G.粒细胞生成的动力学模型。Exp Cell Res.1970;61:147–52.文章
PubMed
PubMed
Google Scholar
谷歌学者
Alexanian R, Donohue DM Neutrophilic granulocyte kinetics in normal man. J Appl Physiol. 1965;20. https://doi.org/10.1152/jappl.1965.20.4.803.Cartwright GE, Athens JW, Wintrobe MM. The kinetics of granulopoiesis in normal man. Blood. 1964;24:780–803.Article
Alexanian R,Donohue DM正常人中性粒细胞动力学。J Appl Physiol。1965年;20https://doi.org/10.1152/jappl.1965.20.4.803.CartwrightGE,Athens JW,Wintrobe MM。正常人粒细胞生成的动力学。血液。1964年;24:780–803.文章
PubMed
PubMed
Google Scholar
谷歌学者
ATHENS JW, RAAB SO, HAAB OP, MAUER AM, ASHENBRUCKER H, CARTWRIGHT GE, et al. Leukokinetic studies. III. The distribution of granulocytes in the blood of normal subjects. J Clin Invest. 1961;40:159–64.Article
雅典JW,RAAB SO,HAAB OP,MAUER AM,ASHENBRUCKER H,CARTWRIGHT GE等。白细胞动力学研究。三、 正常人血液中粒细胞的分布。J临床投资。1961年;40:159–64.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mauer AM, Athens JW, Ashenbrucker H, Cartwright GE, Wintrobe MM. Leukokinetic studies. Ii. A method for labeling granulocytes in vitro with radioactive diisopropylfluorophosphate (dfp). J Clin Invest. 1960;39:1481–6.Article
Mauer AM,Athens JW,Ashenbrucker H,Cartwright GE,Wintrobe MM。白细胞动力学研究。二。一种用放射性二异丙基氟磷酸盐(dfp)体外标记粒细胞的方法。J临床投资。1960年;39:1481–6.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tofts PS, Chevassut T, Cutajar M, Dowell NG, Peters AM. Doubts concerning the recently reported human neutrophil lifespan of 5.4 days. Blood. 2011;117:6050–2. author reply 6053-4.Article
Tofts PS,Chevassut T,Cutajar M,Dowell NG,Peters AM。对最近报道的人类中性粒细胞寿命为5.4天的怀疑。血。2011年;117:6050-2。作者回复6053-4.Article
PubMed
PubMed
Google Scholar
谷歌学者
Li KW, Turner SM, Emson CL, Hellerstein MK, Dale DC. Deuterium and neutrophil kinetics. Blood. 2011;117:6052–3. author reply 6053-4.Article
李KW,特纳SM,埃姆森CL,Hellerstein MK,戴尔DC。氘和中性粒细胞动力学。血。2011年;117:6052-3。作者回复6053-4.Article
PubMed
PubMed
Google Scholar
谷歌学者
Greenlee-Wacker MC Clearance of apoptotic neutrophils and resolution of inflammation. Immunol Rev. 2016;273. https://doi.org/10.1111/imr.12453.Savill JS, Wyllie AH, Henson JE, Walport MJ, Henson PM, Haslett C Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages.
Greenlee-Wacker MC清除凋亡中性粒细胞和解决炎症。Immunol Rev.2016;273https://doi.org/10.1111/imr.12453.SavillJS,Wyllie AH,Henson JE,Walport MJ,Henson PM,Haslett C巨噬细胞吞噬炎症中衰老的中性粒细胞。中性粒细胞中的程序性细胞死亡导致其被巨噬细胞识别。
J Clin Investig. 1989;83. https://doi.org/10.1172/JCI113970.Henson PM, Bratton DL, Fadok VA. Apoptotic cell removal. Curr Biol. 2001;11. https://doi.org/10.1016/S0960-9822(01)00474-2.Starnes TW, Huttenlocher A. Neutrophil reverse migration becomes transparent with zebrafish. Adv Hematol. 2012;2012:398640.Article .
J临床研究。1989年;83https://doi.org/10.1172/JCI113970.HensonPM,Bratton DL,Fadok VA.凋亡细胞去除。货币生物学。2001年;11https://doi.org/10.1016/S0960-9822(01)00474-2.Starnes TW,Huttenlocher A.中性粒细胞反向迁移对斑马鱼变得透明。高级血液学。2012年;2012:398640。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Buckley CD, Ross EA, McGettrick HM, Osborne CE, Haworth O, Schmutz C et al. Identification of a phenotypically and functionally distinct population of long-lived neutrophils in a model of reverse endothelial migration. J Leukoc Biol. 2006;79:303–11.Cenariu D, Iluta S, Zimta AA, Petrushev B, Qian L, Dirzu N et al.
Buckley CD,Ross EA,McGettrick HM,Osborne CE,Haworth O,Schmutz C等人。在反向内皮迁移模型中鉴定表型和功能不同的长寿命嗜中性粒细胞群。J Leukoc Biol。2006年;79:303-11.Cenariu D,Iluta S,Zimta AA,Petrushev B,Qian L,Dirzu N等。
Extramedullary hematopoiesis of the liver and spleen. J Clin Med. 2021;10. https://doi.org/10.3390/jcm10245831.Koenderman L, Vrisekoop N. Extramedullary neutrophil progenitors: Quo vadis? Cell Mol Immunol. 2024;21:932–4.Ellett F, Elks PM, Robertson AL, Ogryzko NV, Renshaw SA. Defining the phenotype of neutrophils following reverse migration in zebrafish.
肝脏和脾脏的髓外造血。J临床医学杂志2021;10https://doi.org/10.3390/jcm10245831.KoendermanL,Vrisekoop N.髓外中性粒细胞祖细胞:Quo vadis?细胞摩尔免疫。2024年;21:932–4.Ellett F,Elks PM,Robertson AL,Ogryzko NV,Renshaw SA。定义斑马鱼反向迁移后中性粒细胞的表型。
J Leukoc Biol. 2015;98:975–81.Article .
白细胞生物学杂志。2015;98:975-81.文章[联合王国]。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nourshargh S, Renshaw SA, Imhof BA. Reverse migration of neutrophils: where when, how, and why? Trends Immunol. 2016;37:273–86.Article
Nourshargh S,Renshaw SA,Imhof BA。中性粒细胞的反向迁移:何时何地,如何以及为什么?趋势免疫。2016年;37:273–86.文章
PubMed
PubMed
Google Scholar
谷歌学者
Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science (1979). 2007;317:666–70.
Auffray C,Fogg D,Garfa M,Elain G,Join Lambert O,Kayal S等人。通过具有巡逻行为的单核细胞群监测血管和组织。科学(1979)。2007年;317:666-70。
Google Scholar
谷歌学者
Finsterbusch M, Hall P, Li A, Devi S, Westhorpe CLV, Kitching AR et al. Patrolling monocytes promote intravascular neutrophil activation and glomerular injury in the acutely inflamed glomerulus. Proc Natl Acad Sci USA 2016;113. https://doi.org/10.1073/pnas.1606253113.Deniset JF, Kubes P.
Finsterbusch M,Hall P,Li A,Devi S,Westhorpe CLV,Kitching AR等。巡逻单核细胞促进急性发炎肾小球的血管内中性粒细胞活化和肾小球损伤。美国国家科学院院刊2016;113https://doi.org/10.1073/pnas.1606253113.DenisetJF,库布斯P。
Intravital imaging of myeloid cells: inflammatory migration and resident patrolling. Microbiol Spectr. 2016;4. https://doi.org/10.1128/microbiolspec.mchd-0042-2016.Pillay J, Tregay N, Juzenaite G, Carlin LM, Pirillo C, Gaboriau DCA, et al. Effect of the CXCR4 antagonist plerixafor on endogenous neutrophil dynamics in the bone marrow, lung and spleen.
骨髓细胞的活体成像:炎症迁移和居民巡逻。微生物光谱。2016年;4https://doi.org/10.1128/microbiolspec.mchd-0042-2016.PillayJ,Tregay N,Juzenaite G,Carlin LM,Pirillo C,Gaboriau DCA等。CXCR4拮抗剂plerixafor对骨髓,肺和脾脏内源性中性粒细胞动力学的影响。
J Leukoc Biol. 2020;107:1175–85.Article .
白细胞生物学杂志。2020;107:1175–85.条款[联合王国]。
PubMed
PubMed
Google Scholar
谷歌学者
Kim C. Homeostatic and pathogenic extramedullary hematopoiesis. J Blood Med. 2010. https://doi.org/10.2147/jbm.s7224.Article
Kim C.稳态和致病性髓外造血。血液医学杂志,2010年。https://doi.org/10.2147/jbm.s7224.Article
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang J Neutrophils in tissue injury and repair. Cell Tissue Res. 2018;371. https://doi.org/10.1007/s00441-017-2785-7.Park SH, Silva M, Bahk WJ, McKellop H, Lieberman JR. Effect of repeated irrigation and debridement on fracture healing in an animal model. J Orthopedic Res. 2002;20. https://doi.org/10.1016/S0736-0266(02)00072-4.Bastian O, Pillay J, Alblas J, Leenen L, Koenderman L, Blokhuis T.
Wang J中性粒细胞在组织损伤和修复中的作用。细胞组织研究2018;371https://doi.org/10.1007/s00441-017-2785-7.ParkSH,Silva M,Bahk WJ,McKellop H,Lieberman JR.重复冲洗和清创对动物模型骨折愈合的影响。J Orthopedic Res.2002;20https://doi.org/10.1016/S0736-0266(02)00072-4.Bastian O,Pillay J,Alblas J,Leenen L,Koenderman L,Blokhuis T。
Systemic inflammation and fracture healing. J Leukoc Biol. 2011;89:669–73.Article .
全身炎症和骨折愈合。J Leukoc Biol。2011年;89:669-73。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Bastian OW, Kuijer A, Koenderman L, Stellato RK, van Solinge WW, Leenen LPH et al. Impaired bone healing in multitrauma patients is associated with altered leukocyte kinetics after major trauma. J Inflamm Res. 2016;9. https://doi.org/10.2147/JIR.S101064.Bastian OW, Koenderman L, Alblas J, Leenen LPH, Blokhuis TJ.
Bastian OW,Kuijer A,Koenderman L,Stellato RK,van Solinge WW,Leenen LPH等人。多发性创伤患者的骨愈合受损与严重创伤后白细胞动力学改变有关。J Inflamm Res.2016;9https://doi.org/10.2147/JIR.S101064.BastianOW,Koenderman L,Alblas J,Leenen LPH,Blokhuis TJ。
Neutrophils contribute to fracture healing by synthesizing fibronectin+ extracellular matrix rapidly after injury. Clin Immunol. 2016;164. https://doi.org/10.1016/j.clim.2016.02.001.Furze RC, Rankin SM. The role of the bone marrow in neutrophil clearance under homeostatic conditions in the mouse. FASEB J.
中性粒细胞通过在损伤后迅速合成纤连蛋白+细胞外基质来促进骨折愈合。临床免疫。2016年;164https://doi.org/10.1016/j.clim.2016.02.001.FurzeRC,Rankin SM。骨髓在小鼠体内稳态条件下中性粒细胞清除中的作用。法塞布J。
2008;22:3111–9.Article .
2008年;22:3111-9。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
De Filippo K, Rankin SM. CXCR4, the master regulator of neutrophil trafficking in homeostasis and disease. Eur J Clin Invest. 2018;48 Suppl 2:e12949.Article
De Filippo K,Rankin SM。CXCR4,中性粒细胞在体内平衡和疾病中运输的主要调节剂。Eur J Clin投资。2018年;48补充2:e12949.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Duffin R, Leitch AE, Fox S, Haslett C, Rossi AG. Targeting granulocyte apoptosis: mechanisms, models, and therapies. Immunol Rev. 2010;23. https://doi.org/10.1111/j.1600-065X.2010.00922.x.Lawrence SM, Corriden R, Nizet V. How neutrophils meet their end. Trends Immunol. 2020;41:531–44.Article .
Duffin R,Leitch AE,Fox S,Haslett C,Rossi AG。靶向粒细胞凋亡:机制,模型和疗法。Immunol Rev.2010;23https://doi.org/10.1111/j.1600-065X.2010.00922.x.LawrenceSM,Corriden R,Nizet V.中性粒细胞如何达到终点。趋势免疫。2020年;41:531-44。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Mortaz E, Alipoor SD, Adcock IM, Mumby S, Koenderman L. Update on neutrophil function in severe inflammation. Front Immunol. 2018;9:2171.Article
Mortaz E,Alipoor SD,Adcock IM,Mumby S,Koenderman L.严重炎症中性粒细胞功能的最新进展。前免疫。2018年;9: 2171条
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cech P, Lehrer RI Heterogeneity of human neutrophil phagolysosomes: functional consequences for candidacidal activity. Blood 1984;64. https://doi.org/10.1182/blood.v64.1.147.bloodjournal641147.Lodge KM, Cowburn AS, Li W, Condliffe AM The impact of hypoxia on neutrophil degranulation and consequences for the host.
Cech P,Lehrer RI人类嗜中性粒细胞吞噬溶酶体的异质性:对念珠菌杀灭活性的功能后果。血液1984;64https://doi.org/10.1182/blood.v64.1.147.bloodjournal641147.LodgeKM,Cowburn AS,Li W,Condliffe AM缺氧对中性粒细胞脱颗粒的影响以及对宿主的后果。
Int J Mol Sci. 2020;21. https://doi.org/10.3390/ijms21041183.McDonald B, Pittman K, Menezes GB, Hirota SA, Slaba I, Waterhouse CCM et al. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science. (1979) 2010;330. https://doi.org/10.1126/science.1195491.Roos D, Van Bruggen R, Meischl C.
国际分子科学杂志。2020年;21https://doi.org/10.3390/ijms21041183.McDonaldB,Pittman K,Menezes GB,Hirota SA,Slaba I,Waterhouse CCM等。血管内危险信号将中性粒细胞引导至无菌炎症部位。科学。(1979)2010;330https://doi.org/10.1126/science.1195491.RoosD,Van Bruggen R,Meischl C。
Oxidative killing of microbes by neutrophils. Microbes Infect. 2003;5:1307–15.Article .
中性粒细胞对微生物的氧化杀灭。微生物感染。2003年;5: 1307-15年。第条。
PubMed
PubMed
Google Scholar
谷歌学者
El-Benna J, Hurtado-Nedelec M, Marzaioli V, Marie JC, Gougerot-Pocidalo MA, Dang PMC. Priming of the neutrophil respiratory burst: role in host defense and inflammation. Immunol Rev. 2016;273. https://doi.org/10.1111/imr.12447.Bauerová K, Bezek Š. Role of reactive oxygen and nitrogen species in etiopathogenesis of rheumatoid arthritis.
El Benna J,Hurtado Nedelec M,Marzaioli V,Marie JC,Gougerot Pocidalo MA,Dang PMC。引发中性粒细胞呼吸爆发:在宿主防御和炎症中的作用。Immunol Rev.2016;273https://doi.org/10.1111/imr.12447.BauerováK,BezekŠ。活性氧和氮在类风湿性关节炎发病机制中的作用。
Gen Physiol Biophys. 1999;18:15–20.Hogg N, Darley-Usmar VM, Wilson MT, Moncada S. Production of hydroxyl radicals from the simultaneous generation of superoxide and nitric oxide. Biochem J. 1992;281. https://doi.org/10.1042/bj2810419.Onyango AN Endogenous generation of singlet oxygen and ozone in human and animal tissues: mechanisms, biological significance, and influence of dietary components.
Gen Physiol Biophys。1999年;18: 15-20.Hogg N,Darley Usmar VM,Wilson MT,Moncada S.同时产生超氧化物和一氧化氮产生羟基自由基。生物化学J.1992;281https://doi.org/10.1042/bj2810419.Onyango人体和动物组织中单线态氧和臭氧的内源性产生:机制,生物学意义以及饮食成分的影响。
Oxid Med Cell Longev. 2016;2016. https://doi.org/10.1155/2016/2398573.Kuijpers T, Lutter R. Inflammation and repeated infections in CGD: Two sides of a coin. Cell Mol Life Sci. 2012;69. https://doi.org/10.1007/s00018-011-0834-z.Xue R, Zhang Q, Cao Q, Kong R, Xiang X, Liu H et al. Liver tumor immune microenvironment subtypes and neutrophil heterogeneity.
Oxid Med Cell Longev。2016年;2016https://doi.org/10.1155/2016/2398573.KuijpersT,Lutter R.CGD中的炎症和反复感染:硬币的两面。细胞分子生命科学。2012年;69https://doi.org/10.1007/s00018-011-0834-z.XueR,Zhang Q,Cao Q,Kong R,Xiang X,Liu H等。肝肿瘤免疫微环境亚型和中性粒细胞异质性。
Nature 2022;612. https://doi.org/10.1038/s41586-022-05400-x.van den Berg JM, van Koppen E, Åhlin A, Belohradsky BH, Bernatowska E, Corbeel L et al. Chronic granulomatous disease: The European experience. PLoS One 2009;4. https://doi.org/10.1371/journal.pone.0005234.Pham CTN. Neutrophil serine proteases: specific regulators of inflammation.
自然2022;612https://doi.org/10.1038/s41586-022-05400-x.vanden Berg JM,van Koppen E,Åhlin A,Belohradsky BH,Bernatowska E,Corbeel L等人。慢性肉芽肿性疾病:欧洲的经验。PLoS One 2009;4https://doi.org/10.1371/journal.pone.0005234.Pham肌钙蛋白。中性粒细胞丝氨酸蛋白酶:炎症的特异性调节剂。
Nat Rev Immunol. 2006;6. https://doi.org/10.1038/nri1841.Segal AW. How neutrophils kill microbes. Annu Rev Immunol. 2005;23:197–223.Article .
Nat Rev免疫。2006年;6https://doi.org/10.1038/nri1841.Segal噢,中性粒细胞是如何杀死微生物的。Annu Rev免疫。2005年;23:197-223。第条。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lerchenberger M, Uhl B, Stark K, Zuchtriegel G, Eckart A, Miller M et al. Matrix metalloproteinases modulate ameboid-like migration of neutrophils through inflamed interstitial tissue. Blood 2013;122. https://doi.org/10.1182/blood-2012-12-472944.Hessian PA, Edgeworth J, Hogg N MRP-8 and MRP-14, two abundant Ca(2+)-binding proteins of neutrophils and monocytes.
Lerchenberger M,Uhl B,Stark K,Zuchtriegel G,Eckart A,Miller M等人。基质金属蛋白酶通过发炎的间质组织调节嗜中性粒细胞的变形样迁移。血液2013;122https://doi.org/10.1182/blood-2012-12-472944.HessianPA,Edgeworth J,Hogg N MRP-8和MRP-14是嗜中性粒细胞和单核细胞的两种丰富的Ca(2+)结合蛋白。
J Leukoc Biol. 1993;53. https://doi.org/10.1002/jlb.53.2.197.Leclerc E, Fritz G, Weibel M, Heizmann CW, Galichet A S100B and S100A6 differentially modulate cell survival by interacting with distinct RAGE (receptor for advanced glycation end products) immunoglobulin domains. J Biol Chem. 2007;282. https://doi.org/10.1074/jbc.M703951200.Ehrchen JM, Sunderkötter C, Foell D, Vogl T, Roth J The endogenous toll–like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer.
J Leukoc Biol。1993年;53https://doi.org/10.1002/jlb.53.2.197.LeclercE,Fritz G,Weibel M,Heizmann CW,Galichet A S100B和S100A6通过与不同的RAGE(晚期糖基化终产物受体)免疫球蛋白结构域相互作用来差异调节细胞存活。生物化学杂志。2007年;282https://doi.org/10.1074/jbc.M703951200.EhrchenJM,Sunderkötter C,Foell D,Vogl T,Roth J内源性toll样受体4激动剂S100A8/S100A9(钙卫蛋白)作为感染,自身免疫和癌症的先天放大器。
J Leukoc Biol. 2009;86. https://doi.org/10.1189/jlb.1008647.Yazdanbakhsh M, Tai PC, Spry CJ, Gleich GJ, Roos D. Synergism between eosinophil cationic protein and oxygen metabolites in killing of schistosomula of Schistosoma mansoni. J Immunol. 1987;138:3443–7.Article .
J Leukoc Biol。2009年;86https://doi.org/10.1189/jlb.1008647.YazdanbakhshM,Tai PC,Spry CJ,Gleich GJ,Roos D.嗜酸性粒细胞阳离子蛋白和氧代谢物在杀死曼氏血吸虫血吸虫中的协同作用。免疫杂志。1987年;138:3443-7。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Wiesner J, Vilcinskas A Antimicrobial peptides: The ancient arm of the human immune system. Virulence 2010;1. https://doi.org/10.4161/viru.1.5.12983.Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF et al. Defensins. Natural peptide antibiotics of human neutrophils. J Clin Investig.
Wiesner J,Vilcinskas抗菌肽:人类免疫系统的古老手臂。毒力2010;1https://doi.org/10.4161/viru.1.5.12983.GanzT,Selsted ME,Szklarek D,Harwig SS,Daher K,Bainton DF等。防御素。人嗜中性粒细胞的天然肽抗生素。J临床研究。
1985;76. https://doi.org/10.1172/JCI112120.van Harten RM, van Woudenbergh E, van Dijk A, Haagsman HP. Cathelicidins: immunomodulatory antimicrobials. Vaccines (Basel). 2018;6. https://doi.org/10.3390/vaccines6030063.Funk CD. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science (1979).
1985年;76https://doi.org/10.1172/JCI112120.van哈顿RM,范·沃登伯格E,范·迪克A,哈格斯曼HP。Cathelicidins:免疫调节抗菌剂。疫苗(巴塞尔)。2018年;6https://doi.org/10.3390/vaccines6030063.Funk前列腺素和白三烯:类花生酸生物学的进展。科学(1979)。
2001;294. https://doi.org/10.1126/science.294.5548.1871.Lämmermann T, Afonso PV, Angermann BR, Wang JM, Kastenmüller W, Parent CA et al. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 2013;498. https://doi.org/10.1038/nature12175.Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS et al.
2001年;294https://doi.org/10.1126/science.294.5548.1871.Lämmermann T,Afonso PV,Angermann BR,Wang JM,Kastenmüller W,Parent CA等人。中性粒细胞群在体内细胞死亡部位需要LTB4和整联蛋白。自然2013;498https://doi.org/10.1038/nature12175.BrinkmannV,Reichard U,Goosmann C,Fauler B,Uhlemann Y,Weiss DS等。
Neutrophil extracellular traps kill bacteria. Science (1979) 2004;303. https://doi.org/10.1126/science.1092385.Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017;23. https://doi.org/10.1038/nm.4294.Pérez-Figueroa E, Álvarez-Carrasco P, Ortega E, Maldonado-Bernal C.
中性粒细胞胞外陷阱杀死细菌。《科学》(1979)2004;303https://doi.org/10.1126/science.1092385.JorchSK,Kubes P。中性粒细胞胞外陷阱在非感染性疾病中的新兴作用。Nat Med。2017;23https://doi.org/10.1038/nm.4294.Pérez-Figueroa E,Álvarez-Carrasco P,Ortega E,Maldonado-Bernal C。
Neutrophils: many ways to die. Front Immunol. 2021;12. https://doi.org/10.3389/fimmu.2021.631821.Manz MG, Boettcher S. Emergency granulopoiesis. Nat Rev Immunol. 2014;14:302–14.Article .
中性粒细胞:多种死亡方式。前免疫。2021年;12https://doi.org/10.3389/fimmu.2021.631821.ManzMG,Boettcher S.紧急粒细胞生成。Nat Rev免疫。2014年;14: 302-14条。
PubMed
PubMed
Google Scholar
谷歌学者
Galli SJ, Borregaard N, Wynn TA. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol. 2011;12. https://doi.org/10.1038/ni.2109.Grieshaber-Bouyer R, Radtke FA, Cunin P, Stifano G, Levescot A, Vijaykumar B, et al. The neutrotime transcriptional signature defines a single continuum of neutrophils across biological compartments.
加利SJ,博雷加德N,韦恩TA。先天免疫细胞的表型和功能可塑性:巨噬细胞,肥大细胞和中性粒细胞。Nat免疫。2011年;12https://doi.org/10.1038/ni.2109.Grieshaber-BouyerR,Radtke FA,Cunin P,Stifano G,Levescot A,Vijaykumar B等。中性粒细胞转录特征定义了跨生物区室的单个中性粒细胞连续体。
Nat Commun. 2021;12:2856.Article .
普通NAT。2021年;12:2856.文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hellebrekers P, Vrisekoop N, Koenderman L. Neutrophil phenotypes in health and disease. Eur J Clin Invest. 2018;48(Suppl 2):e12943.Article
Hellebrekers P,Vrisekoop N,Koenderman L.健康和疾病中的中性粒细胞表型。Eur J Clin投资。2018年;48(补充2):e12943.Article
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Silvestre-Roig C, Fridlender ZG, Glogauer M, Scapini P. Neutrophil diversity in health and disease. Trends Immunol. 2019;40:565–83.Article
Silvestre Roig C,Fridlender ZG,Glogauer M,Scapini P.中性粒细胞在健康和疾病中的多样性。趋势免疫。2019年;40:565–83.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Quail DF, Amulic B, Aziz M, Barnes BJ, Eruslanov E, Fridlender ZG et al. Neutrophil phenotypes and functions in cancer: a consensus statement. J Exp Med. 2022;219. https://doi.org/10.1084/jem.20220011.Palomino-Segura M, Sicilia J, Ballesteros I, Hidalgo A. Strategies of neutrophil diversification.
Quail DF,Amulic B,Aziz M,Barnes BJ,Eruslanov E,Fridlender ZG等。癌症中的中性粒细胞表型和功能:共识声明。J Exp Med。2022;219https://doi.org/10.1084/jem.20220011.Palomino-SeguraM,Sicilia J,Ballesteros I,Hidalgo A.中性粒细胞多样化的策略。
Nat Immunol 2023;24. https://doi.org/10.1038/s41590-023-01452-x.Hassani M, Hellebrekers P, Chen N, van Aalst C, Bongers S, Hietbrink F et al. On the origin of low-density neutrophils. J Leukoc Biol. 2020;107. https://doi.org/10.1002/JLB.5HR0120-459R.Marini O, Costa S, Bevilacqua D, Calzetti F, Tamassia N, Spina C, et al.
Nat Immunol 2023;24https://doi.org/10.1038/s41590-023-01452-x.HassaniM,Hellebrekers P,Chen N,van Aalst C,Bongers S,Hietbrink F等。关于低密度中性粒细胞的起源。J Leukoc Biol。2020年;107https://doi.org/10.1002/JLB.5HR0120-459R.MariniO,Costa S,Bevilacqua D,Calzetti F,Tamassia N,Spina C等。
Mature CD10+ and immature CD10- neutrophils present in G-CSF-treated donors display opposite effects on T cells. Blood. 2017;129:1343–56.Article .
G-CSF处理的供体中存在的成熟CD10+和未成熟CD10中性粒细胞对T细胞显示出相反的作用。血。2017年;129:1343-56。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Orr Y, Taylor JM, Bannon PG, Geczy C, Kritharides L. Circulating CD10-/CD16low neutrophils provide a quantitative index of active bone marrow neutrophil release. Br J Hematol. 2005;131:508–19.Article
Orr Y,Taylor JM,Bannon PG,Geczy C,Kritharides L.循环CD10-/CD16low嗜中性粒细胞提供了活性骨髓嗜中性粒细胞释放的定量指标。Br J血液学。2005年;131:508–19.文章
Google Scholar
谷歌学者
Spijkerman R, Hesselink L, Hellebrekers P, Vrisekoop N, Hietbrink F, Leenen L et al. Automated flow cytometry enables high performance point-of-care analysis of leukocyte phenotypes. J Immunol Methods. 2019;474. https://doi.org/10.1016/j.jim.2019.112646.Leliefeld PHC, Pillay J, Vrisekoop N, Heeres M, Tak T, Kox M, et al.
Spijkerman R,Hesselink L,Hellebrekers P,Vrisekoop N,Hietbrink F,Leenen L等人。自动流式细胞仪可对白细胞表型进行高性能即时分析。J免疫方法。2019年;474https://doi.org/10.1016/j.jim.2019.112646.LeliefeldPHC,Pillay J,Vrisekoop N,Heeres M,Tak T,Kox M等。
Differential antibacterial control by neutrophil subsets. Blood Adv. 2018;2:1344–55.Article .
中性粒细胞亚群的差异抗菌控制。血液杂志2018;2: 1344-55条。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pillay J, Ramakers BP, Kamp VM, Loi ALT, Lam SW, Hietbrink F, et al. Functional heterogeneity and differential priming of circulating neutrophils in human experimental endotoxemia. J Leukoc Biol. 2010;88:211–20.Article
Pillay J,Ramakers BP,Kamp VM,Loi ALT,Lam SW,Hietbrink F等。人类实验性内毒素血症中循环中性粒细胞的功能异质性和差异引发。J Leukoc Biol。2010年;88:211–20.文章
PubMed
PubMed
Google Scholar
谷歌学者
Pillay J, Kamp VM, Van Hoffen E, Visser T, Tak T, Lammers J-W, et al. A subset of neutrophils in human systemic inflammation inhibits T-cell responses through Mac-1. J Clin Investig. 2012;122:327–36.Article
Pillay J,Kamp VM,Van Hoffen E,Visser T,Tak T,Lammers J-W等。人类全身炎症中的一部分中性粒细胞通过Mac-1抑制T细胞反应。J临床研究。2012年;122:327–36.文章
PubMed
PubMed
Google Scholar
谷歌学者
Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E et al. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol. 2009;182. https://doi.org/10.4049/jimmunol.0900092.Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system.
Corzo CA,Cotter MJ,Cheng P,Cheng F,Kusmartsev S,Sotomayor E等。调节肿瘤诱导的髓源性抑制细胞中活性氧的机制。免疫杂志。2009年;182https://doi.org/10.4049/jimmunol.0900092.GabrilovichDI,Nagaraj S.骨髓来源的抑制细胞作为免疫系统的调节剂。
Nat Rev Immunol. 2009;9. https://doi.org/10.1038/nri2506.Highfill SL, Rodriguez PC, Zhou Q, Goetz CA, Koehn BH, Veenstra R et al. Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1-dependent mechanism that is upregulated by interleukin-13.
Nat Rev免疫。2009年;9https://doi.org/10.1038/nri2506.HighfillSL,Rodriguez PC,Zhou Q,Goetz CA,Koehn BH,Veenstra R等。骨髓髓源性抑制细胞(MDSCs)通过精氨酸酶-1依赖性机制抑制移植物抗宿主病(GVHD),白细胞介素-13上调。
Blood. 2010;116. https://doi.org/10.1182/blood-2010-06-287839.Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W et al. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med. 2006;203. https://doi.org/10.1084/jem.20061104.Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S.
血。2010年;116https://doi.org/10.1182/blood-2010-06-287839.SerafiniP,Meckel K,Kelso M,Noonan K,Califano J,Koch W等人。磷酸二酯酶-5抑制通过降低髓源性抑制细胞功能来增强内源性抗肿瘤免疫力。J Exp Med。2006;203https://doi.org/10.1084/jem.20061104.SinhaP,Clements VK,Fulton AM,Ostrand Rosenberg S。
Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 2007;67. https://doi.org/10.1158/0008-5472.CAN-06-4174.Li H, Han Y, Guo Q, Zhang M, Cao X Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-β1. J Immunol.
前列腺素E2通过诱导骨髓来源的抑制细胞促进肿瘤进展。癌症研究2007;67https://doi.org/10.1158/0008-5472.CAN-06-4174.LiH,Han Y,Guo Q,Zhang M,Cao X癌症扩增的髓源性抑制细胞通过膜结合的TGF-β1诱导NK细胞无反应性。免疫杂志。
2009;182. https://doi.org/10.4049/jimmunol.182.1.240.Youn J-I, Collazo M, Shalova IN, Biswas SK, Gabrilovich DI. Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J Leukoc Biol 2011;91. https://doi.org/10.1189/jlb.0311177.Clemmensen SN, Bohr CT, Rørvig S, Glenthøj A, Mora-Jensen H, Cramer EP, et al.
2009年;182https://doi.org/10.4049/jimmunol.182.1.240.YounJ-I,Collazo M,Shalova IN,Biswas SK,Gabrilovich DI。荷瘤小鼠粒细胞源性抑制细胞性质的表征。J Leukoc Biol 2011;91https://doi.org/10.1189/jlb.0311177.ClemmensenSN,波尔CT,Rørvig S,Glenthøj A,Mora Jensen H,Cramer EP等。
Olfactomedin 4 defines a subset of human neutrophils. J Leukoc Biol. 2012;91:495–500.Article .
Olfactomedin 4定义了人类嗜中性粒细胞的一个子集。J Leukoc Biol。2012年;91:495-500。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Stark JE, Opoka AM, Mallela J, Devarajan P, Ma Q, Levinsky NC, et al. Juvenile OLFM4-null mice are protected from sepsis. Am J Physiol Ren Physiol. 2020;318:F809–F816.Article
Stark JE,Opoka AM,Mallela J,Devarajan P,Ma Q,Levinsky NC等。保护幼年OLFM4缺失小鼠免于败血症。Am J Physiol Ren Physiol。2020年;318:F809–F816.文章
Google Scholar
谷歌学者
Stroncek DF. Neutrophil-specific antigen HNA-2a, NB1 glycoprotein, and CD177. Curr Opin Hematol. 2007;14:688–93.Article
斯特朗塞克DF。中性粒细胞特异性抗原HNA-2a,NB1糖蛋白和CD177。Curr Opin血液学。2007年;14: 688-93.文章
PubMed
PubMed
Google Scholar
谷歌学者
Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: ‘N1’ versus ‘N2’ TAN. Cancer Cell. 2009;16:183–94.Article
Fridlender ZG,Sun J,Kim S,Kapoor V,Cheng G,Ling L等。TGF-β对肿瘤相关中性粒细胞表型的极化:“N1”与“N2”TAN。癌细胞。2009年;16: 183-94.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Martin C, Burdon PCE, Bridger G, Gutierrez-Ramos JC, Williams TJ, Rankin SM. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity. 2003;19:583–93.Article
Martin C,Burdon PCE,Bridger G,Gutierrez-Ramos JC,Williams TJ,Rankin SM。通过CXCR2和CXCR4起作用的趋化因子控制中性粒细胞从骨髓中的释放及其在衰老后的返回。豁免。2003年;19: 583-93.文章
PubMed
PubMed
Google Scholar
谷歌学者
Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006;25:977–88.Article
Sugiyama T,Kohara H,Noda M,Nagasawa T.通过骨髓基质细胞生态位中的CXCL12-CXCR4趋化因子信号传导维持造血干细胞库。豁免。2006年;25:977–88.文章
PubMed
PubMed
Google Scholar
谷歌学者
McDermott DH, Murphy PM. WHIM syndrome: Immunopathogenesis, treatment and cure strategies. Immunol Rev. 2019;287:91–102.Article
McDermott DH,Murphy PM。WHIM综合征:免疫发病机制,治疗和治愈策略。免疫修订版2019;287:91–102.文章
PubMed
PubMed
Google Scholar
谷歌学者
Liu Q, Li Z, Gao JL, Wan W, Ganesan S, Mcdermott DH, et al. CXCR4 antagonist AMD3100 redistributes leukocytes from primary immune organs to secondary immune organs, lung, and blood in mice. Eur J Immunol. 2015;45:1855–67.Article
Liu Q,Li Z,Gao JL,Wan W,Ganesan S,Mcdermott DH等。CXCR4拮抗剂AMD3100将白细胞从小鼠的初级免疫器官重新分配到次级免疫器官,肺和血液中。欧洲免疫杂志。2015年;45:1855–67.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Van Grinsven E, Textor J, Hustin LSP, Wolf K, Koenderman L, Vrisekoop N. Immature neutrophils released in acute inflammation exhibit efficient migration despite incomplete segmentation of the nucleus. J Immunol. 2019;202. https://doi.org/10.4049/jimmunol.1801255.Tak T, Wijten P, Heeres M, Pickkers P, Scholten A, Heck AJR, et al.
Van Grinsven E,Textor J,Hustin LSP,Wolf K,Koenderman L,Vrisekoop N.急性炎症中释放的未成熟中性粒细胞表现出有效的迁移,尽管细胞核不完全分割。免疫杂志。2019年;202https://doi.org/10.4049/jimmunol.1801255.TakT,Wijten P,Heeres M,Pickkers P,Scholten A,Heck AJR等。
Human CD62Ldim neutrophils identified as a separate subset by proteome profiling and in vivo pulse-chase labeling. Blood. 2017;129:3476–85.Article .
通过蛋白质组分析和体内脉冲追踪标记将人CD62Ldim嗜中性粒细胞鉴定为单独的子集。血。2017年;129:3476-85。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Heyworth PG, Cross AR, Curnutte JT. Chronic granulomatous disease. Curr Opin Immunol. 2003;15. https://doi.org/10.1016/S0952-7915(03)00109-2.Toomes C, James J, Wood AJ, Wu CL, McCormick D, Lench N et al. Loss-of-function mutations in the cathepsin C gene result in periodontal disease and palmoplantar keratosis.
海沃思PG,克罗斯AR,柯努特JT。慢性肉芽肿性疾病。Curr Opin免疫。2003年;15https://doi.org/10.1016/S0952-7915(03)00109-2.Toomes C,James J,Wood AJ,Wu CL,McCormick D,Lench N等人组织蛋白酶C基因的功能丧失突变导致牙周病和掌plant角化病。
Nat Genet. 1999;23. https://doi.org/10.1038/70525.Pütsep K, Carlsson G, Boman HG, Andersson M. Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. Lancet. 2002;360. https://doi.org/10.1016/S0140-6736(02)11201-3.Makaryan V, Zeidler C, Bolyard AA, Skokowa J, Rodger E, Kelley ML et al.
纳特·吉内特。1999年;23https://doi.org/10.1038/70525.Pütsep K,Carlsson G,Boman HG,Andersson M.morbus Kostmann患者抗菌肽缺乏症:一项观察研究。柳叶刀。2002年;360https://doi.org/10.1016/S0140-6736(02)11201-3.Makaryan V,Zeidler C,Bolyard AA,Skokowa J,Rodger E,Kelley ML等。
The diversity of mutations and clinical outcomes for ELANE-associated neutropenia. Curr Opin Hematol. 2015;22. https://doi.org/10.1097/MOH.0000000000000105.Kuijpers TW, Van De Vijver E, Weterman MAJ, De Boer M, Tool ATJ, Van Den Berg TK, et al. LAD-1/variant syndrome is caused by mutations in FERMT3.
ELANE相关中性粒细胞减少症的突变多样性和临床结果。Curr Opin血液学。2015年;22https://doi.org/10.1097/MOH.0000000000000105.KuijpersTW,Van De Vijver E,Weterman MAJ,De Boer M,Tool ATJ,Van Den Berg TK等。LAD-1/变异综合征是由FERMT3突变引起的。
Blood. 2009;113:4740–6.Article .
血。2009年;113:4740–6。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Blume RS, Wolff SM. The chediak-higashi syndrome: Studies in four patients and a review of the literature. Medicine (United States) 1972;51. https://doi.org/10.1097/00005792-197207000-00001.Kang EM, Marciano BE, Deravin S, Zarember KA, Holland SM, Malech HL. Chronic granulomatous disease: overview and hematopoietic stem cell transplantation.
Blume RS,Wolff SM。chediak-higashi综合征:四名患者的研究和文献综述。医学(美国)1972;51https://doi.org/10.1097/00005792-197207000-00001.KangEM,Marciano BE,Deravin S,Zarember KA,Holland SM,Malech HL。慢性肉芽肿性疾病:概述和造血干细胞移植。
J Allergy Clin Immunol. 2011;127. https://doi.org/10.1016/j.jaci.2011.03.028.Merling RK, Kuhns DB, Sweeney CL, Wu X, Burkett S, Chu J et al. Gene-edited pseudogene resurrection corrects p47phox-deficient chronic granulomatous disease. Blood Adv. 2017;1. https://doi.org/10.1182/bloodadvances.2016001214.Herrero-Cervera A, Soehnlein O, Kenne E.
J过敏临床免疫。2011年;127https://doi.org/10.1016/j.jaci.2011.03.028.MerlingRK,Kuhns DB,Sweeney CL,Wu X,Burkett S,Chu J等人。基因编辑的假基因复活可纠正p47phox缺陷型慢性肉芽肿性疾病。血液Adv.2017;1https://doi.org/10.1182/bloodadvances.2016001214.Herrero-CerveraA,Soehnlein O,Kenne E。
Neutrophils in chronic inflammatory diseases. Cell Mol Immunol. 2022;19:177–191.Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 2011;11. https://doi.org/10.1038/nri3024.Borregaard N, Neutrophils, from marrow to microbes.
慢性炎症性疾病中的中性粒细胞。细胞摩尔免疫。2022年;19: 177-191.Mantovani A,Cassatella MA,Costantini C,Jaillon S.中性粒细胞在先天性和适应性免疫的激活和调节中的作用。Nat Rev免疫。2011年;11https://doi.org/10.1038/nri3024.BorregaardN,中性粒细胞,从骨髓到微生物。
Immunity. 2010;33. https://doi.org/10.1016/j.immuni.2010.11.011.Yang SC, Tsai YF, Pan YL, Hwang TL. Understanding the role of neutrophils in acute respiratory distress syndrome. Biomed J. 2021;44. https://doi.org/10.1016/j.bj.2020.09.001.Hesselink L, Hoepelman RJ, Spijkerman R, de Groot MCH, van Wessem KJP, Koenderman L et al.
豁免。2010年;33https://doi.org/10.1016/j.immuni.2010.11.011.YangSC,Tsai YF,Pan YL,Hwang TL.了解中性粒细胞在急性呼吸窘迫综合征中的作用。生物医学J.2021;44https://doi.org/10.1016/j.bj.2020.09.001.HesselinkL,Hoepelman RJ,Spijkerman R,de Groot MCH,van Wessem KJP,Koenderman L等。
Persistent inflammation, immunosuppression and catabolism syndrome (PICS) after polytrauma: a rare syndrome with major consequences. J Clin Med 2020;9. https://doi.org/10.3390/jcm9010191.Osuchowski MF, Welch K, Siddiqui J, Remick DG. Circulating cytokine/inhibitor profiles reshape the understanding of the sirs/cars continuum in sepsis and predict mortality.
多发伤后持续性炎症,免疫抑制和分解代谢综合征(PICS):一种罕见的综合征,具有重大后果。J临床医学2020;9https://doi.org/10.3390/jcm9010191.OsuchowskiMF,Welch K,Siddiqui J,Remick DG。循环细胞因子/抑制剂谱重塑了对脓毒症中sirs/cars连续体的理解并预测死亡率。
J Immunol. 2014;177:1967–74.Article .
免疫杂志。2014年;177:1967-74。文章。
Google Scholar
谷歌学者
Adib-Conquy M, Cavaillon JM. Compensatory anti-inflammatory response syndrome. Thromb Hemost. 2009;101:36–47.Article
Adib Conquy M,Cavaillon JM。代偿性抗炎反应综合征。血栓止血。2009年;101:36–47.文章
Google Scholar
谷歌学者
Novotny AR, Reim D, Assfalg V, Altmayr F, Friess HM, Emmanuel K et al. Mixed antagonist response and sepsis severity-dependent dysbalance of pro- and anti-inflammatory responses at the onset of postoperative sepsis. Immunobiology 2012;217. https://doi.org/10.1016/j.imbio.2011.10.019.Boxer L, Dale DC.
Novotny AR,Reim D,Assfalg V,Altmayr F,Friess HM,Emmanuel K等人。术后败血症发作时促炎和抗炎反应的混合拮抗剂反应和败血症严重程度依赖性失衡。免疫生物学2012;217https://doi.org/10.1016/j.imbio.2011.10.019.BoxerL,戴尔DC。
Neutropenia: causes and consequences. Semin Hematol 2002;39. https://doi.org/10.1053/shem.2002.31911.Reich D, Nalls MA, Kao WHL, Akylbekova EL, Tandon A, Patterson N et al. Reduced neutrophil count in people of African descent is due to a regulatory variant in the Duffy antigen receptor for chemokines gene.
中性粒细胞减少症:原因和后果。Semin Hematol 2002;39https://doi.org/10.1053/shem.2002.31911.ReichD,Nalls MA,Kao WHL,Akylbekova EL,Tandon A,Patterson N等人。非洲人后裔中性粒细胞计数减少是由于趋化因子基因达菲抗原受体的调节变异所致。
PLoS Genet 2009;5. https://doi.org/10.1371/journal.pgen.1000360.Fauci AS, Dale DC, Balow JE. Glucocorticosteroid therapy: mechanisms of action and clinical considerations. Ann Intern Med. 1976;84. https://doi.org/10.7326/0003-4819-84-3-304.Meagher LC, Cousin JM, Seckl JR, Haslett C, Meagher LC, Cousin JM, et al.
PLoS Genet 2009;5https://doi.org/10.1371/journal.pgen.1000360.FauciAS,Dale DC,Balow JE。糖皮质激素治疗:作用机制和临床考虑。安实习生医学1976;84https://doi.org/10.7326/0003-4819-84-3-304.MeagherLC,堂兄JM,Seckl JR,Haslett C,Meagher LC,堂兄JM等。
Opposing effect of glucocorticoids on the rate of apoptosis in neutrophilic and eosinophilic granulocytes. J Immunol. 1996;156:4422–8.Article .
糖皮质激素对中性粒细胞和嗜酸性粒细胞凋亡率的相反作用。免疫杂志。1996年;156:4422-8。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Wang T, Weigt SS, Belperio JA, Lynch JP. Immunosuppressive and cytotoxic therapy: pharmacology, toxicities, and monitoring. Semin Respir Crit Care Med 2011;32. https://doi.org/10.1055/s-0031-1279831.Aapro MS, Bohlius J, Cameron DA, Lago LD, Donnelly JP, Kearney N et al. 2010 update of EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphoproliferative disorders and solid tumors.
Wang T,Weigt SS,Belperio JA,Lynch JP。免疫抑制和细胞毒性治疗:药理学,毒性和监测。Semin Respir Crit Care Med 2011;32https://doi.org/10.1055/s-0031-1279831.AaproMS,Bohlius J,Cameron DA,Lago LD,Donnelly JP,Kearney N等人2010年更新了EORTC使用粒细胞集落刺激因子降低成人淋巴增生性疾病和实体瘤患者化疗引起的发热性中性粒细胞减少症发生率的指南。
Eur J Cancer. 2011;47. https://doi.org/10.1016/j.ejca.2010.10.013.DiPersio JF, Stadtmauer EA, Nademanee A, Micallef INM, Stiff PJ, Kaufman JL et al. Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma.
Eur J癌症。2011年;47https://doi.org/10.1016/j.ejca.2010.10.013.DiPersioJF,Stadtmauer EA,Nademanee A,Michallef INM,Stiff PJ,Kaufman JL等人。Plerixafor和G-CSF与安慰剂和G-CSF相比,动员造血干细胞用于多发性骨髓瘤患者的自体干细胞移植。
Blood. 2009;113. https://doi.org/10.1182/blood-2008-08-174946.Fridlender ZG, Albelda SM Tumor-associated neutrophils: Friend or foe? Carcinogenesis. 2012;33. https://doi.org/10.1093/carcin/bgs123.Michaeli J, Shaul ME, Mishalian I, Hovav AH, Levy L, Zolotriov L et al. Tumor-associated neutrophils induce apoptosis of nonactivated CD8 T cells in a TNFα and NO-dependent mechanism, promoting a tumor-supportive environment.
血。2009年;113https://doi.org/10.1182/blood-2008-08-174946.FridlenderZG,Albelda SM肿瘤相关中性粒细胞:朋友还是敌人?致癌作用。2012年;33https://doi.org/10.1093/carcin/bgs123.MichaeliJ,Shaul ME,Mishalian I,Hovav AH,Levy L,Zolotriov L等。肿瘤相关中性粒细胞在TNFα和NO依赖性机制中诱导未活化的CD8 T细胞凋亡,促进肿瘤支持环境。
Oncoimmunology. 2017;6. https://doi.org/10.1080/2162402X.2017.1356965.Hernandez C, Huebener P, Schwabe RF Damage-associated molecular patterns in cancer: a double-edged sword. Oncogene. 2016;35. https://doi.org/10.1038/onc.2016.104.Woo SR, Corrales L, Gajewski TF. Innate immune recognition of cancer.
肿瘤免疫学。2017年;6https://doi.org/10.1080/2162402X.2017.1356965.HernandezC,Huebener P,Schwabe RF损伤相关的癌症分子模式:一把双刃剑。致癌基因。2016年;35https://doi.org/10.1038/onc.2016.104.WooSR,Corrales L,Gajewski TF。癌症的先天免疫识别。
Annu Rev Immunol 2015;33. https://doi.org/10.1146/annurev-immunol-032414-112043.Huebener P, Pradere JP, Hernandez C, Gwak GY, Caviglia JM, Mu X et al. The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis. Journal of Clini.
Annu Rev Immunol 2015;33https://doi.org/10.1146/annurev-immunol-032414-112043.HuebenerP,Pradere JP,Hernandez C,Gwak GY,Caviglia JM,Mu X等。HMGB1/RAGE轴在坏死后触发中性粒细胞介导的损伤扩增。临床杂志。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhou J, Nefedova Y, Lei A, Gabrilovich D. Neutrophils and PMN-MDSC: their biological role and interaction with stromal cells. Semin Immunol. 2018;35:19–28.Article
Zhou J,Nefedova Y,Lei A,Gabrilovich D.中性粒细胞和PMN-MDSC:它们的生物学作用和与基质细胞的相互作用。Semin免疫。2018年;35:19–28.文章
PubMed
PubMed
Google Scholar
谷歌学者
Lang S, Bruderek K, Kaspar C, Höing B, Kanaan O, Dominas N et al. Clinical relevance and suppressive capacity of human myeloid-derived suppressor cell subsets. Clin Cancer Res. 2018;24. https://doi.org/10.1158/1078-0432.CCR-17-3726.Zhao Y, Wu T, Shao S, Shi B, Zhao Y. Phenotype, development, and biological function of myeloid-derived suppressor cells.
Lang S,Bruderek K,Kaspar C,Höing B,Kanaan O,Dominas N等。人类骨髓来源的抑制细胞亚群的临床相关性和抑制能力。临床癌症研究2018;24https://doi.org/10.1158/1078-0432.CCR-17-3726.ZhaoY,Wu T,Shao S,Shi B,Zhao Y.髓源性抑制细胞的表型,发育和生物学功能。
Oncoimmunology. 2016;5. https://doi.org/10.1080/2162402X.2015.1004983.Trellakis S, Bruderek K, Dumitru CA, Gholaman H, Gu X, Bankfalvi A et al. Polymorphonuclear granulocytes in human head and neck cancer: Enhanced inflammatory activity, modulation by cancer cells and expansion in advanced disease. Int J Cancer.
肿瘤免疫学。2016年;5https://doi.org/10.1080/2162402X.2015.1004983.TrellakisS,Bruderek K,Dumitru CA,Gholaman H,Gu X,Bankfalvi A等人。人类头颈部癌症中的多形核粒细胞:增强的炎症活性,癌细胞的调节和晚期疾病的扩张。Int J癌症。
2011;129. https://doi.org/10.1002/ijc.25892.Hegde S, Leader AM, Merad M MDSC: Markers, development, states, and unaddressed complexity. Immunity. 2021;54. https://doi.org/10.1016/j.immuni.2021.04.004.Pettinella F, Mariotti B, Lattanzi C, Bruderek K, Donini M, Costa S et al. Surface CD52, CD84, and PTGER2 mark mature PMN-MDSCs from cancer patients and G-CSF-treated donors.
2011年;129https://doi.org/10.1002/ijc.25892.HegdeS,Leader AM,Merad M MDSC:标记,发展,状态和未解决的复杂性。豁免。2021年;54https://doi.org/10.1016/j.immuni.2021.04.004.PettinellaF,Mariotti B,Lattanzi C,Bruderek K,Donini M,Costa S等人。表面CD52,CD84和PTGER2标记来自癌症患者和G-CSF治疗的供体的成熟PMN MDSC。
Cell Rep Med. 2024;5. https://doi.org/10.1016/j.xcrm.2023.101380.Pillay J, Tak T, Kamp VM, Koenderman L Immune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: similarities and differences. Cellular Mol Life Sci. 2013;70. https://doi.org/10.1007/s00018-013-1286-4.Martin C, Dhôte T, Ladjemi MZ, Andrieu M, Many S, Karunanithy V et al.
细胞代表医学2024;5https://doi.org/10.1016/j.xcrm.2023.101380.PillayJ,Tak T,Kamp VM,Koenderman L中性粒细胞和粒细胞骨髓来源的抑制细胞的免疫抑制:相似性和差异性。细胞分子生命科学。2013年;70https://doi.org/10.1007/s00018-013-1286-4.MartinC,Dhôte T,Ladjemi MZ,Andrieu M,Many S,Karunianthy V等。
Specific circulating neutrophils subsets are present in clinically stable adults with cystic fibrosis and are further modulated by pulmonary exacerbations. Front Immunol. 2022;13. https://doi.org/10.3389/fimmu.2022.1012310.Cheng Y, Li H, Deng Y, Tai Y, Zeng K, Zhang Y et al. Cancer-associated fibroblasts induce PDL1+ neutrophils through the IL6-STAT3 pathway that foster immu.
特定的循环中性粒细胞亚群存在于临床稳定的囊性纤维化成人中,并受到肺部恶化的进一步调节。前免疫。2022年;13https://doi.org/10.3389/fimmu.2022.1012310.ChengY,Li H,Deng Y,Tai Y,Zeng K,Zhang Y等。癌症相关成纤维细胞通过促进免疫的IL6-STAT3途径诱导PDL1+中性粒细胞。
PubMed
PubMed
Google Scholar
谷歌学者
Bakema JE, Bakker A, De Haij S, Honing H, Bracke M, Koenderman L et al. Inside-out regulation of FcαRI (CD89) depends on PP2A. J Immunol. 2008;181.Bracke M, Lammers JWJ, Coffer PJ, Koenderman L Cytokine-induced inside-out activation of FcαR (CD89) is mediated by a single serine residue (S263) in the intracellular domain of the receptor.
Bakema JE,Bakker A,De Haij S,Honing H,Bracke M,Koenderman L等人。FcαRI(CD89)的由内而外调节取决于PP2A。免疫杂志。2008年;Bracke M,Lammers JWJ,Coque PJ,Koenderman L细胞因子诱导的FcαR(CD89)由内向外激活是由受体细胞内结构域中的单个丝氨酸残基(S263)介导的。
Blood. 2001. https://doi.org/10.1182/blood.V97.11.3478.Ginsberg MH, Partridge A, Shattil SJ. Integrin regulation. Curr Opin Cell Biol. 2005;17:509–16.Article .
血。2001https://doi.org/10.1182/blood.V97.11.3478.GinsbergMH,鹧鸪A,Shattil SJ。整合素调节。Curr Opin细胞生物学。2005年;17: 509-16条。
PubMed
PubMed
Google Scholar
谷歌学者
van der Bruggen T, Kok PT, Raaijmakers JA, Lammers JW, Koenderman L Cooperation between Fc gamma receptor II and complement receptor type 3 during activation of platelet-activating factor release by cytokine-primed human eosinophils. J Immunol. 1994;153. https://doi.org/10.4049/jimmunol.153.6.2729.Diebolder CA, Beurskens FJ, De Jong RN, Koning RI, Strumane K, Lindorfer MA et al.
van der Bruggen T,Kok PT,Raaijmakers JA,Lammers JW,Koenderman L在细胞因子引发的人嗜酸性粒细胞激活血小板活化因子释放过程中Fcγ受体II和补体受体3型之间的合作。免疫杂志。1994年;153https://doi.org/10.4049/jimmunol.153.6.2729.DiebolderCA,Beurskens FJ,De Jong RN,Koning RI,Strumane K,Lindorfer MA等。
Complement is activated by IgG hexamers assembled at the cell surface. Science (1979). 2014;343. https://doi.org/10.1126/science.1248943.Souto JC, Vila L, Brú A Polymorphonuclear neutrophils and cancer: intense and sustained neutrophilia as a treatment against solid tumors. Med Res Rev. 2011;31. https://doi.org/10.1002/med.20185.Hernandez-Ilizaliturri FJ, Jupudy V, Ostberg J, Oflazoglu E, Huberman A, Repasky E et al.
补体被组装在细胞表面的IgG六聚体激活。科学(1979)。2014年;343https://doi.org/10.1126/science.1248943.SoutoJC,Vila L,BrúA多形核中性粒细胞和癌症:强烈和持续的中性粒细胞增多症作为治疗实体瘤的方法。Med Res Rev.2011;31https://doi.org/10.1002/med.20185.Hernandez-IlizaliturriFJ,Jupudy V,Ostberg J,Oflazoglu E,Huberman A,Repasky E等。
Neutrophils contribute to the biological antitumor activity of rituximab in a Non-Hodgkin’s lymphoma severe combined immunodeficiency mouse model. Clin Cancer Res. 2003;9:5866–73.Maloney DG, Grillo-López AJ, Bodkin DJ, White CA, Liles TM, Royston I et al. Idec-c2b8: results of a phase I multiple-dose trial in patients with relapsed non-Hodgkin’s lymphoma.
中性粒细胞有助于利妥昔单抗在非霍奇金淋巴瘤严重联合免疫缺陷小鼠模型中的生物抗肿瘤活性。临床癌症研究2003;9: 5866-73.Maloney DG,Grillo-López AJ,Bodkin DJ,White CA,Liles TM,Royston I等。Idec-c2b8:复发性非霍奇金淋巴瘤患者的I期多剂量试验结果。
J Clin Oncol. 1997;15. https://doi.org/10.1200/JCO.1997.15.10.3266.Lu D, Zhang H, Ludwig D, Persaud A, Jimenez X, Burtrum D et al. Simultaneous blockade of both the epidermal growth factor receptor and the insulin-like growth factor receptor signaling pathways in cancer cells with a fully human recombinant bispecific antibody.
J临床肿瘤学。1997年;15https://doi.org/10.1200/JCO.1997.15.10.3266.LuD,Zhang H,Ludwig D,Persaud A,Jimenez X,Burtrum D等。用完全人重组双特异性抗体同时阻断癌细胞中的表皮生长因子受体和胰岛素样生长因子受体信号传导途径。
J Biol Chem. 2004;279. https://doi.org/10.1074/jbc.M310132200.Heemskerk N, Gruijs M, Robin Temming A, Heineke MH, Gout DY, Hellingman T et al. Augmented antibody-based anticancer therapeutics boost neutrophil cytotoxicity. J Clin Investig. 2021;131. https://doi.org/10.1172/JCI134680.van Teteri.
生物化学杂志。2004年;279https://doi.org/10.1074/jbc.M310132200.HeemskerkN,Gruijs M,Robin Temming A,Heineke MH,Gout DY,Hellingman T等人。基于增强抗体的抗癌疗法增强中性粒细胞的细胞毒性。J临床研究。2021年;131https://doi.org/10.1172/JCI134680.van特特里。
PubMed
PubMed
Google Scholar
谷歌学者
Springer TA. Inherited deficiency of the Mac-1, LFA-1, p150,95 glycoprotein family and its molecular basis. J Exp Med. 1984;160:1901–18.Article
斯普林格TA。Mac-1,LFA-1,p150,95糖蛋白家族的遗传缺陷及其分子基础。J Exp Med。1984;160:1901-18.文章
PubMed
PubMed
Google Scholar
谷歌学者
Shimaoka M, Takagi J, Springer TA. Conformational regulation of integrin structure and function. Annu Rev Biophys Biomol Struct. 2002;31. https://doi.org/10.1146/annurev.biophys.31.101101.140922.Manevich-Mendelson E, Feigelson SW, Pasvolsky R, Aker M, Grabovsky V, Shulman Z et al. Loss of kindlin-3 in LAD-III eliminates LFA-1 but not VLA-4 adhesiveness developed under shear flow conditions.
Shimaoka M,Takagi J,Springer TA。整合素结构和功能的构象调节。Annu Rev Biophys Biomol结构。2002年;31https://doi.org/10.1146/annurev.biophys.31.101101.140922.Manevich-MendelsonE,Feigelson SW,Pasvolsky R,Aker M,Grabovsky V,Shulman Z等人。LAD-III中kindlin-3的丢失消除了LFA-1,但没有消除剪切流动条件下产生的VLA-4粘附性。
Blood. 2009;114. https://doi.org/10.1182/blood-2009-04-218636.Steevels TAM, Lebbink RJ, Westerlaken GHA, Coffer PJ, Meyaard L. Signal inhibitory receptor on leukocytes-1 is a novel functional inhibitory immune receptor expressed on human phagocytes. J Immunol. 2010;184. https://doi.org/10.4049/jimmunol.0902039.Meyaard L, Adema GJ, Chang C, Woollatt E, Sutherland GR, Lanier LL et al.
血。2009年;114https://doi.org/10.1182/blood-2009-04-218636.SteevelsTAM,Lebbink RJ,Westerlaken GHA,Coque PJ,Meyaard L.白细胞信号抑制受体-1是一种在人吞噬细胞上表达的新型功能性抑制性免疫受体。免疫杂志。2010年;184https://doi.org/10.4049/jimmunol.0902039.MeyaardL,Adema GJ,Chang C,Woollatt E,Sutherland GR,Lanier LL等。
LAIR-1, a novel inhibitory receptor expressed on human mononuclear leukocytes. Immunity 1997;7. https://doi.org/10.1016/S1074-7613(00)80530-0.Ring NG, Herndler-Brandstetter D, Weiskopf K, Shan L, Volkmer JP, George BM et al. Anti-SIRPα antibody immunotherapy enhances neutrophil and macrophage antitumor activity.
LAIR-1是一种在人单核白细胞上表达的新型抑制性受体。豁免1997;7https://doi.org/10.1016/S1074-7613(00)80530-0.Ring NG,Herndler Brandstetter D,Weiskopf K,Shan L,Volkmer JP,George BM等。抗SIRPα抗体免疫疗法增强中性粒细胞和巨噬细胞的抗肿瘤活性。
Proc Natl Acad Sci USA. 2017;114. https://doi.org/10.1073/pnas.1710877114.Ba Y, Shi Y, Jiang W, Feng J, Cheng Y, Xiao L et al. Current management of chemotherapy-induced neutropenia in adults: key points and new challenges. Cancer Biol Med. 2020;17. https://doi.org/10.20892/j.issn.2095-3941.2020.0069.Shojaei F, Wu X, Malik AK, Zhong C, Baldwin ME, Schanz S et al.
美国国家科学院院刊2017;114https://doi.org/10.1073/pnas.1710877114.BaY,Shi Y,Jiang W,Feng J,Cheng Y,Xiao L等。成人化疗引起的中性粒细胞减少症的当前管理:要点和新挑战。癌症生物学杂志2020;17https://doi.org/10.20892/j.issn.2095-3941.2020.0069.ShojaeiF,Wu X,Malik AK,Zhong C,Baldwin ME,Schanz S等。
Tumor refractoriness to anti-VEGF treatment is mediated by CD11b +Gr1+ myeloid cells. Nat Biotechnol. 2007;25. https://doi.org/10.1038/nbt1323.Itatani Y, Yamamoto T, Zhong C, Molinolo AA, Ruppel J, Hegde P et al. Suppressing neutrophil-dependent angiogenesis abrogates resistance to anti-VEGF antibody in a genetic model of .
抗VEGF治疗的肿瘤难治性由CD11b+Gr1+骨髓细胞介导。纳特生物技术。2007年;25https://doi.org/10.1038/nbt1323.ItataniY,Yamamoto T,Zhong C,Molinolo AA,Ruppel J,Hegde P等人。抑制嗜中性粒细胞依赖性血管生成消除了对遗传模型中抗VEGF抗体的抗性。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Takashima A, Yao Y. Neutrophil plasticity: acquisition of phenotype and functionality of antigen-presenting cell. J Leukoc Biol 2015;98. https://doi.org/10.1189/jlb.1mr1014-502r.Mysore V, Cullere X, Mears J, Rosetti F, Okubo K, Liew PX, et al. FcγR engagement reprograms neutrophils into antigen cross-presenting cells that elicit acquired anti-tumor immunity.
Takashima A,Yao Y.中性粒细胞可塑性:抗原呈递细胞表型和功能的获得。J Leukoc Biol 2015;98https://doi.org/10.1189/jlb.1mr1014-502r.MysoreV,Cullere X,Mears J,Rosetti F,Okubo K,Liew PX等。FcγR参与将中性粒细胞重编程为抗原交叉呈递细胞,引发获得性抗肿瘤免疫。
Nat Commun. 2021;12:4791.Article .
普通NAT。2021年;12:4791.文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dyugovskaya L, Berger S, Polyakov A, Lavie L. The development of giant phagocytes in long-term neutrophil cultures. J Leukoc Biol. 2014;96:511–21.Article
Dyugovskaya L,Berger S,Polyakov A,Lavie L.长期中性粒细胞培养中巨吞噬细胞的发育。J Leukoc Biol。2014年;96:511-21.文章
PubMed
PubMed
Google Scholar
谷歌学者
Ogawa K, Asano K, Yotsumoto S, Yamane T, Arita M, Hayashi Y et al. Frontline science: conversion of neutrophils into atypical Ly6G+SiglecF+ immune cells with neurosupportive potential in olfactory neuroepithelium. J Leukoc Biol 2021;109. https://doi.org/10.1002/JLB.1HI0620-190RR.Sumagin R Emerging neutrophil plasticity: terminally differentiated cells no more.
Ogawa K,Asano K,Yotsumoto S,Yamane T,Arita M,Hayashi Y等。前线科学:将嗜中性粒细胞转化为嗅觉神经上皮中具有神经支持潜力的非典型Ly6G+SiglecF+免疫细胞。J Leukoc Biol 2021;109https://doi.org/10.1002/JLB.1HI0620-190RR.SumaginR新兴的中性粒细胞可塑性:不再是终末分化的细胞。
J Leukoc Biol. 2021;109. https://doi.org/10.1002/JLB.1CE0720-378R.Heyworth C, Pearson S, May G, Enver T Transcription factor-mediated lineage switching reveals plasticity in primary committed progenitor cells. EMBO J. 2002;21. https://doi.org/10.1093/emboj/cdf368.Li C, Chen C, Kang X, Zhang X, Sun S, Guo F et al.
J Leukoc Biol。2021年;109https://doi.org/10.1002/JLB.1CE0720-378R.HeyworthC,Pearson S,May G,Enver T转录因子介导的谱系转换揭示了原代定向祖细胞的可塑性。EMBO J.2002;21https://doi.org/10.1093/emboj/cdf368.LiC,陈C,康X,张X,孙S,郭F等。
Decidua-derived granulocyte macrophage colony-stimulating factor induces polymorphonuclear myeloid-derived suppressor cells from circulating CD151 neutrophils. Human Reprod. 2020;35. https://doi.org/10.1093/humrep/deaa217.Whitmore LC, Weems MN, Allen L-AH. Cutting edge: helicobacter pylori induces nuclear hypersegmentation and subtype differentiation of human neutrophils in vitro.
蜕膜衍生的粒细胞巨噬细胞集落刺激因子从循环CD151嗜中性粒细胞诱导多形核骨髓衍生的抑制细胞。人类繁殖。2020年;35https://doi.org/10.1093/humrep/deaa217.WhitmoreLC,Weems MN,Allen L-AH。前沿:幽门螺杆菌在体外诱导人中性粒细胞的核过度分裂和亚型分化。
J Immunol. 2017;198. https://doi.org/10.4049/jimmunol.1601292.Kitchen E, Rossi A, Condliffe A, Haslett C, Chilvers E. Demonstration of reversible priming of human neutrophils using platelet- activating factor. Blood. 1996;88:4330–7.Article .
免疫杂志。2017年;198https://doi.org/10.4049/jimmunol.1601292.KitchenE,Rossi A,Condliffe A,Haslett C,Chilvers E.使用血小板活化因子可逆引发人嗜中性粒细胞的证明。血。1996年;88:4330–7。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Zhu X, Heng Y, Ma J, Zhang D, Tang D, Ji Y et al. Prolonged survival of neutrophils induced by tumor‐derived G‐CSF/GM‐CSF promotes immunosuppression and progression in laryngeal squamous cell carcinoma. Adv Sci. 2024. https://doi.org/10.1002/advs.202400836.Download referencesAuthor informationAuthors and AffiliationsDept.
Zhu X,Heng Y,Ma J,Zhang D,Tang D,Ji Y等。由肿瘤来源的G-CSF/GM-CSF诱导的嗜中性粒细胞的延长存活促进喉鳞状细胞癌的免疫抑制和进展。高级科学。2024https://doi.org/10.1002/advs.202400836.Download参考作者信息作者和附属机构Dept。
Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The NetherlandsLeo Koenderman & Nienke VrisekoopAuthorsLeo KoendermanView author publicationsYou can also search for this author in.
呼吸医学和转化免疫学中心,乌得勒支大学医学中心,乌得勒支,NetherlandsLeo Koenderman&Nienke VrisekoopAuthorsLeo KoendermanView作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarNienke VrisekoopView author publicationsYou can also search for this author in
PubMed Google ScholarNienke VrisekoopView作者出版物您也可以在
PubMed Google ScholarCorresponding authorCorrespondence to
PubMed谷歌学者通讯社
Leo Koenderman.Ethics declarations
利奥·科恩德曼。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Rights and permissions
权限和权限
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleKoenderman, L., Vrisekoop, N. Neutrophils in cancer: from biology to therapy.
转载和许可本文引用本文Koenderman,L.,Vrisekoop,N。癌症中的中性粒细胞:从生物学到治疗。
Cell Mol Immunol (2024). https://doi.org/10.1038/s41423-024-01244-9Download citationReceived: 01 August 2024Accepted: 21 November 2024Published: 09 December 2024DOI: https://doi.org/10.1038/s41423-024-01244-9Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
细胞摩尔免疫(2024)。https://doi.org/10.1038/s41423-024-01244-9Download引文收到日期:2024年8月1日接受日期:2024年11月21日发布日期:2024年12月9日OI:https://doi.org/10.1038/s41423-024-01244-9Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
Keywordsneutrophilimmune suppressioncancertumor-associated neutrophilsconfused immune responsemyeloid derived suppressor cells
关键词嗜中性粒细胞免疫抑制癌相关嗜中性粒细胞感染的免疫反应髓样来源的抑制细胞