商务合作
动脉网APP
可切换为仅中文
AbstractTo understand gene function, it is necessary to compare cells carrying the mutated target gene with normal cells. In most biomedical studies, the cells being compared are in different mutant and control animals and, therefore, do not experience the same epigenetic changes and tissue microenvironment.
摘要为了了解基因功能,有必要将携带突变靶基因的细胞与正常细胞进行比较。。
The experimental induction of genetic mosaics is essential to determine a gene cell-autonomous function and to model the etiology of diseases caused by somatic mutations. Current technologies used to induce genetic mosaics in mice lack either accuracy, throughput or barcoding diversity. Here we present the iFlpMosaics toolkit comprising a large set of new genetic tools and mouse lines that enable recombinase-dependent ratiometric induction and single-cell clonal tracking of multiple fluorescently labeled wild-type and Cre-mutant cells within the same time window and tissue microenvironment.
遗传镶嵌的实验诱导对于确定基因细胞自主功能和模拟由体细胞突变引起的疾病的病因至关重要。目前用于诱导小鼠遗传镶嵌的技术缺乏准确性,吞吐量或条形码多样性。在这里,我们介绍了iFlpMosaics工具包,该工具包包含大量新的遗传工具和小鼠品系,可在同一时间窗口和组织微环境中对多个荧光标记的野生型和Cre突变细胞进行重组酶依赖性比率诱导和单细胞克隆追踪。
The labeled cells can be profiled by multispectral imaging or by fluorescence-activated flow cytometry and single-cell RNA sequencing. iFlpMosaics facilitate the induction and analysis of genetic mosaics in any quiescent or progenitor cell, and for any given single or combination of floxed genes, thus enabling a more accurate understanding of how induced genetic mutations affect the biology of single cells during tissue development, homeostasis and disease..
标记的细胞可以通过多光谱成像或荧光激活流式细胞术和单细胞RNA测序进行分析。iFlpMosaics有助于诱导和分析任何静止或祖细胞中的遗传镶嵌,以及任何给定的单个或组合的floxed基因,从而能够更准确地了解诱导的基因突变如何在组织发育,体内平衡和疾病过程中影响单细胞的生物学。。
MainThe induction of a gene deletion or mutation can substantially alter a cell’s phenotype, and over time, it can also affect the surrounding tissue’s phenotype. Scientists often analyze mutant cells or tissues that have carried genetic mutations for several days, months or even years and compare their phenotype with that of independent control cells or tissues from distinct nonmutant animals.
主要基因缺失或突变的诱导可以显着改变细胞的表型,随着时间的推移,它也可以影响周围组织的表型。科学家经常分析携带基因突变数天、数月甚至数年的突变细胞或组织,并将其表型与来自不同非突变动物的独立对照细胞或组织的表型进行比较。
During the process from gene mutation to phenotypic manifestation and analysis, the biology of the targeted and surrounding tissue often undergoes significant changes. Since the wild-type cells surrounding mutant cells are themselves a source of biochemical factors, any alteration to their development or function by the mutant cells will trigger changes in a key tissue feedback mechanism, and any such changes will impact the phenotype of the mutant cells in a noncell-autonomous manner, that is, not directly dependent of the initially induced genetic mutation itself1,2,3.
在从基因突变到表型表现和分析的过程中,目标组织和周围组织的生物学通常会发生重大变化。由于突变细胞周围的野生型细胞本身就是生化因子的来源,突变细胞对其发育或功能的任何改变都会触发关键组织反馈机制的变化,任何此类变化都会影响突变细胞的表型。以非细胞自主的方式,即不直接依赖于最初诱导的基因突变本身1,2,3。
Over time, this phenomenon often generates secondary mutant tissue phenotypes that can confound interpretation of the primary impact of a gene mutation on a cell’s phenotype.Genetic mosaics are a powerful research tool because they allow the study of cell-autonomous gene function when mutant and wild-type cells originate from the same progenitor cells.
随着时间的推移,这种现象通常会产生次级突变组织表型,这可能会混淆基因突变对细胞表型的主要影响的解释。遗传镶嵌是一种强大的研究工具,因为当突变型和野生型细胞来自同一祖细胞时,它们可以研究细胞自主基因的功能。
In this scenario, the only difference between the cells being compared is the induced mutation, in an otherwise identical organism, genetic background and tissue microenvironment. Mouse models that allow the timed induction of somatic genetic mosaics are essential to accurately understand a gene function and model biological or disease processes caused by sporadic somatic mutations.In Drosophila, interchromosomal mitotic recombination associated with distinct tissu.
在这种情况下,被比较的细胞之间的唯一区别是在其他相同的生物体,遗传背景和组织微环境中诱导的突变。允许定时诱导体细胞遗传镶嵌的小鼠模型对于准确理解基因功能和模拟由散发性体细胞突变引起的生物学或疾病过程至关重要。在果蝇中,染色体间有丝分裂重组与不同的组织有关。
iDre/Flp
iDre/Flp
Progenitor enables the induction of twin-spot clonesThe results above show that there is substantial intercellular clonal variability when different progenitor cells, occupying different tissue locations, are induced. The iFlpMosaics technology shown above can only be induced in distinct progenitor cells, and therefore, it requires averaging of the clonal expansion data from many different independently labeled progenitor cells.
。上面显示的iFlpMosaics技术只能在不同的祖细胞中诱导,因此,它需要平均来自许多不同独立标记的祖细胞的克隆扩增数据。
By contrast, The MADM approach allows the generation of labeled wild-type and mutant cells from the same progenitor cell (twin-spot clones) and, in this way, gives a very precise estimate of how a gene mutation impacts the mobilization and proliferation phenotypes of a single-cell derived progeny. However, as mentioned above, MADM is a cumbersome method and cannot be effectively induced at a specific timepoint with CreERT2.To overcome the limitations of current approaches to understanding the role of genes in single-progenitor cell biology, we designed the iDre/FlpProgenitor allele (Fig.
。然而,如上所述,MADM是一种麻烦的方法,不能在CreERT2的特定时间点有效诱导。为了克服目前理解基因在单祖细胞生物学中作用的方法的局限性,我们设计了iDre/FlpProgenitor等位基因(图。
5a). This allele can be induced by both DreERT2 or FlpO-ERT2. Therefore, we also generated a new Tg(Ins-CAG-DreERT2) allele by using clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) assisted targeting into the preexisting and screened Tg(Ins-CAG-FlpO-ERT2) allele (Fig.
5a)。该等位基因可以由DreERT2或FlpO-ERT2诱导。因此,我们还通过使用聚集的规则间隔短回文重复序列(CRISPR)和CRISPR相关蛋白9(Cas9)辅助靶向预先存在和筛选的Tg(Ins-CAG-FlpO-ERT2)等位基因产生了一个新的Tg(Ins-CAG-DRERT2)等位基因(图)。
5b), which allowed us to induce much higher frequencies of recombination (Fig. 5c). The iDre/FlpProgenitor allele also enabled us to increase the sensitivity and recombination efficiency of all FlpO-ERT2 lines. With the Cdh5-FlpO-ERT2 line, we increased EC-recombination efficiency 14-fold, recombining 51% of all ECs (Fig.
5b),这使我们能够诱导更高频率的重组(图5c)。iDre/FlpProgenitor等位基因还使我们能够提高所有FlpO-ERT2系的敏感性和重组效率。使用Cdh5-FlpO-ERT2系,我们将EC重组效率提高了14倍,重组了51%的EC(图)。
5d). Recombination efficiency after combining iDre/FlpProgenitor with the Tg(Ins-CAG-FlpO-ERT2) allele was increased 25-f.
5d)。将iDre/FlpProgenitor与Tg(Ins-CAG-FlpO-ERT2)等位基因结合后,重组效率提高了25-f。
Data availability
数据可用性
The RNA-seq data can be viewed at the Gene Expression Omnibus under accession number GSE257723. The instructions and code to reproduce all scRNA-seq or image analysis results can be found at GitHub via https://github.com/RuiBenedito/Benedito_Lab/tree/main/iFlpMosaics. The unprocessed FACS raw data files or original microscopy images of the data are available upon request.
RNA-seq数据可以在Gene Expression Omnibus上查看,登录号为GSE257723。复制所有scRNA-seq或图像分析结果的说明和代码可以在GitHub上通过https://github.com/RuiBenedito/Benedito_Lab/tree/main/iFlpMosaics.未经处理的FACS原始数据文件或数据的原始显微镜图像可应要求提供。
All other data supporting the findings in this study are included in the main article and associated files. Source data are provided with this paper..
支持本研究结果的所有其他数据均包含在主要文章和相关文件中。本文提供了源数据。。
ReferencesHansen, A. H. et al. Tissue-wide effects override cell-intrinsic gene function in radial neuron migration. Oxford Open Neurosci. https://doi.org/10.1093/oons/kvac009 (2022).Hansen, A. H. & Hippenmeyer, S. Non-cell-autonomous mechanisms in radial projection neuron migration in the developing cerebral cortex.
参考文献Hansen,A.H。等人。组织范围的影响覆盖了径向神经元迁移中的细胞内在基因功能。牛津公开神经学。https://doi.org/10.1093/oons/kvac009(2022年)。Hansen,A。H。&Hippenmeyer,S。发育中的大脑皮层中径向投射神经元迁移的非细胞自主机制。
Front. Cell Dev. Biol. 8, 574382 (2020).Article .
正面。细胞开发生物学。8574382(2020)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vazquez-Liebanas, E. et al. Mosaic deletion of claudin-5 reveals rapid non-cell-autonomous consequences of blood–brain barrier leakage. Cell Rep. 43, 113911 (2024).Article
Vazquez-Liebanas,E。等人。claudin-5的镶嵌缺失揭示了血脑屏障渗漏的快速非细胞自主后果。Cell Rep.43113911(2024)。文章
PubMed
PubMed
CAS
CAS
Google Scholar
谷歌学者
Contreras, X. et al. A genome-wide library of MADM mice for single-cell genetic mosaic analysis. Cell Rep. 35, 109274 (2021).Article
Contreras,X。等人。用于单细胞遗传镶嵌分析的MADM小鼠全基因组文库。Cell Rep.35109274(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
CAS
Google Scholar
谷歌学者
Zong, H. Generation and applications of MADM-based mouse genetic mosaic system. Methods Mol. Biol. 1194, 187–201 (2014).Article
Zong,H。基于MADM的小鼠遗传镶嵌系统的产生和应用。方法分子生物学。1194187-201(2014)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Zong, H., Espinosa, J. S., Su, H. H., Muzumdar, M. D. & Luo, L. Mosaic analysis with double markers in mice. Cell 121, 479–492 (2005).Article
Zong,H.,Espinosa,J.S.,Su,H.H.,Muzumdar,M.D。&Luo,L。小鼠双标记镶嵌分析。细胞121479-492(2005)。文章
PubMed
PubMed
CAS
CAS
Google Scholar
谷歌学者
Liu, J. et al. Non-parallel recombination limits cre-loxP-based reporters as precise indicators of conditional genetic manipulation. Genesis 51, 436–442 (2013).Article
Liu,J。等人。非平行重组限制了基于cre-loxP的报告基因作为条件遗传操作的精确指标。《创世纪》51436-442(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
CAS
Google Scholar
谷歌学者
Fernandez-Chacon, M. et al. iSuRe-Cre is a genetic tool to reliably induce and report Cre-dependent genetic modifications. Nat. Commun. 10, 2262 (2019).Article
Fernandez-Chacon,M。等人。iSuRe-Cre是一种可靠诱导和报告Cre依赖性遗传修饰的遗传工具。。1022262(2019)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Schmidt-Supprian, M. & Rajewsky, K. Vagaries of conditional gene targeting. Nat. Immunol. 8, 665–668 (2007).Article
Schmidt Supprian,M。&Rajewsky,K。条件性基因靶向的变幻莫测。自然免疫。8665-668(2007)。文章
PubMed
PubMed
CAS
CAS
Google Scholar
谷歌学者
Lao, Z., Raju, G. P., Bai, C. B. & Joyner, A. L. MASTR: a technique for mosaic mutant analysis with spatial and temporal control of recombination using conditional floxed alleles in mice. Cell Rep. 2, 386–396 (2012).Article
Lao,Z.,Raju,G.P.,Bai,C.B。&Joyner,A.L.MASTR:一种利用小鼠条件floxed等位基因进行重组时空控制的镶嵌突变分析技术。Cell Rep.2386–396(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
CAS
Google Scholar
谷歌学者
Cheung, G. et al. Multipotent progenitors instruct ontogeny of the superior colliculus. Neuron 112, 230–246 e211 (2024).Article
Cheung,G.等人。多能祖细胞指导上丘的个体发育。神经元112230–246 e211(2024)。文章
PubMed
PubMed
CAS
CAS
Google Scholar
谷歌学者
Hunter, N. L., Awatramani, R. B., Farley, F. W. & Dymecki, S. M. Ligand-activated Flpe for temporally regulated gene modifications. Genesis 41, 99–109 (2005).Article
Hunter,N.L.,Awatramani,R.B.,Farley,F.W。&Dymecki,S.M。配体激活的Flpe用于时间调节的基因修饰。创世记41,99-109(2005)。文章
PubMed
PubMed
CAS
CAS
Google Scholar
谷歌学者
Pontes-Quero, S. et al. Dual ifgMosaic: a versatile method for multispectral and combinatorial mosaic gene-function analysis. Cell 170, 800–814 e818 (2017).Article
Pontes-Quero,S.等。双重IFG镶嵌:一种多光谱和组合镶嵌基因功能分析的通用方法。细胞170800–814 e818(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
CAS
Google Scholar
谷歌学者
Cai, D., Cohen, K. B., Luo, T., Lichtman, J. W. & Sanes, J. R. Improved tools for the Brainbow toolbox. Nat. Methods 10, 540–547 (2013).Article
Cai,D.,Cohen,K.B.,Luo,T.,Lichtman,J.W.&Sanes,J.R。改进了Brainbow工具箱的工具。。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
CAS
Google Scholar
谷歌学者
Rodriguez, C. I. et al. High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat. Genet. 25, 139–140 (2000).Article
Rodriguez,C.I。等人的高效删除小鼠表明FLPe是Cre-loxP的替代品。纳特·吉内特。25139-140(2000)。文章
PubMed
PubMed
CAS
CAS
Google Scholar
谷歌学者
Luo, W. et al. Arterialization requires the timely suppression of cell growth. Nature 589, 437–441 (2021).Article
Luo,W。等人。动脉化需要及时抑制细胞生长。自然589437-441(2021)。文章
PubMed
PubMed
CAS
CAS
Google Scholar
谷歌学者
Dharaneeswaran, H. et al. FOXO1-mediated activation of Akt plays a critical role in vascular homeostasis. Circ. Res. 115, 238–251 (2014).Article
Dharaneeswaran,H。等人。FOXO1介导的Akt激活在血管稳态中起关键作用。保监会。第115238-251号决议(2014年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
CAS
Google Scholar
谷歌学者
He, C. et al. c-myc in the hematopoietic lineage is crucial for its angiogenic function in the mouse embryo. Development 135, 2467–2477 (2008).Article
He,C。等人。造血谱系中的C-myc对于其在小鼠胚胎中的血管生成功能至关重要。发展1352467-2477(2008)。文章
PubMed
PubMed
CAS
CAS
Google Scholar
谷歌学者
Claveria, C., Giovinazzo, G., Sierra, R. & Torres, M. Myc-driven endogenous cell competition in the early mammalian embryo. Nature 500, 39–44 (2013).Article
Claveria,C.,Giovinazzo,G.,Sierra,R。&Torres,M。Myc在早期哺乳动物胚胎中驱动内源性细胞竞争。《自然》500,39-44(2013)。文章
PubMed
PubMed
CAS
CAS
Google Scholar
谷歌学者
Wilhelm, K. et al. FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature 529, 216–220 (2016).Article
Wilhelm,K。等人FOXO1将血管内皮的代谢活动和生长状态结合起来。自然529216-220(2016)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
CAS
CAS
Google Scholar
谷歌学者
Munoz-Martin, N., Sierra, R., Schimmang, T., Villa Del Campo, C. & Torres, M. Myc is dispensable for cardiomyocyte development but rescues Mycn-deficient hearts through functional replacement and cell competition. Development 146, dev170753 (2019).Article
Munoz-Martin,N.,Sierra,R.,Schimmang,T.,Villa Del Campo,C。&Torres,M。Myc对于心肌细胞发育是必不可少的,但通过功能替代和细胞竞争来挽救Mycn缺陷型心脏。发展146,dev170753(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Eijkelenboom, A. & Burgering, B. M. FOXOs: signalling integrators for homeostasis maintenance. Nat. Rev. Mol. Cell Biol. 14, 83–97 (2013).Article
Eijkelenboom,A。&Burgering,B.M。FOXOs:维持体内平衡的信号集成商。Nat。Rev。Mol。Cell Biol。14,83-97(2013)。文章
PubMed
PubMed
CAS
CAS
Google Scholar
谷歌学者
Paik, J. H. et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128, 309–323 (2007).Article
Paik,J.H。等人,FOXO是谱系限制的冗余肿瘤抑制因子,可调节内皮细胞稳态。细胞128309-323(2007)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
CAS
CAS
Google Scholar
谷歌学者
He, L. et al. Proliferation tracing reveals regional hepatocyte generation in liver homeostasis and repair. Science 371, eabc4346 (2021).Article
He,L。等人。增殖追踪揭示了肝脏稳态和修复中局部肝细胞的产生。科学371,eabc4346(2021)。文章
PubMed
PubMed
CAS
CAS
Google Scholar
谷歌学者
Wei, Y. et al. Liver homeostasis is maintained by midlobular zone 2 hepatocytes. Science 371, eabb1625 (2021).Article
Wei,Y。等人。肝稳态由小叶中部2区肝细胞维持。科学371,eabb1625(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
CAS
Google Scholar
谷歌学者
Siebel, C. & Lendahl, U. Notch signaling in development, tissue homeostasis, and disease. Physiol. Rev. 97, 1235–1294 (2017).Article
Siebel,C。&Lendahl,U。Notch信号在发育,组织稳态和疾病中的作用。生理学。修订版971235-1294(2017)。文章
PubMed
PubMed
CAS
CAS
Google Scholar
谷歌学者
Fernández-Chacón, M. et al. Incongruence between transcriptional and vascular pathophysiological cell states. Nat. Cardiovasc. Res. 2, 530–549 (2023).Article
Fernández-Chacón,M.等人。转录和血管病理生理细胞状态之间的不一致。自然心血管。第2530-549号决议(2023年)。文章
Google Scholar
谷歌学者
Pontes-Quero, S. et al. High mitogenic stimulation arrests angiogenesis. Nat. Commun. 10, 2016 (2019).Article
Pontes-Quero,S.等人。高促有丝分裂刺激阻止血管生成。。2016年10月(2019年)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Wang, Y. et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465, 483–486 (2010).Article
。《自然》465483-486(2010)。文章
PubMed
PubMed
CAS
CAS
Google Scholar
谷歌学者
Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547–558 (1999).Article
Radtke,F。等人。Notch1诱导失活的小鼠T细胞命运缺陷。豁免10547-558(1999)。文章
PubMed
PubMed
CAS
CAS
Google Scholar
谷歌学者
McCright, B., Lozier, J. & Gridley, T. Generation of new Notch2 mutant alleles. Genesis 44, 29–33 (2006).Article
McRight,B.,Lozier,J。&Gridley,T。新的Notch2突变等位基因的产生。创世记44,29-33(2006)。文章
PubMed
PubMed
CAS
CAS
Google Scholar
谷歌学者
Garcia-Gonzalez, I. et al. iSuRe-HadCre is an essential tool for effective conditional genetics. Nucleic Acids Res. https://doi.org/10.1093/nar/gkae472 (2024).Article
Garcia-Gonzalez,I。等人iSuRe-HadCre是有效条件遗传学的重要工具。核酸研究。https://doi.org/10.1093/nar/gkae472(2024年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Han, H. et al. Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int Immunol 14, 637–645 (2002).Article
。Int Immunol 14637-645(2002)。文章
PubMed
PubMed
CAS
CAS
Google Scholar
谷歌学者
de Alboran, I. M. et al. Analysis of C-MYC function in normal cells via conditional gene-targeted mutation. Immunity 14, 45–55 (2001).Article
de Alboran,I.M.等人。通过条件性基因靶向突变分析正常细胞中的C-MYC功能。豁免14,45-55(2001)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Knoepfler, P. S., Cheng, P. F. & Eisenman, R. N. N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev 16, 2699–2712 (2002).Article
Knoepfler,P.S.,Cheng,P.F。&Eisenman,R.N。N-myc在神经发生过程中对于祖细胞群的快速扩增和神经元分化的抑制至关重要。Genes Dev 162699–2712(2002)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
CAS
CAS
Google Scholar
谷歌学者
Koch, U. et al. Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. J. Exp. Med. 205, 2515–2523 (2008).Article
。J、 实验医学2052515-2523(2008)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
CAS
Google Scholar
谷歌学者
Haigh, J. J. et al. Cortical and retinal defects caused by dosage-dependent reductions in VEGF-A paracrine signaling. Dev. Biol. 262, 225–241 (2003).Article
Haigh,J.J.等人。由VEGF-A旁分泌信号的剂量依赖性减少引起的皮质和视网膜缺陷。开发生物。262225-241(2003)。文章
PubMed
PubMed
CAS
CAS
Google Scholar
谷歌学者
Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol 1, 4 (2001).Article
Srinivas,S。等人。通过将EYFP和ECFP靶向插入ROSA26基因座产生的Cre报告菌株。BMC Dev.Biol 1,4(2001)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
CAS
Google Scholar
谷歌学者
Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).Article
Madisen,L.等人。一种用于整个小鼠大脑的强大且高通量的Cre报告和表征系统。。13133-140(2010)。文章
PubMed
PubMed
CAS
CAS
Google Scholar
谷歌学者
Seluanov, A., Vaidya, A. & Gorbunova, V. Establishing primary adult fibroblast cultures from rodents. J. Vis. Exp. https://doi.org/10.3791/2033 (2010).Article
Seluanov,A.,Vaidya,A。&Gorbunova,V。建立啮齿动物的原代成纤维细胞培养物。J、 可见。实验。https://doi.org/10.3791/2033(2010年)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Bryja, V., Bonilla, S. & Arenas, E. Derivation of mouse embryonic stem cells. Nat. Protoc. 1, 2082–2087 (2006).Article
Bryja,V.,Bonilla,S。和Arenas,E。小鼠胚胎干细胞的衍生。自然协议。12082-2087(2006)。文章
PubMed
PubMed
CAS
CAS
Google Scholar
谷歌学者
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 e3529 (2021).Article
Hao,Y.等人。多模式单细胞数据的综合分析。。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
CAS
Google Scholar
谷歌学者
Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).Article
Aran,D。等人。基于参考的肺单细胞测序分析揭示了过渡性促纤维化巨噬细胞。自然免疫。20163-172(2019)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
CAS
CAS
Google Scholar
谷歌学者
Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).Article
Cao,J。等人。哺乳动物器官发生的单细胞转录景观。自然566496-502(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
CAS
Google Scholar
谷歌学者
He, P. et al. The changing mouse embryo transcriptome at whole tissue and single-cell resolution. Nature 583, 760–767 (2020).Article
He,P。等人。在整个组织和单细胞分辨率下改变小鼠胚胎转录组。《自然》583760-767(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
CAS
Google Scholar
谷歌学者
Download referencesAcknowledgementsThe research in Rui Benedito laboratory was supported by the European Research Council Starting Grant AngioGenesHD (638028), the European Research Council Consolidator Grant AngioUnrestUHD (101001814), the Ministerio de Ciencia, Innovación y Universidades (SAF2017-89299-P and PID2020-120252RB-I00) and ‘la Caixa’ Banking Foundation (project code HR19-00120 and HR22-00316 AngioHeart) awarded to R.B.
下载参考文献致谢Rui Benedito实验室的研究得到了欧洲研究理事会启动基金AngioGenesHD(638028),欧洲研究理事会合并基金Angiounstuhd(101001814),创新大学科学部(SAF2017-89299-P和PID2020-120252RB-I00)和“la Caixa”银行基金会(项目代码HR19-00120和HR22-00316 AngioHeart)的支持。
The CNIC is supported by the Instituto de Salud Carlos III, the Ministerio de Ciencia, Innovación y Universidades (MICIU) and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (grant CEX2020-001041-S funded by MICIU/AEI/10.13039/501100011033). The microscopy experiments were performed in the CNIC Microscopy and Dynamic Image Unit, an ICTS-ReDib co-funded by MCIN (/AEI/10.13039/501100011033) and the EDRF ‘A Way to Build Europe’ (number ICTS-2018-04-CNIC-16).
网络中心得到了萨卢德·卡洛斯三世研究所、科学部、创新大学(MICIU)和亲网络中心基金会的支持,是塞韦罗·奥乔亚卓越中心(grant CEX2020-001041-S,由MICIU/AEI/10.13039/501100011033资助)。显微镜实验在CNIC显微镜和动态图像部门进行,该部门是由MCIN(/AEI/10.13039/501100011033)和EDRF“建设欧洲的方式”(编号ICTS-2018-04-CNIC-16)共同资助的ICTS ReDib。
I.G.-G. was supported by a PhD fellowship from Fundación La Caixa (CX-SO-16-1). A.R. was supported by The Youth Employment Initiative PEJD-2019-PRE/BMD-16990. L.G.-O. was supported by the Spanish Ministry of Economy and Competitiveness (PRE2018-085283). S.G. was supported by a Juan de la Cierva Fellowship (FJC2020-044237-I).
一、 。A、 R.得到了青年就业倡议PEJD-2019-PRE/BMD-16990的支持。五十、 G.-O.得到了西班牙经济和竞争力部的支持(PRE2018-085283)。S、 G.得到了Juan de la Cierva奖学金(FJC2020-044237-I)的支持。
M.F.-C. was supported by PhD fellowships from Fundación La Caixa (CX_E-2015-01). We thank S. Bartlett (CNIC) for English editing and the members of the CNIC transgenesis, microscopy, genomics, cytometry and bioinformatics units. We also thank F. Alt (Boston Children’s Hospital, Harvard Medical School), T.
M、 F.-C.得到了Caixa基金会(CX\U E-2015-01)的博士研究金的支持。我们感谢S.Bartlett(CNIC)的英文编辑以及CNIC转基因,显微镜,基因组学,细胞计数和生物信息学部门的成员。我们还要感谢F.Alt(哈佛医学院波士顿儿童医院),T。
Honjo (Kyoto University Institute for Advanced Studies), F. Radtke (Swiss Institute for Experimental Cancer Research), R. H. Adams (Max Planck Institute for Molecular Biomedicine) and R. De Pinho (MD Anderson Cancer Center) for sharing.
Honjo(京都大学高级研究所),F.Radtke(瑞士实验癌症研究所),R.H.Adams(马克斯·普朗克分子生物医学研究所)和R.De Pinho(MD安德森癌症中心)分享。
PubMed Google ScholarStefano GamberaView author publicationsYou can also search for this author in
PubMed Google ScholarStefano GamberaView作者出版物您也可以在
PubMed Google ScholarSusana F. RochaView author publicationsYou can also search for this author in
PubMed Google ScholarSusana F.RochaView作者出版物您也可以在
PubMed Google ScholarAlvaro ReganoView author publicationsYou can also search for this author in
PubMed Google ScholarAlvaro ReganoView作者出版物您也可以在
PubMed Google ScholarLourdes Garcia-OrtegaView author publicationsYou can also search for this author in
PubMed Google ScholarLourdes Garcia OrtegaView作者出版物您也可以在
PubMed Google ScholarMariya LytvynView author publicationsYou can also search for this author in
PubMed Google ScholarMariya LytvynView作者出版物您也可以在
PubMed Google ScholarLuis Diago-DomingoView author publicationsYou can also search for this author in
PubMed Google ScholarLuis Diago DomingView作者出版物您也可以在
PubMed Google ScholarMaria S. Sanchez-MuñozView author publicationsYou can also search for this author in
PubMed Google ScholarMaria S.Sanchez MuñozView作者出版物您也可以在
PubMed Google ScholarAroa Garcia-CaberoView author publicationsYou can also search for this author in
PubMed Google ScholarAroa Garcia CaberoView作者出版物您也可以在
PubMed Google ScholarIvana ZagoracView author publicationsYou can also search for this author in
PubMed Google ScholarIvana ZagoracView作者出版物您也可以在
PubMed Google ScholarWen LuoView author publicationsYou can also search for this author in
PubMed Google ScholarWen LuoView作者出版物您也可以在
PubMed Google ScholarMacarena De Andrés-LaguilloView author publicationsYou can also search for this author in
PubMed Google ScholarMacarena De Andrés-LaguilloView作者出版物您也可以在
PubMed Google ScholarMacarena Fernández-ChacónView author publicationsYou can also search for this author in
PubMed Google ScholarMacarena Fernández ChacónView作者出版物您也可以在
PubMed Google ScholarVerónica Casquero-GarciaView author publicationsYou can also search for this author in
PubMed Google ScholarVerónica Casquero GarciaView作者出版物您也可以在
PubMed Google ScholarFederica Francesca LunellaView author publicationsYou can also search for this author in
PubMed Google ScholarFederica Francesca LunellaView作者出版物您也可以在
PubMed Google ScholarCarlos TorrojaView author publicationsYou can also search for this author in
PubMed Google ScholarCarlos TorrojaView作者出版物您也可以在
PubMed Google ScholarFátima Sánchez-CaboView author publicationsYou can also search for this author in
PubMed Google ScholarFátima Sánchez CaboView作者出版物您也可以在
PubMed Google ScholarRui BeneditoView author publicationsYou can also search for this author in
PubMed Google ScholarRui BeneditoView作者出版物您也可以在
PubMed Google ScholarContributionsI.G.-G. and R.B. designed most of the experiments, interpreted results, assembled the figures and wrote the paper. R.B. designed all DNA vectors used for transgenesis. I.G.-G. did most of the DNA engineering (cloning), CRISPR–Cas9 genome targeting, animal experiments, confocal microscopy, FACS and scRNA-seq analysis.
PubMed谷歌学术贡献。G、 -G.和R.B.设计了大多数实验,解释了结果,组装了数字并撰写了论文。R、 B.设计了用于转基因的所有DNA载体。一、 G.-G.进行了大部分DNA工程(克隆),CRISPR-Cas9基因组靶向,动物实验,共聚焦显微镜,FACS和scRNA-seq分析。
The mice were generated by the CNIC transgenesis unit. S.G. developed new methods for iFlpMosaics induction, tissue immunostaining and multispectral microscopy imaging, performed animal experiments and image analysis and interpreted results. S.F.R. performed immunostainings, microscopy, qRT-PCR and FACS analysis, image quantifications in Fiji and GraphPad, edited text and figures and assembled figures.
小鼠由CNIC转基因单位产生。S、 G.开发了iFlpMosaics诱导,组织免疫染色和多光谱显微镜成像的新方法,进行了动物实验和图像分析,并解释了结果。S、 F.R.进行了免疫染色,显微镜检查,qRT-PCR和FACS分析,在Fiji和GraphPad中进行了图像定量,编辑了文本和数字以及组装的数字。
L.G.-O, W.L., I.Z., M.D.-L. and M.F.-C. performed animal experiments, FACS, histology and confocal imaging. A.R. cloned and validated the iDre/FlpProgenitor allele. I.G.-G., A.R., C.T. and F.S.-C. analyzed the scRNA-seq data. M.L., M.S.S.-M., A.G.-C., F.L. and V.C.-G. gave general technical assistance with experiments and genotyped the mouse colonies.
五十、 G.-O,W.L.,I.Z.,M.D.-L.和M.F.-C.进行了动物实验,FACS,组织学和共聚焦成像。A、 R.克隆并验证了iDre/FlpProgenitor等位基因。一、 G.G.,A.R.,C.T.和F.S.C.分析了scRNA-seq数据。M、 L.,M.S.S.-M.,A.G.-C.,F.L.和V.C.-G.在实验中提供了一般技术援助,并对小鼠菌落进行了基因分型。
All authors approved the final version of the paper.Corresponding authorCorrespondence to.
所有作者都批准了论文的最终版本。对应作者对应。
Rui Benedito.Ethics declarations
鲁伊·贝内迪托。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Methods thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Madhura Mukhopadhyay, in collaboration with the Nature Methods team.
Nature Methods感谢匿名审稿人对这项工作的同行评审做出的贡献。主要处理编辑:Madhura Mukhopadhyay,与Nature Methods团队合作。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended dataExtended Data Fig. 1 False positives and false negatives with Cre-dependent mosaic genetics.a, Schematic showing how a standard Cre-reporter can recombine and label cells without the deletion of any floxed gene (G) (false positives) and how the floxed gene can be deleted in non-Cre-recombined cells (false negatives).
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。扩展数据扩展数据图1 Cre依赖性镶嵌遗传学的假阳性和假阴性。a,示意图显示了标准Cre报告基因如何重组和标记细胞而不删除任何floxed基因(G)(假阳性)以及如何在非Cre重组细胞中删除floxed基因(假阴性)。
b, Different recombination efficiencies of different Rosa26 Cre-reporters in postnatal day 7 mice having the Cdh5-CreERT2 allele, despite all localizing to the Rosa26 locus and having a similar genetic distance between LoxP sites. c,d, Analysis of FACS or immunohistochemistry data reveals that Cre-reporters only accurately report recombination of themselves, not that of other floxed alleles (reporters), particularly at low tamoxifen doses.
b、 不同Rosa26-Cre报告基因在出生后第7天具有Cdh5-CreERT2等位基因的小鼠中的重组效率不同,尽管它们都位于Rosa26基因座上,并且LoxP位点之间的遗传距离相似。c、 d,FACS或免疫组织化学数据的分析表明,Cre报告基因仅准确报告自身的重组,而不是其他floxed等位基因(报告基因)的重组,特别是在低他莫昔芬剂量下。
Data are presented as mean values +/− SD.Source dataExtended Data Fig. 2 iFlpMosaics are neither toxic nor leaky.a, b, Schematic diagrams of the novel Rosa26-iFlpMTomato-Cre/MYFP and Tg-iFlpMTomato-H2B-GFP-Cre/MYFP-H2B-Cherry-FlpO alleles, showing the genetic distances between the mutually exclusive FRT site pairs and the expected outcomes after FlpO/FlpO-ERT2 recombination.
数据以平均值+/-SD表示。源数据扩展数据图2 iFlpMosaics既没有毒性也没有泄漏。a,b,新型Rosa26 iFlpMTomato-Cre/MYFP和Tg-iFlpMTomato-H2B-GFP-Cre/MYFP-H2B-Cherry-FlpO等位基因的示意图,显示了相互排斥的FRT位点对之间的遗传距离和FlpO/FlpO-ERT2重组后的预期结果。
c, d Confocal microscopy and FACS analysis of mouse ES cells used to generate Rosa26-iFlpMTomato-Cre/MYFP mice 3 days after transfection with FlpO-expressing plasmids. e-g, Frequency of recombination and expression detected by microscopy in ES cells and ECs derived from embryoid bodies (EBs). h, Relative frequency of MTomato-2A-Cre+ and MYFP+ cells in ES cells (in vitro) and in blood (in vivo); the absence of change over time shows that permanent expression of Cre is non-toxic to cell.
c、 d共聚焦显微镜和FACS分析小鼠ES细胞,用于在用表达FlpO的质粒转染后3天产生Rosa26-Ifpmtomato-Cre/MYFP小鼠。e-g,通过显微镜在源自胚状体(EB)的ES细胞和EC中检测到的重组和表达频率。h、 ES细胞(体外)和血液(体内)中MTomato-2A-Cre+和MYFP+细胞的相对频率;随着时间的推移没有变化表明Cre的永久表达对细胞无毒。
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.
开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。
You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..
http://creativecommons.org/licenses/by-nc-nd/4.0/..
Reprints and permissionsAbout this articleCite this articleGarcia-Gonzalez, I., Gambera, S., Rocha, S.F. et al. iFlpMosaics enable the multispectral barcoding and high-throughput comparative analysis of mutant and wild-type cells.
转载和许可本文引用本文Garcia-Gonzalez,I.,Gambera,S.,Rocha,S.F。等人。iFlpMosaics能够对突变型和野生型细胞进行多光谱条形码和高通量比较分析。
Nat Methods (2024). https://doi.org/10.1038/s41592-024-02534-wDownload citationReceived: 05 April 2024Accepted: 15 October 2024Published: 13 December 2024DOI: https://doi.org/10.1038/s41592-024-02534-wShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Nat方法(2024)。https://doi.org/10.1038/s41592-024-02534-wDownload引文接收日期:2024年4月5日接受日期:2024年10月15日发布日期:2024年12月13日OI:https://doi.org/10.1038/s41592-024-02534-wShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供