EN
登录

MamF样蛋白是参与细菌细胞器组装的遥远Tic20同源物

MamF-like proteins are distant Tic20 homologs involved in organelle assembly in bacteria

Nature 等信源发布 2024-12-09 21:50

可切换为仅中文


AbstractOrganelle-specific protein translocation systems are essential for organelle biogenesis and maintenance in eukaryotes but thought to be absent from prokaryotic organelles. Here, we demonstrate that MamF-like proteins are crucial for the formation and functionality of bacterial magnetosome organelles.

摘要细胞器特异性蛋白质易位系统对于真核生物中细胞器的生物发生和维持至关重要,但被认为在原核细胞器中不存在。在这里,我们证明了MamF样蛋白对于细菌磁小体细胞器的形成和功能至关重要。

Deletion of mamF-like genes in the Alphaproteobacterium Magnetospirillum gryphiswaldense results in severe defects in organelle positioning, biomineralization, and magnetic navigation. These phenotypic defects result from the disrupted targeting of a subset of magnetosomal proteins that contain C-terminal glycine-rich integral membrane domains.

在Alphaproteobacterium Magnetospirillum gryphiswaldense中删除mamF样基因会导致细胞器定位,生物矿化和磁导航方面的严重缺陷。这些表型缺陷是由于含有富含C端甘氨酸的整合膜结构域的磁小体蛋白子集的靶向被破坏所致。

Phylogenetic analyses reveal an ancient evolutionary link between MamF-like proteins and plastidial Tic20. Our findings redefine the molecular roles of MamF-like proteins and suggest that organelle-specific protein targeting systems also play a role in bacterial organelle formation..

系统发育分析揭示了MamF样蛋白与质体Tic20之间的古老进化联系。我们的发现重新定义了MamF样蛋白的分子作用,并表明细胞器特异性蛋白靶向系统也在细菌细胞器形成中起作用。。

IntroductionEukaryotes possess complex preprotein translocases of chloroplasts or mitochondria (Tic/Toc or Tim/Tom) to ensure biogenesis and maintenance of these organelles. Strikingly, both translocases have a mixed phylogenetic origin and likely evolved by combining new eukaryotic proteins with bacterial subunits of endosymbiotic origin1,2,3,4.

引言真核生物具有复杂的叶绿体或线粒体前蛋白转位酶(Tic/Toc或Tim/Tom),以确保这些细胞器的生物发生和维持。引人注目的是,这两种转位酶都具有混合的系统发育起源,并且可能通过将新的真核蛋白与内共生起源的细菌亚基1,2,3,4结合而进化。

However, no organelle-specific protein translocases equivalent to the eukaryotic machineries have been identified among bacteria yet5. Hence, bacterial organelle biogenesis must proceed through distinct mechanisms.Magnetosomes, unique magnetic organelles6, for example, emerge from the cell membrane by invagination7.

然而,在细菌yet5中没有发现与真核机器相当的细胞器特异性蛋白质转位酶。因此,细菌细胞器的生物发生必须通过不同的机制进行。例如,磁小体,独特的磁性细胞器6,通过内陷从细胞膜中出现7。

It has been hypothesized that in Magnetospirillum gryphiswaldense MSR-1 and related Alphaproteobacteria, this process is induced by the assembly of magnetosome-specific protein complexes within the cytoplasmic membrane that initiate magnetosome membrane (MM) formation through a molecular crowding-like membrane-bending mechanism8.

据推测,在Magnetospirillum gryphiswaldense MSR-1和相关的Alphaproteobacteria中,这一过程是由细胞质膜内磁小体特异性蛋白复合物的组装诱导的,该复合物通过分子拥挤样膜弯曲机制启动磁小体膜(MM)形成8。

Thereby, magnetosome-specific proteins, which are encoded within a compact genomic magnetosome island (MAI), supposedly become integrated into the MM during its invagination. Some magnetosome proteins, however, follow different targeting routes. Mms6 and MamD (also known as Mms7), for example, are translocated into preexisting magnetosomes in a folded state upon induction of magnetite biomineralization9,10.

因此,在紧凑的基因组磁小体岛(MAI)中编码的磁小体特异性蛋白在其内陷过程中被整合到MM中。然而,一些磁小体蛋白遵循不同的靶向途径。例如,Mms6和MamD(也称为Mms7)在诱导磁铁矿生物矿化后以折叠状态转移到先前存在的磁小体中9,10。

Nevertheless, the precise molecular mechanisms governing magnetosome assembly and protein targeting remained largely elusive.Immediately following MM formation, the embedded magnetosome proteins facilitate subsequent steps of magnetosome biogenesis like iron uptake into the magnetosome lumen, initiation of magnetite (Fe3O4) biomineralization and magnetite crystal growth11.

然而,控制磁小体组装和蛋白质靶向的精确分子机制仍然难以捉摸。在MM形成后,嵌入的磁小体蛋白立即促进磁小体生物发生的后续步骤,如铁吸收到磁小体腔中,开始磁铁矿(Fe3O4)生物矿化和磁铁矿晶体生长11。

The small inte.

小inte。

Data availability

数据可用性

All data supporting the findings of this study are included in the main text, the supplementary materials or the supplementary data files. Uncropped versions of blots/gels, swim halos in agar plates and bacterial two-hybrid assay agar plates are supplied in the Source data file provided with this paper.

支持本研究结果的所有数据均包含在正文,补充材料或补充数据文件中。本文提供的源数据文件中提供了未裁剪版本的印迹/凝胶,琼脂平板中的游泳晕和细菌双杂交测定琼脂平板。

The mass spectrometry proteomics data generated in this study have been deposited to the ProteomeXchange (http://proteomecentral.proteomexchange.org) consortium via the PRIDE partner repository70 under the accession code PXD032959. The accession codes of structures and AlphaFold models used for analysis are 7XZI (Tic20); AF-A4U547-F1-model_v2 (MmsF, accession date 18.03.2022). Source data are provided with this paper..

这项研究中产生的质谱蛋白质组学数据已保存到ProteomeXchange(http://proteomecentral.proteomexchange.org)财团通过PRIDE partner repository70,登录号为PXD032959。用于分析的结构和AlphaFold模型的登录号是7XZI(Tic20);AF-A4U547-F1-model\u v2(MmsF,加入日期为2022年3月18日)。本文提供了源数据。。

ReferencesRast, A., Heinz, S. & Nickelsen, J. Biogenesis of thylakoid membranes. Biochim. Biophys. Acta 1847, 821–830 (2015).PubMed

参考文献Rast,A.,Heinz,S。&Nickelsen,J。类囊体膜的生物发生。生物化学。生物物理。Acta 1847821–830(2015)。PubMed出版社

Google Scholar

谷歌学者

Muñoz-Gómez, S. A. et al. Ancient homology of the mitochondrial contact site and cristae organizing system points to an endosymbiotic origin of mitochondrial cristae. Curr. Biol. 25, 1489–1495 (2015).PubMed

Muñoz-Gómez,S.A.等人。线粒体接触位点和嵴组织系统的古代同源性指向线粒体嵴的内共生起源。货币。生物学251489-1495(2015)。PubMed出版社

Google Scholar

谷歌学者

Dolezal, P., Likic, V., Tachezy, J. & Lithgow, T. Evolution of the molecular machines for protein import into mitochondria. Science 313, 314–318 (2006).ADS

Dolezal,P.,Likic,V.,Tachezy,J。&Lithgow,T。蛋白质导入线粒体的分子机器的进化。科学313314-318(2006)。广告

PubMed

PubMed

Google Scholar

谷歌学者

Benz, J. P., Soll, J. & Bölter, B. Protein transport in organelles: The composition, function and regulation of the Tic complex in chloroplast protein import. FEBS J. 276, 1166–1176 (2009).PubMed

Benz,J.P.,Soll,J。&Bölter,B。细胞器中的蛋白质转运:叶绿体蛋白质进口中Tic复合物的组成,功能和调节。FEBS J.2761166–1176(2009)。PubMed出版社

Google Scholar

谷歌学者

Greening, C. & Lithgow, T. Formation and function of bacterial organelles. Nat. Rev. Microbiol. 18, 677–689 (2020).PubMed

Greening,C。&Lithgow,T。细菌细胞器的形成和功能。自然修订版微生物学。18677-689(2020)。PubMed出版社

Google Scholar

谷歌学者

Grant, C. R., Wan, J. & Komeili, A. Organelle formation in Bacteria and Archaea. Annu. Rev. Cell Dev. Biol. 34, 217–238 (2018).PubMed

Grant,C.R.,Wan,J。&Komeili,A。细菌和古细菌中的细胞器形成。年。Rev.Cell Dev.Biol。34217-238(2018)。PubMed出版社

Google Scholar

谷歌学者

Komeili, A., Li, Z., Newman, D. K. & Jensen, G. J. Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311, 242–245 (2006).ADS

Komeili,A.,Li,Z.,Newman,D.K。&Jensen,G.J。磁小体是由肌动蛋白样蛋白MamK组织的细胞膜内陷。科学311242-245(2006)。广告

PubMed

PubMed

Google Scholar

谷歌学者

Raschdorf, O. et al. Genetic and ultrastructural analysis reveals the key players and initial steps of bacterial magnetosome membrane biogenesis. PLoS Genet. 12, e1006101 (2016).PubMed

遗传和超微结构分析揭示了细菌磁小体膜生物发生的关键参与者和初始步骤。PLoS Genet。12,e1006101(2016)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Arakaki, A. et al. Comparative subcellular localization analysis of magnetosome proteins reveals a unique localization behavior of Mms6 protein onto magnetite crystals. J. Bacteriol. 198, 2794–2802 (2016).PubMed

Arakaki,A。等人。磁小体蛋白的比较亚细胞定位分析揭示了Mms6蛋白在磁铁矿晶体上的独特定位行为。J、 细菌。1982794-2802(2016)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bickley, C. D., Wan, J. & Komeili, A. Intrinsic and extrinsic determinants of conditional localization of Mms6 to magnetosome organelles in Magnetospirillum magneticum AMB-1. J. Bacteriol. 206, e0000824 (2024).PubMed

Bickley,C.D.,Wan,J。&Komeili,A。在Magnetospirillum magneticum AMB-1中,Mms6条件定位于磁小体细胞器的内在和外在决定因素。J、 细菌。206,e0000824(2024)。PubMed出版社

Google Scholar

谷歌学者

Uebe, R. & Schüler, D. Magnetosome biogenesis in magnetotactic bacteria. Nat. Rev. Microbiol. 14, 621–637 (2016).PubMed

Uebe,R。&Schüler,D。趋磁细菌中的磁小体生物发生。Nat。Rev。Microbiol。14621-637(2016)。PubMed出版社

Google Scholar

谷歌学者

Lohße, A. et al. Genetic dissection of the mamAB and mms6 operons reveals a gene set essential for magnetosome biogenesis in Magnetospirillum gryphiswaldense. J. Bacteriol. 196, 2658–2669 (2014).PubMed

Lohße,A。等人。mamAB和mms6操纵子的遗传解剖揭示了磁螺菌gryphiswaldense中磁小体生物发生所必需的基因组。J、 细菌。1962658-2669(2014)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Murat, D. et al. The magnetosome membrane protein, MmsF, is a major regulator of magnetite biomineralization in Magnetospirillum magneticum AMB-1. Mol. Microbiol. 85, 684–699 (2012).PubMed

Murat,D。等人。磁小体膜蛋白MmsF是磁性磁螺菌AMB-1中磁铁矿生物矿化的主要调节剂。分子微生物。85684-699(2012)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rawlings, A. E. et al. Self-assembled MmsF proteinosomes control magnetite nanoparticle formation in vitro. Proc. Natl. Acad. Sci. U.S.A. 111, 16094–16099 (2014).ADS

Rawlings,A.E.等人自组装MmsF蛋白体在体外控制磁铁矿纳米颗粒的形成。程序。纳特尔。阿卡德。科学。U、 S.A.11116094–16099(2014)。广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Scheffel, A. et al. An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440, 110–114 (2006).ADS

Scheffel,A.等人,《趋磁细菌中一种酸性蛋白质沿着丝状结构排列磁小体》,《自然》440110-114(2006)。广告

PubMed

PubMed

Google Scholar

谷歌学者

Toro-Nahuelpan, M. et al. MamY is a membrane-bound protein that aligns magnetosomes and the motility axis of helical magnetotactic bacteria. Nat. Microbiol. 4, 1978–1989 (2019).PubMed

Toro Nahuelpan,M。等人。MamY是一种膜结合蛋白,可将磁小体与螺旋趋磁细菌的运动轴对齐。Nat。Microbiol。41978年至1989年(2019年)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Uebe, R., Schüler, D., Jogler, C. & Wiegand, S. Reevaluation of the complete genome sequence of Magnetospirillum gryphiswaldense MSR-1 with single-molecule real-time sequencing data. Genome Announc. 6, e00309–e00318 (2018).PubMed

Uebe,R.,Schüler,D.,Jogler,C。&Wiegand,S。用单分子实时测序数据重新评估磁螺菌gryphiswaldense MSR-1的完整基因组序列。基因组Announc。6,e00309–e00318(2018)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zimmermann, L. et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430, 2237–2243 (2018).PubMed

Zimmermann,L.等人。一个完全重新实现的MPI生物信息学工具包,其核心是一个新的HHpred服务器。J、 分子生物学。4302237-2243(2018)。PubMed出版社

Google Scholar

谷歌学者

Kikuchi, S. et al. A 1-megadalton translocation complex containing Tic20 and Tic21 mediates chloroplast protein import at the inner envelope membrane. Plant Cell 21, 1781–1797 (2009).PubMed

Kikuchi,S。等人。含有Tic20和Tic21的1兆道尔顿易位复合物介导叶绿体蛋白在内膜的导入。植物细胞211781-1797(2009)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kouranov, A., Chen, X., Fuks, B. & Schnell, D. J. Tic20 and Tic22 are new components of the protein import apparatus at the chloroplast inner envelope membrane. J. Cell Biol. 143, 991–1002 (1998).PubMed

Kouranov,A.,Chen,X.,Fuks,B。&Schnell,D.J。Tic20和Tic22是叶绿体内膜蛋白质导入装置的新组件。J、 细胞生物学。143991-1002(1998)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

van Dooren, G. G., Tomova, C., Agrawal, S., Humbel, B. M. & Striepen, B. Toxoplasma gondii Tic20 is essential for apicoplast protein import. Proc. Natl. Acad. Sci. USA. 105, 13574–13579 (2008).ADS

van Dooren,G.G.,Tomova,C.,Agrawal,S.,Humbel,B.M。&Striepen,B。弓形虫Tic20对于apicoplast蛋白的进口至关重要。程序。纳特尔。阿卡德。科学。美国,10513574–13579(2008)。广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kovács-Bogdán, E., Benz, J. P., Soll, J. & Bölter, B. Tic20 forms a channel independent of Tic110 in chloroplasts. BMC Plant Biol. 11, 133 (2011).PubMed

Kovács-Bogdán,E.,Benz,J.P.,Soll,J。&Bölter,B。Tic20在叶绿体中形成独立于Tic110的通道。BMC植物生物学。11133(2011)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Frickey, T. & Lupas, A. CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics 20, 3702–3704 (2004).PubMed

Frickey,T。&Lupas,A。CLANS:一个基于成对相似性可视化蛋白质家族的Java应用程序。生物信息学203702-3704(2004)。PubMed出版社

Google Scholar

谷歌学者

Holm, L., Laiho, A., Törönen, P. & Salgado, M. DALI shines a light on remote homologs: One hundred discoveries. Prot. Sci. 32, e4519 (2023).

Holm,L.,Laiho,A.,Törönen,P。&Salgado,M。DALI照亮了远程同源物:100个发现。保护。科学。32,e4519(2023)。

Google Scholar

谷歌学者

Pfeiffer, D. & Schüler, D. Quantifying the benefit of a dedicated “magnetoskeleton” in bacterial magnetotaxis by live-cell motility tracking and soft agar swimming assay. Appl. Environ. Microbiol. 86, e01976–19 (2020).ADS

Pfeiffer,D。&Schüler,D。通过活细胞运动追踪和软琼脂游泳测定来量化专用“磁骨架”在细菌趋磁性中的益处。应用。环境。微生物。86,e01976-19(2020)。广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dziuba, M. et al. The complex transcriptional landscape of magnetosome gene clusters in Magnetospirillum gryphiswaldense. mSystems 6, e0089321 (2021).PubMed

Dziuba,M。等人。磁螺菌gryphiswaldense中磁小体基因簇的复杂转录景观。mSystems 6,e0089321(2021)。PubMed出版社

Google Scholar

谷歌学者

Arakaki, A., Yamagishi, A., Fukuyo, A., Tanaka, M. & Matsunaga, T. Co-ordinated functions of Mms proteins define the surface structure of cubo-octahedral magnetite crystals in magnetotactic bacteria. Mol. Microbiol. 93, 554–567 (2014).PubMed

Arakaki,A.,Yamagishi,A.,Fukuyo,A.,Tanaka,M。&Matsunaga,T。Mms蛋白的协调功能定义了趋磁细菌中立方八面体磁铁矿晶体的表面结构。分子微生物学。93554-567(2014)。PubMed出版社

Google Scholar

谷歌学者

Dziuba, M. V., Zwiener, T., Uebe, R. & Schüler, D. Single-step transfer of biosynthetic operons endows a non-magnetotactic Magnetospirillum strain from wetland with magnetosome biosynthesis. Environ. Microbiol. 22, 1603–1618 (2020).PubMed

Dziuba,M.V.,Zwiener,T.,Uebe,R。&Schüler,D。生物合成操纵子的单步转移赋予来自湿地的非趋磁性磁螺菌菌株以磁小体生物合成。环境。微生物。221603-1618(2020)。PubMed出版社

Google Scholar

谷歌学者

Fujiki, Y., Hubbard, A. L., Fowler, S. & Lazarow, PaulB. Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J. Cell Biol. 93, 97–102 (1982).PubMed

Fujiki,Y.,Hubbard,A.L.,Fowler,S.&Lazarow,PaulB。通过碳酸钠处理分离细胞内膜:应用于内质网。J、 细胞生物学。93,97-102(1982)。PubMed出版社

Google Scholar

谷歌学者

Vögtle, F.-N. et al. Landscape of submitochondrial protein distribution. Nat. Commun. 8, 290 (2017).ADS

Vögtle,F.-N.等人。线粒体下蛋白质分布的景观。国家公社。8290(2017)。广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Taoka, A. et al. Spatial localizations of Mam22 and Mam12 in the magnetosomes of Magnetospirillum magnetotacticum. J. Bacteriol. 188, 3805–3812 (2006).PubMed

Taoka,A。等人。Mam22和Mam12在Magnetospirillum magnetotacticum磁小体中的空间定位。J、 细菌。1883805-3812(2006)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Barber-Zucker, S. et al. Disease-homologous mutation in the Cation Diffusion Facilitator protein MamM causes single-domain structural loss and signifies its importance. Sci. Rep. 6, 31933 (2016).ADS

Barber-Zucker,S。等人。阳离子扩散促进蛋白MamM中的疾病同源突变会导致单结构域结构丢失,并表明其重要性。科学。代表631933(2016)。广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Uebe, R. et al. The cation diffusion facilitator proteins MamB and MamM of Magnetospirillum gryphiswaldense have distinct and complex functions, and are involved in magnetite biomineralization and magnetosome membrane assembly. Mol. Microbiol. 82, 818–835 (2011).PubMed

gryphiswaldense磁螺菌的阳离子扩散促进蛋白MamB和MamM具有独特而复杂的功能,并参与磁铁矿生物矿化和磁小体膜组装。分子微生物。82818-835(2011)。PubMed出版社

Google Scholar

谷歌学者

Scheffel, A. & Schüler, D. The acidic repetitive domain of the Magnetospirillum gryphiswaldense MamJ protein displays hypervariability but is not required for magnetosome chain assembly. J. Bacteriol. 189, 6437–6446 (2007).PubMed

Scheffel,A。&Schüler,D。磁螺菌gryphiswaldense MamJ蛋白的酸性重复结构域显示出高变异性,但不需要磁小体链组装。J、 细菌。1896437-6446(2007)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zwiener, T. et al. Identification and elimination of genomic regions irrelevant for magnetosome biosynthesis by large-scale deletion in Magnetospirillum gryphiswaldense. BMC Microbiol. 21, 65 (2021).PubMed

Zwiener,T。等人。通过在磁螺菌gryphiswaldense中的大规模缺失来鉴定和消除与磁小体生物合成无关的基因组区域。BMC微生物。21,65(2021)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dziuba, M. V. et al. Silent gene clusters encode magnetic organelle biosynthesis in a non-magnetotactic phototrophic bacterium. ISME J. 17, 326–339 (2023).PubMed

Dziuba,M.V。等人。沉默基因簇编码非趋磁光合细菌中的磁性细胞器生物合成。ISME J.17326–339(2023)。PubMed出版社

Google Scholar

谷歌学者

Arakaki, A., Webb, J. & Matsunaga, T. A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. J. Biol. 278, 8745–8750 (2003).

Arakaki,A.,Webb,J。&Matsunaga,T。一种与磁性磁螺菌菌株AMB-1中的细菌磁性颗粒紧密结合的新型蛋白质。J、 生物。2788745-8750(2003)。

Google Scholar

谷歌学者

Peschke, M. et al. Distinct requirements for tail-anchored membrane protein biogenesis in Escherichia coli. mBio 10, e01580-19 (2019).PubMed

Peschke,M.等人。大肠杆菌中尾部锚定膜蛋白生物发生的不同要求。mBio 10,e01580-19(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kim, S. et al. Transmembrane glycine zippers: physiological and pathological roles in membrane proteins. Proc. Natl. Acad. Sci. USA. 102, 14278–14283 (2005).ADS

Kim,S.等人,《跨膜甘氨酸拉链:膜蛋白中的生理和病理作用》。程序。纳特尔。阿卡德。科学。美国10214278–14283(2005)。广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wan, J. et al. A protease-mediated switch regulates the growth of magnetosome organelles in Magnetospirillum magneticum. Proc. Natl. Acad. Sci. USA. 119, e2111745119 (2022).PubMed

Wan,J。等人。蛋白酶介导的开关调节磁螺菌(Magnetospirillum magneticum)中磁小体细胞器的生长。程序。纳特尔。阿卡德。科学。美国119,e2111745119(2022)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rosenfeldt, S. et al. Towards standardized purification of bacterial magnetic nanoparticles for future in vivo applications. Acta Biomater. 120, 293–303 (2021).PubMed

Rosenfeldt,S.等人致力于细菌磁性纳米颗粒的标准化纯化,以用于未来的体内应用。生物计量学报。120293-303(2021)。PubMed出版社

Google Scholar

谷歌学者

Mosayebi, J., Kiyasatfar, M. & Laurent, S. Synthesis, functionalization, and design of magnetic nanoparticles for theranostic applications. Adv. Healthc. Mater. 6, 1700306 (2017).

Mosayebi,J.,Kiyasatfar,M。&Laurent,S。用于治疗诊断应用的磁性纳米颗粒的合成,功能化和设计。健康顾问。马特。61700306(2017)。

Google Scholar

谷歌学者

Kikuchi, S. et al. Uncovering the protein translocon at the chloroplast inner envelope membrane. Science 339, 571–574 (2013).ADS

Kikuchi,S.等人揭示了叶绿体内膜上的蛋白质易位子。科学339571-574(2013)。广告

PubMed

PubMed

Google Scholar

谷歌学者

Jin, Z. et al. Structure of a TOC-TIC supercomplex spanning two chloroplast envelope membranes. Cell 185, 4788–4800.e13 (2022).PubMed

Jin,Z.等人。跨越两个叶绿体包膜的TOC-TIC超复合物的结构。细胞1854788–4800.e13(2022)。PubMed出版社

Google Scholar

谷歌学者

Liu, H., Li, A., Rochaix, J.-D. & Liu, Z. Architecture of chloroplast TOC-TIC translocon supercomplex. Nature 615, 349–357 (2023).ADS

Liu,H.,Li,A.,Rochaix,J.-D.&Liu,Z.叶绿体TOC-TIC易位子超复合物的结构。自然615349-357(2023)。广告

PubMed

PubMed

Google Scholar

谷歌学者

Machettira, A. B. et al. The localization of Tic20 proteins in Arabidopsis thaliana is not restricted to the inner envelope membrane of chloroplasts. Plant Mol. Biol. 77, 381–390 (2011).PubMed

Machettira,A.B。等人。拟南芥中Tic20蛋白的定位不限于叶绿体的内膜。植物分子生物学。77381-390(2011)。PubMed出版社

Google Scholar

谷歌学者

Rassow, J., Dekker, P. J., van Wilpe, S., Meijer, M. & Soll, J. The preprotein translocase of the mitochondrial inner membrane: function and evolution. J. Mol. Biol. 286, 105–120 (1999).PubMed

Rassow,J.,Dekker,P.J.,van Wilpe,S.,Meijer,M。&Soll,J。线粒体内膜的前蛋白转位酶:功能和进化。J、 分子生物学。286105-120(1999)。PubMed出版社

Google Scholar

谷歌学者

Reumann, S. The endosymbiotic origin of the protein import machinery of chloroplastic envelope membranes. Plant Sci. 4, 302–307 (1999).

Reumann,S。叶绿体包膜蛋白质输入机制的内共生起源。植物科学。4302-307(1999)。

Google Scholar

谷歌学者

Bodył, A., Mackiewicz, P. & Stiller, J. W. Comparative genomic studies suggest that the cyanobacterial endosymbionts of the amoeba Paulinella chromatophora possess an import apparatus for nuclear-encoded proteins. Plant Biol. 12, 639–649 (2010).PubMed

Bodył,A.,Mackiewicz,P。&Stiller,J.W。比较基因组学研究表明,变形虫Paulinella chromophora的蓝藻内共生体具有核编码蛋白的进口装置。植物生物学。12639-649(2010)。PubMed出版社

Google Scholar

谷歌学者

Kasmati, A. R., Töpel, M., Patel, R., Murtaza, G. & Jarvis, P. Molecular and genetic analyses of Tic20 homologues in Arabidopsis thaliana chloroplasts. Plant J. 66, 877–889 (2011).PubMed

Kasmati,A.R.,Töpel,M.,Patel,R.,Murtaza,G。&Jarvis,P。拟南芥叶绿体中Tic20同源物的分子和遗传分析。植物J.66877–889(2011)。PubMed出版社

Google Scholar

谷歌学者

Gross, J. & Bhattacharya, D. Mitochondrial and plastid evolution in eukaryotes: an outsiders’ perspective. Nat. Rev. Genet. 10, 495–505 (2009).PubMed

Gross,J。&Bhattacharya,D。真核生物中的线粒体和质体进化:局外人的观点。Genet自然Rev。10495-505(2009)。PubMed出版社

Google Scholar

谷歌学者

Žárský, V. & Doležal, P. Evolution of the Tim17 protein family. Biol. Direct 11, 54 (2016).PubMed

Žársky,V.&Doležal,P.Tim17蛋白家族的进化。《生物直接》第11期,第54页(2016年)。PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sambrook, J. & Russell, D. W. Molecular cloning. A laboratory manual. 3rd ed. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001).Uebe, R. et al. The dual role of MamB in magnetosome membrane assembly and magnetite biomineralization. Mol. Microbiol. 107, 542–557 (2018).PubMed .

Sambrook,J。&Russell,D.W。分子克隆。实验室手册。第三版(冷泉港实验室出版社,冷泉港,纽约,2001)。Uebe,R。等人。MamB在磁小体膜组装和磁铁矿生物矿化中的双重作用。分子微生物。107542-557(2018)。PubMed。

Google Scholar

谷歌学者

Pfeiffer, D. et al. A bacterial cytolinker couples positioning of magnetic organelles to cell shape control. Proc. Natl. Acad. Sci. USA. 117, 32086–32097 (2020).ADS

Pfeiffer,D。等人。一种细菌细胞接头将磁性细胞器的定位与细胞形状控制相结合。程序。纳特尔。阿卡德。科学。美国,11732086–32097(2020)。广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Martínez-García, E., Calles, B., Arévalo-Rodríguez, M. & Lorenzo, V. de. pBAM1: An all-synthetic genetic tool for analysis and construction of complex bacterial phenotypes. BMC Microbiol. 11, 38 (2011).PubMed

Martínez-García,E.,Calles,B.,Arévalo Rodríguez,M。&Lorenzo,V。de。pBAM1:用于分析和构建复杂细菌表型的全合成遗传工具。BMC微生物。11,38(2011)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Raschdorf, O., Plitzko, J. M., Schüler, D. & Müller, F. D. A tailored galK counterselection system for efficient markerless gene deletion and chromosomal tagging in Magnetospirillum gryphiswaldense. Appl. Environ. Microbiol. 80, 4323–4330 (2014).ADS

Raschdorf,O.,Plitzko,J.M.,Schüler,D。&Müller,F.D。一种定制的galK反选择系统,用于在gryphiswaldense磁螺菌中进行有效的无标记基因缺失和染色体标记。应用。环境。微生物。804323-4330(2014)。广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kolinko, I. et al. Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters. Nat. Nanotechnol. 9, 193–197 (2014).ADS

Kolinko,I.等人。通过转移细菌磁小体基因簇在外来生物体中生物合成磁性纳米结构。自然纳米技术。9193-197(2014)。广告

PubMed

PubMed

Google Scholar

谷歌学者

Chevrier, D. M. et al. Synchrotron‐based nano‐x‐ray absorption near‐edge structure revealing intracellular heterogeneity of iron species in magnetotactic bacteria. Small Science 2 (2022).Karimova, G., Pidoux, J., Ullmann, A. & Ladant, D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway.

Chevrier,D.M.等人,《基于同步加速器的纳米x射线吸收近边缘结构揭示趋磁细菌中铁物种的细胞内异质性》,《小科学2》(2022)。Karimova,G.,Pidoux,J.,Ullmann,A。&Ladant,D。基于重组信号转导途径的细菌双杂交系统。

Proc. Natl. Acad. Sci. USA. 95, 5752–5756 (1998).ADS .

Proc。纳特尔。阿卡德。滑雪。美国,955752-5756(1998)。广告。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Uebe, R. et al. Bacterioferritin of Magnetospirillum gryphiswaldense is a heterotetraeicosameric complex composed of functionally distinct subunits but is not involved in magnetite biomineralization. mBio 10, e02795-18 (2019).PubMed

gryphiswaldense磁螺菌的细菌铁蛋白是一种由功能不同的亚基组成的异四聚体复合物,但不参与磁铁矿的生物矿化。mBio 10,e02795-18(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lohße, A. et al. Overproduction of magnetosomes by genomic amplification of biosynthesis-related gene clusters in a magnetotactic bacterium. Appl. Environ. Microbiol. 82, 3032–3041 (2016).ADS

Lohße,A.等人。通过趋磁细菌中生物合成相关基因簇的基因组扩增过量产生磁小体。应用。环境。微生物。823032-3041(2016)。广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Riese, C. N. et al. An automated oxystat fermentation regime for microoxic cultivation of Magnetospirillum gryphiswaldense. Microb. Cell Fact. 19, 206 (2020).PubMed

Riese,C.N.等人。用于微氧培养gryphiswaldense磁螺菌的自动恒氧发酵方案。微生物。细胞事实。19206(2020)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Raschdorf, O., Schüler, D. & Uebe, R. Preparation of bacterial magnetosomes for proteome analysis. Methods Mol. Biol. 1841, 45–57 (2018).PubMed

Raschdorf,O.,Schüler,D。&Uebe,R。用于蛋白质组分析的细菌磁小体的制备。方法分子生物学。1841,45-57(2018)。PubMed出版社

Google Scholar

谷歌学者

Blum, H., Beier, H. & Gross, H. J. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8, 93–99 (1987).

Blum,H.,Beier,H。&Gross,H.J。改进了聚丙烯酰胺凝胶中植物蛋白质,RNA和DNA的银染。电泳8,93-99(1987)。

Google Scholar

谷歌学者

Clements, A. et al. The reducible complexity of a mitochondrial molecular machine. Proc. Natl. Acad. Sci. USA. 106, 15791–15795 (2009).ADS

Clements,A。等人。线粒体分子机器的可简化复杂性。程序。纳特尔。阿卡德。科学。美国10615791–15795(2009)。广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wiśniewski, J. R. Quantitative evaluation of filter aided sample preparation (FASP) and multienzyme digestion FASP protocols. Anal. Chem. 88, 5438–5443 (2016).PubMed

Wiśniewski,J.R。过滤器辅助样品制备(FASP)和多酶消化FASP方案的定量评估。肛门。化学。885438-5443(2016)。PubMed出版社

Google Scholar

谷歌学者

Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).PubMed

Cox,J。&Mann,M。MaxQuant能够实现高肽识别率,个性化的p.p.b.范围质量准确度和蛋白质组范围内的蛋白质定量。美国国家生物技术公司。261367-1372(2008)。PubMed出版社

Google Scholar

谷歌学者

Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).PubMed

Tyanova,S.等人。用于(蛋白质)组学数据综合分析的Perseus计算平台。自然方法13731-740(2016)。PubMed出版社

Google Scholar

谷歌学者

Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).PubMed

Perez-Riverol,Y.等人,《2022年的PRIDE数据库资源:基于质谱的蛋白质组学证据中心》。核酸研究50,D543–D552(2022)。PubMed出版社

Google Scholar

谷歌学者

Richardson, W. H. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. 62, 55 (1972).ADS

Richardson,W.H。基于贝叶斯的图像恢复迭代方法。J、 选择。《美国法典》第62卷第55页(1972年)。广告

Google Scholar

谷歌学者

Lucy, L. B. An iterative technique for the rectification of observed distributions. Astron. J. 79, 745 (1974).ADS

Lucy,L.B。一种用于校正观测分布的迭代技术。阿斯顿。J、 79745(1974)。广告

Google Scholar

谷歌学者

Sage, D. et al. DeconvolutionLab2: An open-source software for deconvolution microscopy. Methods 115, 28–41 (2017).PubMed

Sage,D.等人,《反卷积LAB2:反卷积显微镜的开源软件》。方法115,28-41(2017)。PubMed出版社

Google Scholar

谷歌学者

Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).PubMed

Schindelin,J。等人。斐济:生物图像分析的开源平台。《自然方法》9676-682(2012)。PubMed出版社

Google Scholar

谷歌学者

Arganda-Carreras, I. et al. Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics 33, 2424–2426 (2017).PubMed

Arganda Carreras,I。等人。可训练的Weka分割:显微镜像素分类的机器学习工具。生物信息学332424-2426(2017)。PubMed出版社

Google Scholar

谷歌学者

Bundy, A. Catalogue of artificial intelligence tools. In Catalogue of Artificial Intelligence Tools (Springer, Berlin, Heidelberg1986), pp. 7–161.J. Brocher. The BioVoxxel image processing and analysis toolbox (Paris, France, 2015).Ducret, A., Quardokus, E. M. & Brun, Y. V. MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis.

Bundy,A。人工智能工具目录。在《人工智能工具目录》(Springer,柏林,海德堡,1986)中,第7-161页。J.Brocher。Biovoxcel图像处理和分析工具箱(巴黎,法国,2015)。Ducret,A.,Quardokus,E.M。&Brun,Y.V.MicrobeJ,一种高通量细菌细胞检测和定量分析的工具。

Nat. Microbiol. 1, 16077 (2016).PubMed .

国家微生物学。1, 16077 (2016).PubMed。

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mistry, J. et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 49, D412–D419 (2021).PubMed

Mistry,J.等人,《Pfam:2021年的蛋白质家族数据库》。核酸研究49,D412-D419(2021)。PubMed出版社

Google Scholar

谷歌学者

Haft, D. H. et al. TIGRFAMs: a protein family resource for the functional identification of proteins. Nucleic Acids Res. 29, 41–43 (2001).PubMed

Haft,D.H.等人。TIGRFAMs:用于蛋白质功能鉴定的蛋白质家族资源。核酸研究29,41-43(2001)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Galperin, M. Y. et al. COG database update: focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Res. 49, D274–D281 (2021).PubMed

Galperin,M.Y.等人,《COG数据库更新:关注微生物多样性、模式生物和广泛的病原体》。核酸研究49,D274–D281(2021)。PubMed出版社

Google Scholar

谷歌学者

Blum, M. et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 49, D344–D354 (2021).PubMed

Blum,M.等人,《InterPro蛋白质家族和结构域数据库:20年过去了》。核酸研究49,D344–D354(2021)。PubMed出版社

Google Scholar

谷歌学者

Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2019).PubMed

Katoh,K.,Rozewicki,J。&Yamada,K.D。MAFFT在线服务:多序列比对,交互式序列选择和可视化。简介。生物信息。201160-1166(2019)。PubMed出版社

Google Scholar

谷歌学者

Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).PubMed

Capella Gutiérrez,S.,Silla Martínez,J.M。&Gabaldón,T.trimAl:大规模系统发育分析中自动比对修剪的工具。生物信息学251972-1973(2009)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Trifinopoulos, J., Nguyen, L.-T., Haeseler, Avon & Minh, B. Q. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232–W235 (2016).PubMed

Trifinopoulos,J.,Nguyen,L.-T.,Haeseler,Avon&Minh,B.Q。W-IQ-TREE:用于最大似然分析的快速在线系统发育工具。核酸研究44,W232–W235(2016)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Haeseler, Avon & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).PubMed

Kalyanamoorthy,S.,Minh,B.Q.,Wong,T.K.F.,Haeseler,Avon&Jermiin,L.S.ModelFinder:用于准确系统发育估计的快速模型选择。自然方法14587-589(2017)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).PubMed

Letunic,I。&Bork,P。交互式生命树(iTOL)v4:最新更新和新发展。核酸研究47,W256–W259(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huang, Y., Niu, B., Gao, Y., Fu, L. & Li, W. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26, 680–682 (2010).PubMed

Huang,Y.,Niu,B.,Gao,Y.,Fu,L。&Li,W。CD-HIT套件:用于聚类和比较生物序列的web服务器。生物信息学26680-682(2010)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).PubMed

Almagro Armenteros,J.J.等人的SignalP 5.0使用深度神经网络改进了信号肽预测。美国国家生物技术公司。37420-423(2019)。PubMed出版社

Google Scholar

谷歌学者

Kyte, J. & Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982).PubMed

Kyte,J。&Doolittle,R.F。一种显示蛋白质亲水特性的简单方法。J、 分子生物学。157105-132(1982)。PubMed出版社

Google Scholar

谷歌学者

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).ADS

Jumper,J.等人。使用AlphaFold进行高度准确的蛋白质结构预测。自然596583-589(2021)。广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).PubMed

Varadi,M。等人。AlphaFold蛋白质结构数据库:通过高精度模型大规模扩展蛋白质序列空间的结构覆盖范围。核酸研究50,D439–D444(2022)。PubMed出版社

Google Scholar

谷歌学者

The PyMOL Molecular Graphics System, Version 2.0 (Schrödinger, LLC, 2020).Möglich, A. An Open-Source, Cross-Platform Resource for Nonlinear Least-Squares Curve Fitting. J. Chem. Educ. 95, 2273–2278 (2018).

PyMOL分子图形系统,版本2.0(Schrödinger,LLC,2020)。Möglich,A。用于非线性最小二乘曲线拟合的开源跨平台资源。J、 化学。教育。952273-2278(2018)。

Google Scholar

谷歌学者

Download referencesAcknowledgementsWe would like to thank Gabriele Zaus and Ulrike Brandauer for technical assistance as well as Stephanie Bauer and Michael Gass for help during immunoblot analysis, two-hybrid assays, strain, and plasmid construction. The authors are grateful for financial support by the German Research Foundation (DFG, grants UE200/1-1 and INST 91/374-1 LAGG) (RU) and the Federal Ministry of Education and Research (BMBF, grant MagBioFab) (RU).FundingOpen Access funding enabled and organized by Projekt DEAL.Author informationAuthors and AffiliationsDepartment of Microbiology, University of Bayreuth, Bayreuth, GermanyAnja Paulus, Frederik Ahrens, Annika Schraut, Hannah Hofmann, Tim Schiller & René UebeMicrobial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, GermanyThomas Sura & Dörte BecherAuthorsAnja PaulusView author publicationsYou can also search for this author in.

下载参考文献致谢我们要感谢Gabriele Zaus和Ulrike Brandauer的技术援助,以及Stephanie Bauer和Michael Gass在免疫印迹分析,双杂交分析,菌株和质粒构建过程中的帮助。作者感谢德国研究基金会(DFG,grants UE200/1-1和INST 91/374-1 LAGG)(RU)和联邦教育与研究部(BMBF,grant MagBioFab)(RU)的财政支持。资金开放获取资金由Projekt交易启用和组织。作者信息作者和所属机构Bayreuth大学微生物学系,Bayreuth,GermanyAnja Paulus,Frederik Ahrens,Annika Schraut,Hannah Hofmann,Tim Schiller&RenéUebeMicrobial Proteomics,Greifswald大学微生物学研究所,Greifswald,GermanyThomas Sura&Dörte BecherAuthorsAnja PaulusView作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarFrederik AhrensView author publicationsYou can also search for this author in

PubMed谷歌学者Frederik AhrensView作者出版物您也可以在

PubMed Google ScholarAnnika SchrautView author publicationsYou can also search for this author in

PubMed Google ScholarAnnika SchrautView作者出版物您也可以在

PubMed Google ScholarHannah HofmannView author publicationsYou can also search for this author in

PubMed Google ScholarHannah HofmannView作者出版物您也可以在

PubMed Google ScholarTim SchillerView author publicationsYou can also search for this author in

PubMed Google ScholarTim SchillerView作者出版物您也可以在

PubMed Google ScholarThomas SuraView author publicationsYou can also search for this author in

PubMed Google ScholarThomas SuraView作者出版物您也可以在

PubMed Google ScholarDörte BecherView author publicationsYou can also search for this author in

PubMed Google ScholarDörte BecherView作者出版物您也可以在

PubMed Google ScholarRené UebeView author publicationsYou can also search for this author in

PubMed Google ScholarRenéUebeView作者出版物您也可以在

PubMed Google ScholarContributionsConceptualization and methodology: RU. Investigation: AP, FA, AS, TSc, HH and RU (conducted the biochemical and cell biological studies), TSu and DB (performed MS proteomics and analyzed MS data). Formal analysis: RU. Funding acquisition: RU.

PubMed谷歌学术贡献概念和方法:RU。调查:AP,FA,AS,TSc,HH和RU(进行了生化和细胞生物学研究),TSu和DB(进行了MS蛋白质组学和MS数据分析)。正式分析:RU。资金获取:RU。

Supervision: RU. Writing - Original draft: AP and RU. Writing - Review & editing: all authors.Corresponding authorCorrespondence to.

监督:RU。写作-原稿:AP和RU。写作-评论和编辑:所有作者。对应作者对应。

René Uebe.Ethics declarations

勒内·尤贝。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Communications thanks Juan Wan and the other, anonymous, reviewers for their contribution to the peer review of this work. A peer review file is available.

Nature Communications感谢Juan Wan和其他匿名审稿人对这项工作的同行评审做出的贡献。同行评审文件可用。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationDescription of Additional Supplementary FilesSupplementary Data 1Supplementary Data 2Supplementary Data 3Supplementary Data 4Supplementary Data 5Reporting SummaryPeer Review fileSource dataSource DataRights and permissions.

Additional informationPublisher的注释Springer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息其他补充文件的描述补充数据1补充数据2补充数据3补充数据4补充数据5报告摘要同行评审文件源数据源数据权限。

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articlePaulus, A., Ahrens, F., Schraut, A. et al. MamF-like proteins are distant Tic20 homologs involved in organelle assembly in bacteria.

转载和许可本文引用本文Paulus,A.,Ahrens,F.,Schraut,A。等人。MamF样蛋白是参与细菌细胞器组装的远距离Tic20同源物。

Nat Commun 15, 10657 (2024). https://doi.org/10.1038/s41467-024-55121-0Download citationReceived: 11 April 2024Accepted: 26 November 2024Published: 09 December 2024DOI: https://doi.org/10.1038/s41467-024-55121-0Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Nat Commun 1510657(2024)。https://doi.org/10.1038/s41467-024-55121-0Download引文收到日期:2024年4月11日接受日期:2024年11月26日发布日期:2024年12月9日OI:https://doi.org/10.1038/s41467-024-55121-0Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供