EN
登录

使用PASTE在哺乳动物细胞中进行精确的千碱基级基因组插入

Precise kilobase-scale genomic insertions in mammalian cells using PASTE

Nature 等信源发布 2024-12-15 18:01

可切换为仅中文


AbstractProgrammable gene integration technologies are an emerging modality with exciting applications in both basic research and therapeutic development. Programmable addition via site-specific targeting elements (PASTE) is a programmable gene integration approach for precise and efficient programmable integration of large DNA sequences into the genome.

摘要可编程基因整合技术是一种新兴的技术,在基础研究和治疗开发中都有令人兴奋的应用。通过位点特异性靶向元件(PAST)进行可编程添加是一种可编程基因整合方法,可将大DNA序列精确有效地编程整合到基因组中。

PASTE offers improved editing efficiency, purity and programmability compared with previous methods for long insertions into the mammalian genome. By combining the specificity and cargo size capabilities of site-specific integrases with the programmability of prime editing, PASTE can precisely insert cargoes of at least 36 kb with efficiencies of up to 60%.

与以前用于长时间插入哺乳动物基因组的方法相比,PAST提供了更高的编辑效率,纯度和可编程性。通过将特定站点整合酶的特异性和货物大小功能与prime编辑的可编程性相结合,PASTE可以精确插入至少36 kb的货物,效率高达60%。

Here we outline best practices for design, execution and analysis of PASTE experiments, with protocols for integration of EGFP at the human NOLC1 and ACTB genomic loci and for readout by next generation sequencing and droplet digital PCR. We provide guidelines for designing and optimizing a custom PASTE experiment for integration of desired payloads at alternative genomic loci, as well as example applications for in-frame protein tagging and multiplexed insertions.

在这里,我们概述了糊状实验的设计,执行和分析的最佳实践,以及在人类NOLC1和ACTB基因组位点整合EGFP的方案,以及通过下一代测序和液滴数字PCR进行读数的方案。我们提供了设计和优化定制粘贴实验的指南,用于在替代基因组位点整合所需的有效载荷,以及框内蛋白质标记和多重插入的示例应用。

To facilitate experimental setup, we include the necessary sequences and plasmids for the delivery of PASTE components to cells via plasmid transfection or in vitro transcribed RNA. Most experiments in this protocol can be performed in as little as 2 weeks, allowing for precise and versatile programmable gene insertion.Key points.

为了便于实验设置,我们包括了通过质粒转染或体外转录的RNA将糊状成分递送至细胞所需的序列和质粒。该方案中的大多数实验可以在短短2周内进行,从而可以进行精确且多功能的可编程基因插入。关键点。

Programmable addition via site-specific targeting elements (PASTE) combines the specificity, efficiency and cargo size advantages of site-specific integrases with the programmability of prime editing for precise and efficient integration of large DNA sequences into mammalian genomes.

通过位点特异性靶向元件(PAST)进行的可编程添加将位点特异性整合酶的特异性,效率和货物大小优势与prime编辑的可编程性相结合,可将大型DNA序列精确有效地整合到哺乳动物基因组中。

PASTE offers improved editing efficiency, purity and reprogrammability compared with previous methods for long insertions into the mammalian genome.

与以前用于长时间插入哺乳动物基因组的方法相比,PAST提供了改进的编辑效率,纯度和重编程性。

Access through your institution

通过您的机构访问

Buy or subscribe

购买或订阅

This is a preview of subscription content, access via your institution

这是订阅内容的预览,可通过您的机构访问

Access options

访问选项

Access through your institution

通过您的机构访问

Access through your institution

通过您的机构访问

Change institution

变革机构

Buy or subscribe

购买或订阅

Access Nature and 54 other Nature Portfolio journals

Access Nature和54种其他Nature投资组合期刊

Get Nature+, our best-value online-access subscription

获取Nature+,我们最具价值的在线访问订阅

24,99 € / 30 days

24,99欧元/30天

cancel any time

随时取消

Learn more

了解更多信息

Subscription info for Chinese customersWe have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.Go to naturechina.com

中国客户的订阅信息我们为中国客户提供了一个专门的网站。请访问naturechina.com订阅本期刊。访问naturechina.com

Buy this article

购买这篇文章

Purchase on SpringerLink

在SpringerLink上购买

Instant access to full article PDF

即时访问全文PDF

Buy now

立即购买

Prices may be subject to local taxes which are calculated during checkout

价格可能需要缴纳结帐时计算的地方税

Additional access options:

其他访问选项:

Log in

登录

Learn about institutional subscriptions

了解机构订阅

Read our FAQs

阅读我们的常见问题

Contact customer support

联系客户支持

Fig. 1: Overview of workflow for implementing PASTE for a new application.Fig. 2: Comparison of PASTE to other technologies for programmable DNA insertion.Fig. 3: Sequence-level view of PASTE editing at an example locus.Fig. 4: Modifying the frame of the PASTE insert and generation of NGS barcodes or atgRNA crosses.Fig.

图1:为新应用程序实现粘贴的工作流概述。图2:粘贴与其他可编程DNA插入技术的比较。图3:在示例轨迹处粘贴编辑的序列级视图。图4:修改粘贴插入物的框架并生成NGS条形码或atgRNA杂交。图。

5: Overview of design for NGS and ddPCR assays.Fig. 6: Expected outcomes from PASTE editing..

5: NGS和ddPCR分析的设计概述。图6:粘贴编辑的预期结果。。

Data availability

数据可用性

Sequencing data used in Fig. 6 are deposited at the NCBI Sequence Read Archive (SRA) database under accession PRJNA1101023.

图6中使用的测序数据以登录号PRJNA1101023保存在NCBI序列读取存档(SRA)数据库中。

ReferencesSheridan, C. The world’s first CRISPR therapy is approved: who will receive it? Nat. Biotechnol. 42, 3–4 (2024).Article

ReferenceSheridan,C。世界上第一个CRISPR疗法被批准:谁将接受它?美国国家生物技术公司。42,3-4(2024)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Veit, G. et al. From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations. Mol. Biol. Cell 27, 424–433 (2016).Article

Veit,G.等人,《从CFTR生物学到组合药物疗法:囊性纤维化突变的扩展分类》。分子生物学。细胞27424-433(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ausländer, S. & Fussenegger, M. Engineering gene circuits for mammalian cell-based applications. Cold Spring Harb. Perspect. Biol. 8, a023895 (2016).Article

Ausländer,S。&Fussenegger,M。用于哺乳动物细胞应用的工程基因电路。冷泉兔。透视图。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tou, C. J. & Kleinstiver, B. P. Recent advances in double-strand break-free kilobase-scale genome editing technologies. Biochemistry 62, 3493–3499 (2023).Article

Tou,C.J。&Kleinstiver,B.P。无双链断裂千碱基规模基因组编辑技术的最新进展。生物化学623493-3499(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Suzuki, K. et al. In vivo genome editing via CRISPR–Cas9-mediated homology-independent targeted integration. Nature 540, 144–149 (2016).Article

Suzuki,K。等人。通过CRISPR-Cas9介导的同源性非依赖性靶向整合进行体内基因组编辑。自然540144-149(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nami, F. et al. Strategies for in vivo genome editing in nondividing cells. Trends Biotechnol. 36, 770–786 (2018).Article

Nami,F。等人。在非分裂细胞中进行体内基因组编辑的策略。趋势生物技术。36770-786(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).Article

Mali,P。等人。RNA通过Cas9指导人类基因组工程。科学339823-826(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cong, L. et al. Multiplex genome engineering using CRISPR–Cas systems. Science 339, 819–823 (2013).Article

Cong,L。等人。使用CRISPR-Cas系统的多重基因组工程。《科学》339819–823(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR–Cas9 for genome engineering. Cell 157, 1262–1278 (2014).Article

Hsu,P.D.,Lander,E.S.&Zhang,F。CRISPR-Cas9在基因组工程中的开发和应用。Cell 1571262-1278(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wright, A. V., Nuñez, J. K. & Doudna, J. A. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164, 29–44 (2016).Article

Wright,A.V.,Nuñez,J.K。和Doudna,J.A。CRISPR系统的生物学和应用:利用大自然的工具箱进行基因组工程。Cell 164,29-44(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chapman, J. R., Taylor, M. R. G. & Boulton, S. J. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell 47, 497–510 (2012).Article

Chapman,J.R.,Taylor,M.R.G。和Boulton,S.J。玩最终游戏:DNA双链断裂修复途径的选择。分子细胞47497-510(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Geisinger, J. M. & Stearns, T. CRISPR–Cas9 treatment causes extended TP53-dependent cell cycle arrest in human cells. Nucleic Acids Res. 48, 9067–9081 (2020).Article

Geisinger,J.M。&Stearns,T.CRISPR-Cas9处理导致人类细胞中延长的TP53依赖性细胞周期停滞。核酸研究489067-9081(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, H. et al. Development of a self-restricting CRISPR–Cas9 system to reduce off-target effects. Mol. Ther. Methods Clin. Dev. 18, 390–401 (2020).Article

Wang,H.等人开发了一种自我限制的CRISPR-Cas9系统,以减少脱靶效应。摩尔热。方法临床。第18390-401页(2020年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

PubMed 中心

Google Scholar

谷歌学者

Ihry, R. J. et al. p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Nat. Med. 24, 939–946 (2018).Article

。《自然医学》24939-946(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).Article

Anzalone,A.V.等人在没有双链断裂或供体DNA的情况下搜索和替换基因组编辑。自然576149-157(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

PubMed 中心

Google Scholar

谷歌学者

Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).Article

Komor,A.C.,Kim,Y.B.,Packer,M.S.,Zuris,J.A。&Liu,D.R。基因组DNA中靶碱基的可编程编辑,无需双链DNA切割。自然533420-424(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).Article

Gaudelli,N.M.等人。基因组DNA中A•T到G•C的可编程碱基编辑,无需DNA切割。自然551464-471(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

PubMed 中心

Google Scholar

谷歌学者

Kurt, I. C. et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat. Biotechnol. 39, 41–46 (2021).Article

Kurt,I.C.等人,CRISPR C-to-G碱基编辑器,用于在人类细胞中诱导靶向DNA转化。美国国家生物技术公司。39,41-46(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ferreira da Silva, J. et al. Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair. Nat. Commun. 13, 760 (2022).Article

Ferreira da Silva,J。等人。在没有错配修复的情况下,可以提高主要编辑效率和保真度。国家公社。13760(2022年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

PubMed 中心

Google Scholar

谷歌学者

Chen, P. J. et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 184, 5635–5652.e29 (2021).Article

Chen,P.J.等人通过操纵编辑结果的细胞决定因素来增强主要编辑系统。细胞1845635–5652.e29(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yan, J. et al. Improving prime editing with an endogenous small RNA-binding protein. Nature https://doi.org/10.1038/s41586-024-07259-6 (2024).Nelson, J. W. et al. Engineered pegRNAs improve prime editing efficiency. Nat. Biotechnol. 40, 402–410 (2022).Article

Yan,J.等人。用内源性小RNA结合蛋白改进初级编辑。自然https://doi.org/10.1038/s41586-024-07259-6。Nelson,J.W.等人设计的pegRNA提高了主要编辑效率。美国国家生物技术公司。40402-410(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Anzalone, A. V. et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat. Biotechnol. 40, 731–740 (2022).Article

Anzalone,A.V.等人。通过双素数编辑可编程删除,替换,整合和反转大DNA序列。美国国家生物技术公司。40731-740(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, J. et al. Efficient targeted insertion of large DNA fragments without DNA donors. Nat. Methods 19, 331–340 (2022).Article

Wang,J.等人。在没有DNA供体的情况下有效靶向插入大DNA片段。自然方法19331-340(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zheng, C. et al. Template-jumping prime editing enables large insertion and exon rewriting in vivo. Nat. Commun. 14, 3369 (2023).Article

Zheng,C。等人。模板跳跃素数编辑可以在体内进行大量插入和外显子重写。国家公社。143369(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jiang, T., Zhang, X.-O., Weng, Z. & Xue, W. Deletion and replacement of long genomic sequences using prime editing. Nat. Biotechnol. 40, 227–234 (2022).Article

。美国国家生物技术公司。40227-234(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yarnall, M. T. N. et al. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01527-4 (2022).Smith, M. C. M., Brown, W. R. A., McEwan, A. R. & Rowley, P. A. Site-specific recombination by phiC31 integrase and other large serine recombinases.

Yarnall,M.T.N.等人使用CRISPR定向整合酶拖放大序列的基因组插入,而无需双链DNA切割。美国国家生物技术公司。https://doi.org/10.1038/s41587-022-01527-4(2022年)。Smith,M.C.M.,Brown,W.R.A.,McEwan,A.R。&Rowley,P.A。通过phiC31整合酶和其他大型丝氨酸重组酶进行位点特异性重组。

Biochem. Soc. Trans. 38, 388–394 (2010).Article .

生物化学。社会事务。38388-394(2010)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Doman, J. L. et al. Phage-assisted evolution and protein engineering yield compact, efficient prime editors. Cell 186, 3983–4002.e26 (2023).Article

Doman,J.L.等人,《噬菌体辅助进化和蛋白质工程》产生了紧凑,高效的主要编辑器。细胞1863983-4002.e26(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

PubMed 中心

Google Scholar

谷歌学者

Merrick, C. A., Zhao, J. & Rosser, S. J. Serine integrases: advancing synthetic biology. ACS Synth. Biol. 7, 299–310 (2018).Article

Merrick,C.A.,Zhao,J。&Rosser,S.J。丝氨酸整合酶:推进合成生物学。ACS合成。生物学7299-310(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Meinke, G., Bohm, A., Hauber, J., Pisabarro, M. T. & Buchholz, F. Cre recombinase and other tyrosine recombinases. Chem. Rev. 116, 12785–12820 (2016).Article

Meinke,G.,Bohm,A.,Hauber,J.,Pisabarro,M.T。&Buchholz,F.Cre重组酶和其他酪氨酸重组酶。化学。修订版11612785–12820(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Smith, M. C. M. Phage-encoded serine integrases and other large serine recombinases. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.MDNA3-0059-2014 (2015).Choi, J. et al. Precise genomic deletions using paired prime editing. Nat. Biotechnol. 40, 218–226 (2022).Article

Smith,M.C.M。噬菌体编码的丝氨酸整合酶和其他大型丝氨酸重组酶。微生物。。https://doi.org/10.1128/microbiolspec.MDNA3-0059-2014(2015年)。Choi,J。等人。使用配对素数编辑进行精确的基因组缺失。美国国家生物技术公司。40218-226(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhuang, Y. et al. Increasing the efficiency and precision of prime editing with guide RNA pairs. Nat. Chem. Biol. 18, 29–37 (2022).Article

Zhuang,Y.等人。使用指导RNA对提高素数编辑的效率和精度。自然化学。生物学18,29-37(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tao, R. et al. Bi-PE: bi-directional priming improves CRISPR–Cas9 prime editing in mammalian cells. Nucleic Acids Res. 50, 6423–6434 (2022).Article

Tao,R。等人。双向启动:双向启动可改善哺乳动物细胞中CRISPR-Cas9的启动编辑。核酸研究506423-6434(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

PubMed 中心

Google Scholar

谷歌学者

Strecker, J. et al. RNA-guided DNA insertion with CRISPR-associated transposases. Science https://doi.org/10.1126/science.aax9181 (2019).Klompe, S. E., Vo, P. L. H., Halpin-Healy, T. S. & Sternberg, S. H. Transposon-encoded CRISPR–Cas systems direct RNA-guided DNA integration. Nature 571, 219–225 (2019).Article .

Strecker,J。等人。用CRISPR相关转座酶进行RNA引导的DNA插入。科学https://doi.org/10.1126/science.aax9181(2019年)。Klompe,S.E.,Vo,P.L.H.,Halpin-Healy,T.S。&Sternberg,S.H。转座子编码的CRISPR-Cas系统直接进行RNA引导的DNA整合。自然571219-225(2019)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tou, C. J., Orr, B. & Kleinstiver, B. P. Precise cut-and-paste DNA insertion using engineered type V-K CRISPR-associated transposases. Nat. Biotechnol. 41, 968–979 (2023).Article

Tou,C.J.,Orr,B。&Kleinstiver,B.P。使用工程型V-K CRISPR相关转座酶精确切割和粘贴DNA插入。美国国家生物技术公司。41968-979(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lampe, G. D. et al. Targeted DNA integration in human cells without double-strand breaks using CRISPR-associated transposases. Nat. Biotechnol. 42, 87–98 (2024).Article

Lampe,G.D.等人使用CRISPR相关转座酶在没有双链断裂的人类细胞中靶向DNA整合。美国国家生物技术公司。42,87-98(2024)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Durrant, M. G. et al. Systematic discovery of recombinases for efficient integration of large DNA sequences into the human genome. Nat. Biotechnol. 41, 488–499 (2023).Article

Durrant,M.G.等人系统地发现重组酶,以将大型DNA序列有效整合到人类基因组中。美国国家生物技术公司。41488-499(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ghosh, P., Kim, A. I. & Hatfull, G. F. The orientation of mycobacteriophage Bxb1 integration is solely dependent on the central dinucleotide of attP and attB. Mol. Cell 12, 1101–1111 (2003).Article

Ghosh,P.,Kim,A.I。&Hatfull,G.F。分枝杆菌噬菌体Bxb1整合的方向仅依赖于attP和attB的中央二核苷酸。摩尔细胞121101-1111(2003)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bednarski, C., Tomczak, K., Vom Hövel, B., Weber, W.-M. & Cathomen, T. Targeted integration of a super-exon into the CFTR locus leads to functional correction of a cystic fibrosis cell line model. PLoS ONE 11, e0161072 (2016).Article

Bednarski,C.,Tomczak,K.,Vom Hövel,B.,Weber,W.-M。&Cathomen,T。将超外显子靶向整合到CFTR基因座中会导致囊性纤维化细胞系模型的功能校正。PLoS ONE 11,e0161072(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sun, C. et al. Precise integration of large DNA sequences in plant genomes using PrimeRoot editors. Nat. Biotechnol. 42, 316–327 (2024).Article

Sun,C.等人。使用PrimeRoot编辑器在植物基因组中精确整合大型DNA序列。美国国家生物技术公司。42316-327(2024)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kim, H. K. et al. Predicting the efficiency of prime editing guide RNAs in human cells. Nat. Biotechnol. 39, 198–206 (2021).Article

Kim,H.K.等人预测人类细胞中主要编辑指导RNA的效率。美国国家生物技术公司。39198-206(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Koeppel, J. et al. Prediction of prime editing insertion efficiencies using sequence features and DNA repair determinants. Nat. Biotechnol. 41, 1446–1456 (2023).Article

Koeppel,J。等人。使用序列特征和DNA修复决定因素预测主要编辑插入效率。美国国家生物技术公司。411446-1456(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ferrari, S. et al. Choice of template delivery mitigates the genotoxic risk and adverse impact of editing in human hematopoietic stem cells. Cell Stem Cell 29, 1428–1444.e9 (2022).Article

Ferrari,S。等人。模板递送的选择减轻了人类造血干细胞编辑的遗传毒性风险和不利影响。细胞干细胞291428–1444.e9(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hsu, J. Y. et al. PrimeDesign software for rapid and simplified design of prime editing guide RNAs. Nat. Commun. 12, 1034 (2021).Article

Hsu,J.Y.等人。PrimeDesign软件,用于快速简化prime编辑指导RNA的设计。国家公社。121034(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hwang, G.-H. et al. PE-Designer and PE-Analyzer: web-based design and analysis tools for CRISPR prime editing. Nucleic Acids Res. 49, W499–W504 (2021).Article

Hwang,G.-H.等人。PE Designer和PE Analyzer:用于CRISPR prime编辑的基于网络的设计和分析工具。核酸研究49,W499–W504(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Anderson, M. V., Haldrup, J., Thomsen, E. A., Wolff, J. H. & Mikkelsen, J. G. pegIT—a web-based design tool for prime editing. Nucleic Acids Res. 49, W505–W509 (2021).Article

安德森(Anderson,M.V.),哈尔德鲁普(Haldrup),汤姆森(Thomsen),E.A。,沃尔夫(Wolff),J.H。&Mikkelsen,J.G。佩吉特(pegIT)-一种基于网络的主要编辑设计工具。核酸研究49,W505–W509(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

PubMed 中心

Google Scholar

谷歌学者

Chow, R. D., Chen, J. S., Shen, J. & Chen, S. A web tool for the design of prime-editing guide RNAs. Nat. Biomed. Eng. 5, 190–194 (2021).Article

Chow,R.D.,Chen,J.S.,Shen,J。&Chen,S。用于设计主要编辑指导RNA的网络工具。自然生物医学。工程5190-194(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Doman, J. L., Sousa, A. A., Randolph, P. B., Chen, P. J. & Liu, D. R. Designing and executing prime editing experiments in mammalian cells. Nat. Protoc. 17, 2431–2468 (2022).Article

Doman,J.L.,Sousa,A.A.,Randolph,P.B.,Chen,P.J。&Liu,D.R。在哺乳动物细胞中设计和执行初级编辑实验。自然协议。172431-2468(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

PubMed 中心

Google Scholar

谷歌学者

Yarnall, M. T. N. et al. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nat. Biotechnol. 41, 500–512 (2023).Article

Yarnall,M.T.N.等人使用CRISPR定向整合酶拖放大序列的基因组插入,而无需双链DNA切割。美国国家生物技术公司。41500–512(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Park, S.-J. et al. Targeted mutagenesis in mouse cells and embryos using an enhanced prime editor. Genome Biol. 22, 170 (2021).Article

。基因组生物学。22170(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Oscorbin, I. P., Wong, P. F., Boyarskikh, U. A., Khrapov, E. A. & Filipenko, M. L. The attachment of a DNA-binding Sso7d-like protein improves processivity and resistance to inhibitors of M-MuLV reverse transcriptase. FEBS Lett. 594, 4338–4356 (2020).Article

Oscorbin,I.P.,Wong,P.F.,Boyarskikh,U.A.,Khrapov,E.A。&Filipenko,M.L。DNA结合Sso7d样蛋白的附着提高了持续合成能力和对M-MuLV逆转录酶抑制剂的抗性。FEBS Lett公司。5944338-4356(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Segura, M. M., Alba, R., Bosch, A. & Chillón, M. Advances in helper-dependent adenoviral vector research. Curr. Gene Ther. 8, 222–235 (2008).Article

Segura,M.M.,Alba,R.,Bosch,A。&Chillón,M。辅助依赖性腺病毒载体研究进展。货币。基因疗法。8222-235(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Brunetti-Pierri, N. & Ng, P. Progress towards liver and lung-directed gene therapy with helper-dependent adenoviral vectors. Curr. Gene Ther. 9, 329–340 (2009).Article

Brunetti-Pierri,N。&Ng,P。用辅助依赖性腺病毒载体进行肝和肺定向基因治疗的进展。货币。基因疗法。9329-340(2009)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kay, M. A., He, C.-Y. & Chen, Z.-Y. A robust system for production of minicircle DNA vectors. Nat. Biotechnol. 28, 1287–1289 (2010).Article

Kay,M.A.,He,C.-Y。&Chen,Z.-Y。用于生产小环DNA载体的强大系统。美国国家生物技术公司。281287-1289(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hendel, A. et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat. Biotechnol. 33, 985–989 (2015).Article

化学修饰的指导RNA增强了人类原代细胞中CRISPR-Cas基因组的编辑。美国国家生物技术公司。33985-989(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hu, J. et al. Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing. Nat. Protoc. 11, 853–871 (2016).Article

Hu,J.等人。通过线性扩增介导的高通量全基因组易位测序检测哺乳动物基因组中的DNA双链断裂。自然协议。11853-871(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Giannoukos, G. et al. UDiTaS, a genome editing detection method for indels and genome rearrangements. BMC Genomics 19, 212 (2018).Article

Giannoukos,G。et al。UDiTaS,一种用于插入缺失和基因组重排的基因组编辑检测方法。BMC基因组学19212(2018)。文章

PubMed

PubMed

PubMed Central

PubMed 中心

Google Scholar

谷歌学者

Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR–Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).Article

。美国国家生物技术公司。33187-197(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lazzarotto, C. R. et al. CHANGE-seq reveals genetic and epigenetic effects on CRISPR–Cas9 genome-wide activity. Nat. Biotechnol. 38, 1317–1327 (2020).Article

Lazzarotto,C.R。等人的CHANGE-seq揭示了遗传和表观遗传对CRISPR-Cas9全基因组活性的影响。美国国家生物技术公司。381317-1327(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226 (2019).Article

Clement,K。等人CRISPResso2提供了准确快速的基因组编辑序列分析。美国国家生物技术公司。37224-226(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Luo, J. et al. A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat. Protoc. 2, 1236–1247 (2007).Article

Luo,J。等人。使用AdEasy系统快速产生重组腺病毒的方案。自然协议。21236-1247(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Suleman, S. et al. Rapid and inexpensive purification of adenovirus vectors using an optimised aqueous two-phase technology. J. Virol. Methods 299, 114305 (2022).Article

。J、 维罗尔。方法299114305(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsC.W.F. is supported by a grant from the Simons Foundation International to the Simons Center for the Social Brain at MIT. C.S.-U. is supported by a Friends of the McGovern fellowship. J.S.G. and O.O.A. are supported by NIH grants 1R21-AI149694, R01-EB031957, 1R01GM148745, R56-HG011857 and R01AG074932; The McGovern Institute Neurotechnology program; the K.

下载referencesAcknowledgementsC。W、 。C、 美国得到了麦戈文之友奖学金的支持。J、 S.G.和O.O.A.得到了NIH拨款1R21-AI149694,R01-EB031957,1R01GM148745,R56-HG011857和R01AG074932的支持;麦戈文研究所神经技术计划;K。

Lisa Yang and Hock E. Tan Center for Molecular Therapeutics in Neuroscience; Impetus Grants; the Cystic Fibrosis Foundation Pioneer Grant; Google Ventures; Pivotal Life Sciences; MGB Gene and Cell Therapy Institute; the Yosemite Fund; Harvey Family Foundation; Termeer Foundation; and Winston Fu. We thank the members of the Abudayyeh-Gootenberg labs for support and advice.Author informationAuthor notesThese authors contributed equally: Christopher W.

Lisa Yang和Hock E.Tan神经科学分子治疗中心;动力补助金;囊性纤维化基金会先驱基金会;谷歌风险投资;关键生命科学;MGB基因与细胞治疗研究所;约塞米蒂基金;哈维家庭基金会;Termeer基金会;和温斯顿·福。我们感谢Abudayyeh Gootenberg实验室成员的支持和建议。作者信息作者注意到这些作者做出了同样的贡献:克里斯托弗·W。

Fell, Cian Schmitt-Ulms.These authors jointly supervised this work: Jonathan S. Gootenberg, Omar O. Abudayyeh.Authors and AffiliationsHarvard Medical School, Harvard University, Boston, MA, USAChristopher W. Fell, Cian Schmitt-Ulms, Dario V. Tagliaferri, Jonathan S. Gootenberg & Omar O. AbudayyehDivision of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USAChristopher W.

摔倒了,西安·施密特·乌尔姆斯。这些作者共同监督了这项工作:乔纳森·S·古腾堡,奥马尔·O·阿布达耶。作者和附属机构哈佛大学哈佛医学院,波士顿,马萨诸塞州,美国克里斯托弗·W·费尔,齐安·施密特·乌尔姆斯,达里奥·V·塔格里亚费里,乔纳森·S·古腾堡和奥马尔·O·阿布代耶哈佛医学院布里格姆妇女医院医学系医学工程系,马萨诸塞州剑桥,美国克里斯托弗·W。

Fell, Cian Schmitt-Ulms, Dario V. Tagliaferri, Jonathan S. Gootenberg & Omar O. AbudayyehGene and Cell Therapy Institute, Mass General Brigham, Cambridge, MA, USAChristopher W. Fell, Cian Schmitt-Ulms, Dario V. Tagliaferri, Jonathan S. Gootenberg & Omar O. AbudayyehCenter for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USAChristopher W.

费尔,齐安·施密特·乌尔姆斯,达里奥·塔格里亚费里,乔纳森·S·古腾堡和奥马尔·O·阿布达耶赫基因和细胞治疗研究所,马萨诸塞州剑桥市马萨诸塞州布里格姆将军,美国克里斯托弗·W·费尔,齐安·施密特·乌尔姆斯,达里奥·V·塔格里亚费里,乔纳森·S·古腾堡和奥马尔·O·阿布达耶赫中心病毒学和疫苗研究,贝斯以色列女执事医疗中心,波士顿,马萨诸塞州,美国克里斯托弗·W。

Fell, Cian Schmitt-Ulms, Dario V. Tagliaferri, Jonathan S. Gootenberg & Omar O. AbudayyehDepartment of Brain and Cog.

费尔(Fell),西安·施密特·乌尔姆斯(Cian Schmitt Ulms),达里奥·塔格里亚费里(Dario V.Tagliaferri),乔纳森·S·古腾堡(Jonathan S.Gootenberg)和奥马尔·O·阿布达耶(Omar O.AbudayyehDepartment of Brain and。

PubMed Google ScholarCian Schmitt-UlmsView author publicationsYou can also search for this author in

PubMed谷歌学者Schmitt UlmsView作者出版物您也可以在

PubMed Google ScholarDario V. TagliaferriView author publicationsYou can also search for this author in

PubMed Google ScholarDario V.TagliaferriView作者出版物您也可以在

PubMed Google ScholarJonathan S. GootenbergView author publicationsYou can also search for this author in

PubMed Google ScholarJonathan S.GootenbergView作者出版物您也可以在

PubMed Google ScholarOmar O. AbudayyehView author publicationsYou can also search for this author in

PubMed Google ScholarOmar O.AbudayyehView作者出版物您也可以在

PubMed Google ScholarContributionsC.W.F. and C.S.-U. equally contributed to writing the introduction and protocol and generating all figures and performing experiments. D.V.T. performed experiments and assisted with protocol writing. O.O.A. and J.S.G supervised research and contributed to writing the manuscript and drafting of the figures.

PubMed谷歌学术贡献中心。W、 F.和C.S.-U同样为撰写引言和协议以及生成所有数字和进行实验做出了贡献。D、 V.T.进行了实验并协助撰写协议。O、 O.A.和J.S.G监督研究,并为撰写手稿和起草数字做出了贡献。

All authors edited the manuscript.Corresponding authorsCorrespondence to.

所有作者都编辑了手稿。通讯作者通讯。

Jonathan S. Gootenberg or Omar O. Abudayyeh.Ethics declarations

乔纳森·S·古腾堡(JonathanS.Gootenberg)或奥马尔·O·阿布达耶(OmarO.Abudayyeh)。道德宣言

Competing interests

相互竞争的利益

C.W.F., C.S.-U., J.S.G. and O.O.A. are inventors on patent applications related to CRISPR technologies. O.O.A. and J.S.G. are co-founders of Sherlock Biosciences, Doppler Biosciences, Circle Labs and Tome Biosciences.

C、 W.F.,C.S.-U.,J.S.G.和O.O.A.是与CRISPR技术相关的专利申请的发明人。O、 O.A.和J.S.G.是Sherlock Biosciences、Doppler Biosciences、Circle Labs和Tome Biosciences的联合创始人。

Peer review

同行评审

Peer review information

同行评审信息

Nature Protocols thanks Rasmus Bak, Shahid Mansoor, Yiping Qi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Nature Protocols感谢Rasmus Bak,Shahid Mansoor,Yiping Qi和其他匿名审稿人对这项工作的同行评审做出的贡献。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Key referenceYarnall, M. T. N. et al. Nat. Biotechnol. 41, 500–512 (2023): https://doi.org/10.1038/s41587-022-01527-4Supplementary informationReporting SummaryRights and permissionsSpringer Nature or its licensor (e.g.

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。关键参考文献Yarnall,M.T.N。等人,Nat。Biotechnol。41500–512(2023年):https://doi.org/10.1038/s41587-022-01527-4Supplementary信息报告摘要权利和许可Pringer Nature或其许可人(例如。

a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.Reprints and permissionsAbout this articleCite this articleFell, C.W., Schmitt-Ulms, C., Tagliaferri, D.V.

协会或其他合作伙伴)根据与作者或其他权利持有人的出版协议对本文拥有专有权;本文接受稿件版本的作者自行存档仅受此类出版协议和适用法律的条款管辖。转载和许可本文引用本文Fall,C.W.,Schmitt-Ulms,C.,Tagliaferri,D.V。

et al. Precise kilobase-scale genomic insertions in mammalian cells using PASTE..

等。使用糊剂在哺乳动物细胞中精确插入千碱基规模的基因组。。

Nat Protoc (2024). https://doi.org/10.1038/s41596-024-01090-zDownload citationReceived: 17 December 2023Accepted: 08 October 2024Published: 15 December 2024DOI: https://doi.org/10.1038/s41596-024-01090-zShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Nat Protoc(2024年)。https://doi.org/10.1038/s41596-024-01090-zDownload引文接收日期:2023年12月17日接收日期:2024年10月8日发布日期:2024年12月15日OI:https://doi.org/10.1038/s41596-024-01090-zShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供