商务合作
动脉网APP
可切换为仅中文
AbstractRegulatory T (Treg) cells are a suppressive subset of CD4+ T cells that maintain immune homeostasis and restrain inflammation. Three decades after their discovery, the promise of strategies to harness Treg cells for therapy has never been stronger. Multiple clinical trials seeking to enhance endogenous Treg cells or deliver them as a cell-based therapy have been performed and hint at signs of success, as well as to important limitations and unanswered questions.
摘要调节性T(Treg)细胞是CD4+T细胞的抑制性子集,可维持免疫稳态并抑制炎症。在他们被发现三十年后,利用Treg细胞进行治疗的策略的前景从未如此强大。已经进行了多项旨在增强内源性Treg细胞或将其作为基于细胞的疗法的临床试验,并暗示了成功的迹象,以及重要的局限性和未解决的问题。
Strategies to deplete Treg cells in cancer are also in active clinical testing. Furthermore, multi-dimensional methods to interrogate the biology of Treg cells are leading to a refined understanding of Treg cell biology and new approaches to harness tissue-specific functions for therapy. A new generation of Treg cell clinical trials is now being fuelled by advances in nanomedicine and synthetic biology, seeking more precise ways to tailor Treg cell function.
消耗癌症中Treg细胞的策略也在积极的临床测试中。此外,询问Treg细胞生物学的多维方法正在导致对Treg细胞生物学的精细理解以及利用组织特异性功能进行治疗的新方法。纳米医学和合成生物学的进步正在推动新一代Treg细胞临床试验,寻求更精确的方法来定制Treg细胞功能。
This Review will discuss recent advances in our understanding of human Treg cell biology, with a focus on mechanisms of action and strategies to assess outcomes of Treg cell-targeted therapies. It highlights results from recent clinical trials aiming to enhance or inhibit Treg cell activity in a variety of diseases, including allergy, transplantation, autoimmunity and cancer, and discusses ongoing strategies to refine these approaches..
本综述将讨论我们对人类Treg细胞生物学理解的最新进展,重点是评估Treg细胞靶向治疗结果的作用机制和策略。它强调了最近旨在增强或抑制多种疾病(包括过敏,移植,自身免疫和癌症)中Treg细胞活性的临床试验的结果,并讨论了改进这些方法的持续策略。。
Access through your institution
通过您的机构访问
Buy or subscribe
购买或订阅
This is a preview of subscription content, access via your institution
这是订阅内容的预览,可通过您的机构访问
Access options
访问选项
Access through your institution
通过您的机构访问
Access through your institution
通过您的机构访问
Change institution
变革机构
Buy or subscribe
购买或订阅
Access Nature and 54 other Nature Portfolio journals
Access Nature和54种其他Nature投资组合期刊
Get Nature+, our best-value online-access subscription
获取Nature+,我们最具价值的在线访问订阅
24,99 € / 30 days
24,99欧元/30天
cancel any time
随时取消
Learn more
了解更多信息
Subscription info for Chinese customersWe have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.Go to naturechina.com
中国客户的订阅信息我们为中国客户提供了一个专门的网站。请访问naturechina.com订阅本期刊。访问naturechina.com
Buy this article
购买这篇文章
Purchase on SpringerLink
在SpringerLink上购买
Instant access to full article PDF
即时访问全文PDF
Buy now
立即购买
Prices may be subject to local taxes which are calculated during checkout
价格可能需要缴纳结帐时计算的地方税
Additional access options:
其他访问选项:
Log in
登录
Learn about institutional subscriptions
了解机构订阅
Read our FAQs
阅读我们的常见问题
Contact customer support
联系客户支持
Fig. 1: Three phases of Treg cell-mediated immune suppression.Fig. 2: Tracking Treg cells in clinical studies.Fig. 3: Treg cell therapy steps and considerations.Fig. 4: Clinical trials of Treg cell therapy.Fig. 5: Evolution of Treg therapies.
图1:Treg细胞介导的免疫抑制的三个阶段。图2:在临床研究中追踪Treg细胞。图3:Treg细胞治疗步骤和注意事项。。图5:Treg疗法的演变。
ReferencesThome, J. J. et al. Early-life compartmentalization of human T cell differentiation and regulatory function in mucosal and lymphoid tissues. Nat. Med. 22, 72–77 (2016).Article
参考文献Thome,J.J.等人。粘膜和淋巴组织中人类T细胞分化和调节功能的早期区室化。《自然医学》22,72-77(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wildin, R. S. et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet. 27, 18–20 (2001).Article
Wildin,R.S。等人。X连锁新生儿糖尿病,肠病和内分泌病综合征是人类相当于小鼠scurfy。Nat。Genet。27,18-20(2001)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bennett, C. L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20–21 (2001).Article
Bennett,C.L.等人。免疫失调,多内分泌病,肠病,X连锁综合征(IPEX)是由FOXP3突变引起的。纳特·吉内特。27,20-21(2001)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hernandez, R., Poder, J., LaPorte, K. M. & Malek, T. R. Engineering IL-2 for immunotherapy of autoimmunity and cancer. Nat. Rev. Immunol. 22, 614–628 (2022).Article
Hernandez,R.,Poder,J.,LaPorte,K.M。和Malek,T.R。工程IL-2用于自身免疫和癌症的免疫治疗。国家免疫修订版。22614-628(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Levings, M. K., Sangregorio, R. & Roncarolo, M. G. Human CD25+CD4+ T regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J. Exp. Med. 193, 1295–1302 (2001).Article
。J、 实验医学1931295-1302(2001)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Feinerman, O. et al. Single-cell quantification of IL-2 response by effector and regulatory T cells reveals critical plasticity in immune response. Mol. Syst. Biol. 6, 437 (2010).Article
Feinerman,O.等人。效应T细胞和调节性T细胞对IL-2反应的单细胞定量揭示了免疫反应的关键可塑性。分子系统。生物学6437(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Allan, S. E. et al. Generation of potent and stable human CD4+ T regulatory cells by activation-independent expression of FOXP3. Mol. Ther. 16, 194–202 (2008).Article
Allan,S.E.等人。通过不依赖激活的FOXP3表达产生有效且稳定的人CD4+T调节细胞。摩尔热。16194-202(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wu, Y. et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126, 375–387 (2006).Article
Wu,Y。等人。FOXP3通过与NFAT合作来控制调节性T细胞功能。细胞126375-387(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Freeborn, R. A., Strubbe, S. & Roncarolo, M. G. Type 1 regulatory T cell-mediated tolerance in health and disease. Front. Immunol. 13, 1032575 (2022).Article
Freeborn,R.A.,Strubbe,S。和Roncarolo,M.G。1型调节性T细胞介导的健康和疾病耐受性。正面。免疫。131032575(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Flippe, L., Bezie, S., Anegon, I. & Guillonneau, C. Future prospects for CD8+ regulatory T cells in immune tolerance. Immunol. Rev. 292, 209–224 (2019).Article
。免疫。修订版292209-224(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Park, J. E. et al. A cell atlas of human thymic development defines T cell repertoire formation. Science 367, eaay3224 (2020).Article
。科学367,eaay3224(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Morgana, F. et al. Single-cell transcriptomics reveals discrete steps in regulatory T cell development in the human thymus. J. Immunol. 208, 384–395 (2022).Article
单细胞转录组学揭示了人类胸腺调节性T细胞发育的离散步骤。J、 。208384-395(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lagattuta, K. A. et al. Repertoire analyses reveal T cell antigen receptor sequence features that influence T cell fate. Nat. Immunol. 23, 446–457 (2022).Article
Lagattuta,K.A。等人的曲目分析揭示了影响T细胞命运的T细胞抗原受体序列特征。自然免疫。23446-457(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tai, X. et al. How autoreactive thymocytes differentiate into regulatory versus effector CD4+ T cells after avoiding clonal deletion. Nat. Immunol. 24, 637–651 (2023). Effector T and Treg cell differentiation are instructed via persistent or TGF-β-disrupted TCR signalling in the mouse thymus, respectively.Article .
Tai,X。等人。在避免克隆缺失后,自身反应性胸腺细胞如何分化为调节性与效应性CD4+T细胞。自然免疫。24637-651(2023)。效应T和Treg细胞分化分别通过小鼠胸腺中持续或TGF-β破坏的TCR信号传导来指导。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hemmers, S. et al. IL-2 production by self-reactive CD4 thymocytes scales regulatory T cell generation in the thymus. J. Exp. Med. 216, 2466–2478 (2019).Article
Hemmers,S.等人。自反应性CD4胸腺细胞产生的IL-2可调节胸腺中调节性T细胞的产生。J、 实验医学2162466-2478(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Burton, O. T. et al. The tissue-resident regulatory T cell pool is shaped by transient multi-tissue migration and a conserved residency program. Immunity 57, 1586–1602.e10 (2024).Article
Burton,O.T.等人。组织驻留调节性T细胞库是通过瞬时多组织迁移和保守的驻留程序形成的。免疫力571586–1602.e10(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lam, A. J. et al. Optimized CRISPR-mediated gene knockin reveals FOXP3-independent maintenance of human Treg identity. Cell Rep. 36, 109494 (2021). Knockout of FOXP3 in mature human Tregs has little effect on their phenotype or function.Article
Lam,A.J.等人优化的CRISPR介导的基因敲入揭示了人类Treg身份的FOXP3非依赖性维持。Cell Rep.36109494(2021)。在成熟的人类Tregs中敲除FOXP3对其表型或功能几乎没有影响。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
van der Veeken, J. et al. The transcription factor Foxp3 shapes regulatory T cell identity by tuning the activity of trans-acting intermediaries. Immunity 53, 971–984.e5 (2020).Article
转录因子Foxp3通过调节反式作用中间体的活性来塑造调节性T细胞的特性。免疫力53971-984.e5(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hill, J. A. et al. Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity 27, 786–800 (2007).Article
Hill,J.A。等人。调节性T细胞转录特征的Foxp3转录因子依赖性和非依赖性调节。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Trujillo-Ochoa, J. L., Kazemian, M. & Afzali, B. The role of transcription factors in shaping regulatory T cell identity. Nat. Rev. Immunol. 23, 842–856 (2023).Article
Trujillo Ochoa,J.L.,Kazemian,M。&Afzali,B。转录因子在形成调节性T细胞身份中的作用。国家免疫修订版。23842-856(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Lyu, M. et al. ILC3s select microbiota-specific regulatory T cells to establish tolerance in the gut. Nature 610, 744–751 (2022).Article
Lyu,M。等人,ILC3选择微生物群特异性调节性T细胞以建立肠道耐受性。自然610744-751(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Kedmi, R. et al. A RORγt+ cell instructs gut microbiota-specific Treg cell differentiation. Nature 610, 737–743 (2022).Article
Kedmi,R。等人。RORγt+细胞指导肠道微生物群特异性Treg细胞分化。自然610737-743(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Akagbosu, B. et al. Novel antigen-presenting cell imparts Treg-dependent tolerance to gut microbiota. Nature 610, 752–760 (2022).Article
Akagbosu,B。等人。新型抗原呈递细胞赋予肠道微生物群Treg依赖性耐受性。自然610752-760(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
van der Veeken, J. et al. Genetic tracing reveals transcription factor Foxp3-dependent and Foxp3-independent functionality of peripherally induced Treg cells. Immunity 55, 1173–1184.e7 (2022).Article
van der Veeken,J。等人。遗传追踪揭示了外周诱导的Treg细胞的转录因子Foxp3依赖性和Foxp3非依赖性功能。免疫力551173-1184.e7(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cepika, A. M. et al. Tregopathies: monogenic diseases resulting in regulatory T-cell deficiency. J. Allergy Clin. Immunol. 142, 1679–1695 (2018).Article
Cepika,A.M.等人,《Tregopathies:导致调节性T细胞缺乏的单基因疾病》。J、 过敏临床。免疫。1421679-1695(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Weiss, J. M. et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J. Exp. Med. 209, 1723–1742 (2012).Article
Weiss,J.M.等人,Neuropilin 1在胸腺来源的天然调节性T细胞上表达,但不在粘膜产生的诱导Foxp3+T reg细胞上表达。J、 实验医学2091723-1742(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Milpied, P. et al. Neuropilin-1 is not a marker of human Foxp3+ Treg. Eur. J. Immunol. 39, 1466–1471 (2009).Article
Milpied,P。等人。Neuropilin-1不是人类Foxp3+Treg的标志物。欧洲免疫学杂志。391466-1471(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lam, A. J., Uday, P., Gillies, J. K. & Levings, M. K. Helios is a marker, not a driver, of human Treg stability. Eur. J. Immunol. 52, 75–84 (2022).Article
Lam,A.J.,Uday,P.,Gillies,J.K。和Levings,M.K。Helios是人类Treg稳定性的标志,而不是驱动因素。欧洲免疫学杂志。52,75-84(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zheng, Y. et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463, 808–812 (2010).Article
Zheng,Y.等人。Foxp3基因中保守的非编码DNA元件在调节性T细胞命运中的作用。《自然》463808–812(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rubtsov, Y. P. et al. Stability of the regulatory T cell lineage in vivo. Science 329, 1667–1671 (2010).Article
Rubtsov,Y.P.等人。体内调节性T细胞谱系的稳定性。科学3291667-1671(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Bailey-Bucktrout, S. L. et al. Self-antigen-driven activation induces instability of regulatory T cells during an inflammatory autoimmune response. Immunity 39, 949–962 (2013).Article
Bailey-Bucktrout,S.L.等人。自身抗原驱动的激活在炎症性自身免疫反应期间诱导调节性T细胞的不稳定性。免疫39949-962(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Komatsu, N. et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med. 20, 62–68 (2014).Article
小松,N。等人。自身免疫性关节炎中Foxp3+T细胞向TH17细胞的致病性转化。《自然医学》20,62-68(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Allan, S. E. et al. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int. Immunol. 19, 345–354 (2007).Article
Allan,S.E.等人。在人T效应细胞中激活诱导的FOXP3不抑制增殖或细胞因子产生。内部免疫。19345-354(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Joudi, A. M., Reyes Flores, C. P. & Singer, B. D. Epigenetic control of regulatory T cell stability and function: implications for translation. Front. Immunol. 13, 861607 (2022).Article
Joudi,A.M.,Reyes Flores,C.P。和Singer,B.D。调节性T细胞稳定性和功能的表观遗传控制:对翻译的影响。正面。免疫。13861607(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Borna, S. et al. Identification of unstable regulatory and autoreactive effector T cells that are expanded in patients with FOXP3 mutations. Sci. Transl. Med. 15, eadg6822 (2023). FOXP3 mutations drive Treg cell destabilization into effector T cells; this is prevented in the presence of wildtype-expressing FOXP3+ Treg cells.Article .
Borna,S.等人。鉴定在FOXP3突变患者中扩增的不稳定调节性和自身反应性效应T细胞。科学。。医学杂志15,eadg6822(2023)。FOXP3突变驱动Treg细胞不稳定进入效应T细胞;在存在表达野生型的FOXP3+Treg细胞的情况下可以防止这种情况。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Skartsis, N. et al. IL-6 and TNFα drive extensive proliferation of human tregs without compromising their lineage stability or function. Front. Immunol. 12, 783282 (2021). Human Treg cells cultured in pro-inflammatory cytokines have enhanced proliferation, while maintaining their stability and function.Article .
Skartsis,N。等人。IL-6和TNFα在不损害其谱系稳定性或功能的情况下驱动人tregs的广泛增殖。正面。免疫。12783282(2021)。。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Hoeppli, R. E. et al. Tailoring the homing capacity of human Tregs for directed migration to sites of Th1-inflammation or intestinal regions. Am. J. Transpl. 19, 62–76 (2019).Article
Hoeppli,R.E.等人,调整人类Tregs的归巢能力,以定向迁移到Th1炎症部位或肠道区域。美国交通杂志。19,62-76(2019)。文章
CAS
中科院
Google Scholar
谷歌学者
MacDonald, K. G. et al. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J. Clin. Invest. 126, 1413–1424 (2016).Article
。J、 临床。投资。1261413-1424(2016)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Proics, E. et al. Preclinical assessment of antigen-specific chimeric antigen receptor regulatory T cells for use in solid organ transplantation. Gene Ther. 30, 309–322 (2023).Article
Proics,E.等人。用于实体器官移植的抗原特异性嵌合抗原受体调节性T细胞的临床前评估。基因疗法。30309-322(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ellis, G. I. et al. Trafficking and persistence of alloantigen-specific chimeric antigen receptor regulatory T cells in Cynomolgus macaque. Cell Rep. Med. 3, 100614 (2022).Article
Ellis,G.I.等人。食蟹猴同种异体抗原特异性嵌合抗原受体调节性T细胞的运输和持久性。细胞代表医学3100614(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shahin, T. et al. Germline biallelic mutation affecting the transcription factor Helios causes pleiotropic defects of immunity. Sci. Immunol. 6, eabe3981 (2021).Article
Shahin,T。等人。影响转录因子Helios的种系双等位基因突变导致多效性免疫缺陷。科学。免疫。6,eabe3981(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Henry, Y. L. et al. A germline heterozygous dominant negative IKZF2 variant causing syndromic primary immune regulatory disorder and ICHAD. Preprint at medRxiv https://doi.org/10.1101/2023.09.09.23295301 (2023).Article
Henry,Y。L。等人。一种种种系杂合显性负性IKZF2变体,引起综合征性原发性免疫调节障碍和ICHAD。medRxiv预印本https://doi.org/10.1101/2023.09.09.23295301(2023年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chinen, T. et al. An essential role for the IL-2 receptor in Treg cell function. Nat. Immunol. 17, 1322–1333 (2016).Article
Chinen,T。等人。IL-2受体在Treg细胞功能中的重要作用。自然免疫。171322-1333(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).Article
Wing,K。等人。CTLA-4对Foxp3+调节性T细胞功能的控制。科学322271-275(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rubtsov, Y. P. et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28, 546–558 (2008).Article
Rubtsov,Y.P。等人。调节性T细胞衍生的白细胞介素-10限制了环境界面的炎症。豁免28546-558(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Marie, J. C., Letterio, J. J., Gavin, M. & Rudensky, A. Y. TGF-β1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J. Exp. Med. 201, 1061–1067 (2005).Article
Marie,J.C.,Letterio,J.J.,Gavin,M。&Rudensky,A.Y。TGF-β1在CD4+CD25+调节性T细胞中维持抑制功能和Foxp3表达。J、 实验医学2011061-1067(2005)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dikiy, S. & Rudensky, A. Y. Principles of regulatory T cell function. Immunity 56, 240–255 (2023).Article
Dikiy,S。&Rudensky,A.Y。调节性T细胞功能的原理。免疫力56240–255(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tay, C., Tanaka, A. & Sakaguchi, S. Tumor-infiltrating regulatory T cells as targets of cancer immunotherapy. Cancer Cell 41, 450–465 (2023).Article
Tay,C.,Tanaka,A。&Sakaguchi,S。肿瘤浸润调节性T细胞作为癌症免疫治疗的靶标。癌细胞41450-465(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Akkaya, B. et al. Regulatory T cells mediate specific suppression by depleting peptide-MHC class II from dendritic cells. Nat. Immunol. 20, 218–231 (2019).Article
Akkaya,B。等人。调节性T细胞通过从树突状细胞中消耗肽MHC II类来介导特异性抑制。自然免疫。20218-231(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Waters, E., Williams, C., Kennedy, A. & Sansom, D. M. In vitro analysis of CTLA-4-mediated transendocytosis by regulatory T cells. Methods Mol. Biol. 2559, 171–187 (2023).Article
Waters,E.,Williams,C.,Kennedy,A。&Sansom,D.M。通过调节性T细胞对CTLA-4介导的胞吞作用进行体外分析。方法分子生物学。2559171-187(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Tekguc, M., Wing, J. B., Osaki, M., Long, J. & Sakaguchi, S. Treg-expressed CTLA-4 depletes CD80/CD86 by trogocytosis, releasing free PD-L1 on antigen-presenting cells. Proc. Natl Acad. Sci. USA 118, e2023739118 (2021).Article
Tekguc,M.,Wing,J.B.,Osaki,M.,Long,J。&Sakaguchi,S。Treg表达的CTLA-4通过胞吞作用消耗CD80/CD86,在抗原呈递细胞上释放游离的PD-L1。程序。国家科学院。科学。美国118,e2023739118(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schubert, D. et al. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat. Med. 20, 1410–1416 (2014).Article
Schubert,D。等人。具有CTLA4突变的人的常染色体显性免疫失调综合征。《自然医学杂志》201410-1416(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zaitsu, M., Issa, F., Hester, J., Vanhove, B. & Wood, K. J. Selective blockade of CD28 on human T cells facilitates regulation of alloimmune responses.JCI Insight 2, e89381 (2017).Article
Zaitsu,M.,Issa,F.,Hester,J.,Vanhove,B。&Wood,K.J。选择性阻断人类T细胞上的CD28有助于调节同种免疫反应。JCI Insight 2,e89381(2017)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Stockis, J. et al. Blocking immunosuppression by human Tregs in vivo with antibodies targeting integrin αVβ8. Proc. Natl Acad. Sci. USA 114, E10161–E10168 (2017).Article
Stockis,J。等人。用靶向整联蛋白αVβ8的抗体阻断体内人Tregs的免疫抑制。程序。国家科学院。科学。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Cuende, J. et al. Monoclonal antibodies against GARP/TGF-β1 complexes inhibit the immunosuppressive activity of human regulatory T cells in vivo. Sci. Transl. Med. 7, 284ra256 (2015).Article
Cuende,J。等人。针对GARP/TGF-β1复合物的单克隆抗体在体内抑制人调节性T细胞的免疫抑制活性。科学。。医学杂志7284RA256(2015)。文章
Google Scholar
谷歌学者
Glocker, E. O. et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J. Med. 361, 2033–2045 (2009).Article
Glocker,E.O.等人。炎症性肠病和影响白细胞介素-10受体的突变。N、 英语。J、 医学3612033-2045(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Ye, C., Yano, H., Workman, C. J. & Vignali, D. A. A. Interleukin-35: structure, function and its impact on immune-related diseases. J. Interferon Cytokine Res. 41, 391–406 (2021).Article
Ye,C.,Yano,H.,Workman,C.J。&Vignali,D.A.A。白细胞介素-35:结构,功能及其对免疫相关疾病的影响。J、 干扰素细胞因子研究41391-406(2021)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Perrot, I. et al. Blocking antibodies targeting the CD39/CD73 immunosuppressive pathway unleash immune responses in combination cancer therapies. Cell Rep. 27, 2411–2425.e9 (2019).Article
Perrot,I。等人。靶向CD39/CD73免疫抑制途径的阻断抗体在联合癌症治疗中释放免疫应答。Cell Rep.272411–2425.e9(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Jarvis, L. B. et al. Therapeutically expanded human regulatory T-cells are super-suppressive due to HIF1A induced expression of CD73. Commun. Biol. 4, 1186 (2021).Article
Jarvis,L.B。等人。由于HIF1A诱导的CD73表达,治疗性扩增的人类调节性T细胞具有超抑制作用。Commun公司。生物学41186(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Wang, X., Rickert, M. & Garcia, K. C. Structure of the quaternary complex of interleukin-2 with its α, β, and γc receptors. Science 310, 1159–1163 (2005).Article
Wang,X.,Rickert,M。&Garcia,K.C。白细胞介素-2与其α,β和γC受体的四元复合物的结构。科学3101159-1163(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wong, H. S. et al. A local regulatory T cell feedback circuit maintains immune homeostasis by pruning self-activated T cells. Cell 184, 3981–3997.e22 (2021).Article
Wong,H.S.等人。局部调节性T细胞反馈回路通过修剪自激活的T细胞来维持免疫稳态。细胞1843981–3997.e22(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dong, S. et al. The effect of low-dose IL-2 and Treg adoptive cell therapy in patients with type 1 diabetes. JCI Insight 6, e147474 (2021).Article
Dong,S.等人。低剂量IL-2和Treg过继细胞疗法对1型糖尿病患者的影响。JCI Insight 6,e147474(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kendal, A. R. & Waldmann, H. Infectious tolerance: therapeutic potential. Curr. Opin. Immunol. 22, 560–565 (2010).Article
Kendal,A.R。&Waldmann,H。感染耐受性:治疗潜力。货币。奥平。免疫。22560-565(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Andersson, J. et al. CD4+ FoxP3+ regulatory T cells confer infectious tolerance in a TGF-β-dependent manner. J. Exp. Med. 205, 1975–1981 (2008).Article
Andersson,J。等人,CD4+FoxP3+调节性T细胞以TGF-β依赖性方式赋予感染耐受性。J、 。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Jonuleit, H. et al. Infectious tolerance: human CD25+ regulatory T cells convey suppressor activity to conventional CD4+ T helper cells. J. Exp. Med. 196, 255–260 (2002).Article
Jonuleit,H。等人。感染耐受性:人CD25+调节性T细胞向常规CD4+T辅助细胞传递抑制活性。J、 实验医学196255-260(2002)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Mikami, N. et al. Epigenetic conversion of conventional T cells into regulatory T cells by CD28 signal deprivation. Proc. Natl Acad. Sci. USA 117, 12258–12268 (2020).Article
Mikami,N。等人。通过CD28信号剥夺将常规T细胞表观遗传转化为调节性T细胞。程序。国家科学院。科学。美国11712258–12268(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wardell, C. M. et al. Short report: CAR Tregs mediate linked suppression and infectious tolerance in islet transplantation. Preprint at bioRxiv https://doi.org/10.1101/2024.04.06.588414 (2024).Article
Wardell,C.M.等人的简短报告:CAR Tregs介导胰岛移植中的连锁抑制和感染耐受。bioRxiv预印本https://doi.org/10.1101/2024.04.06.588414(2024年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Waldmann, H., Adams, E., Fairchild, P. & Cobbold, S. Infectious tolerance and the long-term acceptance of transplanted tissue. Immunol. Rev. 212, 301–313 (2006).Article
Waldmann,H.,Adams,E.,Fairchild,P。&Cobbold,S。感染耐受性和移植组织的长期接受。免疫。修订版212301–313(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Qin, S. et al. “Infectious” transplantation tolerance. Science 259, 974–977 (1993).Article
秦,S。等人,“传染性”移植耐受。科学259974-977(1993)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cossarizza, A. et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). Eur. J. Immunol. 51, 2708–3145 (2021).Article
Cossarizza,A.等人,《免疫学研究中使用流式细胞术和细胞分选的指南》(第三版)。欧洲免疫学杂志。512708-3145(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Miyara, M. et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30, 899–911 (2009).Article
Miyara,M。等人。表达FoxP3转录因子的人CD4+T细胞的功能描绘和分化动力学。豁免30899–911(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Pesenacker, A. M. et al. Treg gene signatures predict and measure type 1 diabetes trajectory. JCI Insight 4, e123879 (2019).PubMed
Pesenacker,A.M.等人Treg基因特征预测和测量1型糖尿病的轨迹。JCI Insight 4,e123879(2019)。PubMed出版社
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Kim, J. V. et al. Regulatory T cell biomarkers identify patients at risk of developing acute cellular rejection in the first year following heart transplantation. Transplantation 107, 1810–1819 (2023).Article
Kim,J.V.等人,调节性T细胞生物标志物可识别心脏移植后第一年有发生急性细胞排斥反应风险的患者。移植1071810-1819(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wen, X. et al. Increased islet antigen-specific regulatory and effector CD4+ T cells in healthy individuals with the type 1 diabetes-protective haplotype. Sci. Immunol. 5, eaax8767 (2020).Article
Wen,X。等人在具有1型糖尿病保护性单倍型的健康个体中增加胰岛抗原特异性调节和效应CD4+T细胞。科学。免疫。5,eaax8767(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sharma, S. et al. Measuring anti-islet autoimmunity in mouse and human by profiling peripheral blood antigen-specific CD4 T cells. Sci. Transl. Med. 15, eade3614 (2023).Article
Sharma,S.等人。通过分析外周血抗原特异性CD4 T细胞来测量小鼠和人的抗胰岛自身免疫。科学。。医学杂志15,eade3614(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Poloni, C. et al. T-cell activation-induced marker assays in health and disease. Immunol. Cell Biol. 101, 491–503 (2023).Article
Poloni,C。等人。健康和疾病中T细胞活化诱导的标记物测定。免疫。细胞生物学。101491-503(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bacher, P. et al. Regulatory T cell specificity directs tolerance versus allergy against aeroantigens in humans. Cell 167, 1067–1078.e16 (2016).Article
Bacher,P。等人。调节性T细胞特异性指导人类对空气抗原的耐受性和过敏性。细胞1671067-1078.e16(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Saggau, C., Scheffold, A. & Bacher, P. Flow cytometric characterization of human antigen-reactive T-helper cells. Methods Mol. Biol. 2285, 141–152 (2021).Article
Saggau,C.,Scheffold,A。&Bacher,P。人抗原反应性T辅助细胞的流式细胞术表征。方法分子生物学。2285141-152(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lemieux, A. et al. Enhanced detection of antigen-specific T cells by a multiplexed AIM assay. Cell Rep. Methods 4, 100690 (2024).Article
Lemieux,A。等人。通过多重AIM测定增强抗原特异性T细胞的检测。细胞代表方法4100690(2024)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Thornton, A. M. & Shevach, E. M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188, 287–296 (1998).Article
Thornton,A.M。&Shevach,E.M。CD4+CD25+免疫调节性T细胞通过抑制白细胞介素2的产生在体外抑制多克隆T细胞活化。J、 实验医学188287-296(1998)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
McMurchy, A. N. & Levings, M. K. Suppression assays with human T regulatory cells: a technical guide. Eur. J. Immunol. 42, 27–34 (2012).Article
McMurchy,A.N。&Levings,M.K。用人T调节细胞进行抑制测定:技术指南。欧洲免疫学杂志。42,27-34(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dawson, N. A. J. et al. Functional effects of chimeric antigen receptor co-receptor signaling domains in human regulatory T cells. Sci. Transl. Med. 12, eaaz3866 (2020). The function of different types of CAR-engineered human Treg cells is correlated with their ability to suppress antigen presenting cells rather than T cells.Article .
Dawson,N.A.J.等人。嵌合抗原受体共受体信号传导结构域在人类调节性T细胞中的功能作用。科学。。医学12,eaaz3866(2020)。不同类型的CAR工程化人Treg细胞的功能与其抑制抗原呈递细胞而不是T细胞的能力相关。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Papp, D., Korcsmaros, T. & Hautefort, I. Revolutionising immune research with organoid-based co-culture and chip systems. Clin. Exp. Immunol. 218, 40–54 (2024).Article
Papp,D.,Korcsmaros,T。&Hautefort,I。使用基于类器官的共培养和chip系统彻底改变免疫研究。临床。实验免疫。218、40-54(2024)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Cohrs, C. M., Chen, C., Atkinson, M. A., Drotar, D. M. & Speier, S. Bridging the gap: pancreas tissue slices from organ and tissue donors for the study of diabetes pathogenesis. Diabetes 73, 11–22 (2024).Article
Cohrs,C.M.,Chen,C.,Atkinson,M.A.,Drotar,D.M。&Speier,S。弥合差距:用于研究糖尿病发病机理的器官和组织供体的胰腺组织切片。糖尿病73,11-22(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bertolini, T. B. et al. Role of orally induced regulatory T cells in immunotherapy and tolerance. Cell. Immunol. 359, 104251 (2021).Article
Bertolini,T.B.等人。口服诱导的调节性T细胞在免疫治疗和耐受中的作用。细胞。免疫。359104251(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bacher, P. & Scheffold, A. The effect of regulatory T cells on tolerance to airborne allergens and allergen immunotherapy. J. Allergy Clin. Immunol. 142, 1697–1709 (2018).Article
Bacher,P。&Scheffold,A。调节性T细胞对空气过敏原和过敏原免疫疗法耐受性的影响。J、 过敏临床。免疫。1421697-1709(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bajzik, V. et al. Oral desensitization therapy for peanut allergy induces dynamic changes in peanut-specific immune responses. Allergy 77, 2534–2548 (2022). The PALISADE trial showed that oral peanut immunotherapy was very effective at inducing tolerance of peanuts in previously allergic patients and reduced the abundance of circulating peanut-reactive effector T cells, but did not influence peanut-reactive Treg cells.Article .
Bajzik,V。等人。花生过敏的口服脱敏疗法诱导花生特异性免疫应答的动态变化。过敏772534-2548(2022)。PALISADE试验表明,口服花生免疫疗法在诱导先前过敏患者对花生的耐受性方面非常有效,并降低了循环中花生反应性效应T细胞的丰度,但不影响花生反应性Treg细胞。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Syed, A. et al. Peanut oral immunotherapy results in increased antigen-induced regulatory T-cell function and hypomethylation of forkhead box protein 3 (FOXP3). J. Allergy Clin. Immunol. 133, 500–510, (2014).Article
Syed,A。等人。花生口服免疫疗法导致抗原诱导的调节性T细胞功能增加和叉头盒蛋白3(FOXP3)的低甲基化。J、 过敏临床。免疫。133500–510,(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Abdel-Gadir, A. et al. Oral immunotherapy with omalizumab reverses the Th2 cell-like programme of regulatory T cells and restores their function. Clin. Exp. Allergy 48, 825–836 (2018).Article
Abdel-Gadir,A。等人。奥马珠单抗口服免疫疗法可逆转调节性T细胞的Th2细胞样程序并恢复其功能。临床。实验过敏48825-836(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sharif, H. et al. Immunologic mechanisms of a short-course of Lolium perenne peptide immunotherapy: a randomized, double-blind, placebo-controlled trial. J. Allergy Clin. Immunol. 144, 738–749 (2019).Article
Sharif,H.等人。短程黑麦草多肽免疫疗法的免疫机制:一项随机、双盲、安慰剂对照试验。J、 过敏临床。免疫。144738-749(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sirvent, S. et al. Novel vaccines targeting dendritic cells by coupling allergoids to nonoxidized mannan enhance allergen uptake and induce functional regulatory T cells through programmed death ligand 1. J. Allergy Clin. Immunol. 138, 558–567.e511 (2016).Article
Sirvent,S。等人。通过将过敏原与非氧化甘露聚糖偶联来靶向树突状细胞的新型疫苗增强过敏原摄取并通过程序性死亡配体1诱导功能性调节性T细胞。J、 过敏临床。免疫。138558–567.e511(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Nieto, A. et al. First-in-human phase 2 trial with mite allergoids coupled to mannan in subcutaneous and sublingual immunotherapy. Allergy 77, 3096–3107 (2022).Article
Nieto,A.等人首次在皮下和舌下免疫疗法中使用螨类变态反应与甘露聚糖偶联的人类2期试验。过敏773096-3107(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Abdel-Gadir, A. et al. Microbiota therapy acts via a regulatory T cell MyD88/RORγt pathway to suppress food allergy. Nat. Med. 25, 1164–1174 (2019).Article
Abdel Gadir,A。等人,《微生物群疗法通过调节性T细胞MyD88/RORγT途径起作用以抑制食物过敏》,《自然医学》第251164-1174页(2019年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tchitchek, N. et al. Low-dose IL-2 shapes a tolerogenic gut microbiota that improves autoimmunity and gut inflammation. JCI Insight 7, e159406 (2022).Article
Tchitchek,N。等人。低剂量IL-2形成耐受性肠道微生物群,改善自身免疫和肠道炎症。。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Lamikanra, A. A. et al. The migratory properties and numbers of T regulatory cell subsets in circulation are differentially influenced by season and are associated with vitamin D status. Front. Immunol. 11, 685 (2020).Article
Lamikanra,A.A.等人。循环中T调节细胞亚群的迁移特性和数量受季节的不同影响,并与维生素D状态有关。正面。免疫。11685(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fisher, S. A. et al. The role of vitamin D in increasing circulating T regulatory cell numbers and modulating T regulatory cell phenotypes in patients with inflammatory disease or in healthy volunteers: a systematic review. PLoS One 14, e0222313 (2019).Article
Fisher,S.A.等人。维生素D在炎症性疾病患者或健康志愿者中增加循环T调节细胞数量和调节T调节细胞表型的作用:系统综述。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hahn, J. et al. Vitamin D and marine omega 3 fatty acid supplementation and incident autoimmune disease: VITAL randomized controlled trial. BMJ 376, e066452 (2022).Article
Hahn,J.等人,《维生素D和海洋ω3脂肪酸补充剂与突发性自身免疫性疾病:VITAL随机对照试验》。BMJ 376,e066452(2022)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Corte-Real, B. F. et al. Sodium perturbs mitochondrial respiration and induces dysfunctional Tregs. Cell Metab. 35, 299–315.e298 (2023).Article
钠扰乱线粒体呼吸并诱导功能失调的Tregs。细胞代谢。35299-315.e298(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15, 930–939 (2009).Article
Feuerer,M。等人。瘦肉但不肥胖的脂肪富含影响代谢参数的独特调节性T细胞群。《自然医学杂志》15930-939(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bradley, D. et al. Interferon gamma mediates the reduction of adipose tissue regulatory T cells in human obesity. Nat. Commun. 13, 5606 (2022).Article
Bradley,D。等人。干扰素γ介导人类肥胖中脂肪组织调节性T细胞的减少。国家公社。135606(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Wu, D. et al. Characterization of regulatory T cells in obese omental adipose tissue in humans. Eur. J. Immunol. 49, 336–347 (2019).Article
Wu,D.等人。人类肥胖网膜脂肪组织中调节性T细胞的表征。欧洲免疫学杂志。49336-347(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cignarella, F. et al. Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metab. 27, 1222–1235.e6 (2018).Article
Cignarella,F。等人。间歇性禁食通过改变肠道微生物群来保护中枢神经系统自身免疫。细胞代谢。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Langston, P. K. et al. Regulatory T cells shield muscle mitochondria from interferon-γ-mediated damage to promote the beneficial effects of exercise. Sci. Immunol. 8, eadi5377 (2023).Article
Langston,P.K。等人。调节性T细胞保护肌肉线粒体免受干扰素-γ介导的损伤,以促进运动的有益效果。科学。免疫。8,eadi5377(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Becker, M. et al. Regulatory T cells require IL6 receptor alpha signaling to control skeletal muscle function and regeneration. Cell Metab. 35, 1736–1751.e7 (2023). Mouse Treg cells require IL-6 signalling to mediate muscle repair.Article
调节性T细胞需要IL6受体α信号来控制骨骼肌功能和再生。细胞代谢。351736-1751.e7(2023)。小鼠Treg细胞需要IL-6信号传导来介导肌肉修复。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Burzyn, D. et al. A special population of regulatory T cells potentiates muscle repair. Cell 155, 1282–1295 (2013).Article
Burzyn,D。等人。调节性T细胞的特殊群体增强了肌肉修复。细胞1551282-1295(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Harris, F., Arroyo Berdugo, Y. & Tree, T. IL-2-based approaches to Treg enhancement. Clin. Exp. Immunol. 211, 149–163 (2022).Article
Harris,F.,Arroyo-Berdugo,Y。&Tree,T。基于IL-2的Treg增强方法。临床。实验免疫。211149-163(2022)。文章
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Koreth, J. et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N. Engl. J. Med. 365, 2055–2066 (2011).Article
Koreth,J。等人。移植物抗宿主病中的白细胞介素-2和调节性T细胞。N、 英语。J、 医学3652055-2066(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Saadoun, D. et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N. Engl. J. Med. 365, 2067–2077 (2011).Article
Saadoun,D。等人。HCV诱导的血管炎中调节性T细胞对低剂量白细胞介素-2的反应。N、 英语。J、 医学3652067-2077(2011)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rosenzwajg, M. et al. Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial. Ann. Rheum. Dis. 78, 209–217 (2019).Article
Rosenzwajg,M.等人。在一项单一的开放性临床试验中,低剂量白细胞介素-2对11种自身免疫性疾病的免疫学和临床效果。安。瑞姆。Dis。78209-217(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, S. X. et al. Low-dose IL-2 therapy limits the reduction in absolute numbers of circulating regulatory T cells in rheumatoid arthritis. Ther. Adv. Musculoskelet. Dis. 13, 1759720X211011370 (2021).Article
Zhang,S.X.等人。低剂量IL-2治疗限制了类风湿性关节炎中循环调节性T细胞绝对数量的减少。他们。高级肌肉骨骼。Dis。131759720x211011370(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
He, J. et al. Efficacy and safety of low-dose IL-2 in the treatment of systemic lupus erythematosus: a randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 79, 141–149 (2020).Article
He,J.等人。低剂量IL-2治疗系统性红斑狼疮的疗效和安全性:一项随机、双盲、安慰剂对照试验。安。瑞姆。Dis。79141-149(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Humrich, J. Y. et al. Low-dose interleukin-2 therapy in active systemic lupus erythematosus (LUPIL-2): a multicentre, double-blind, randomised and placebo-controlled phase II trial. Ann. Rheum. Dis. 81, 1685–1694 (2022).Article
Humrich,J.Y.等人。活动性系统性红斑狼疮(LUPIL-2)的低剂量白细胞介素-2治疗:一项多中心,双盲,随机和安慰剂对照的II期临床试验。安。瑞姆。Dis。811685-1694(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rosenzwajg, M. et al. Low-dose IL-2 in children with recently diagnosed type 1 diabetes: a phase I/II randomised, double-blind, placebo-controlled, dose-finding study. Diabetologia 63, 1808–1821 (2020).Article
Rosenzwajg,M.等人。最近诊断为1型糖尿病的儿童的低剂量IL-2:I/II期随机,双盲,安慰剂对照,剂量发现研究。糖尿病学631808-1821(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Murakami, N. et al. Low-dose interleukin-2 promotes immune regulation in face transplantation: a pilot study. Am. J. Transpl. 23, 549–558 (2023).Article
Murakami,N。等人。低剂量白细胞介素-2促进面部移植的免疫调节:一项初步研究。美国交通杂志。23549-558(2023)。文章
Google Scholar
谷歌学者
Lim, T. Y. et al. Low dose interleukin-2 selectively expands circulating regulatory T cells but fails to promote liver allograft tolerance in humans. J. Hepatol. 78, 153–164 (2023).Article
Lim,T.Y.等人。低剂量白细胞介素-2选择性地扩增循环调节性T细胞,但不能促进人类肝脏同种异体移植耐受。J、 肝病。78153-164(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Todd, J. A. et al. Regulatory T cell responses in participants with type 1 diabetes after a single dose of interleukin-2: a non-randomised, open label, adaptive dose-finding trial. PLoS Med. 13, e1002139 (2016).Article
Todd,J.A.等人,《单剂量白细胞介素-2后1型糖尿病患者的调节性T细胞反应:一项非随机、开放标签、适应性剂量发现试验》。《公共科学图书馆学杂志》第13期,e1002139(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
McQuaid, S. L. et al. Low-dose IL-2 induces CD56bright NK regulation of T cells via NKp44 and NKp46. Clin. Exp. Immunol. 200, 228–241 (2020).Article
McQuaid,S.L.等人。低剂量IL-2通过NKp44和NKp46诱导T细胞的CD56bright NK调节。临床。实验免疫。200228-241(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Tchao, N. et al. Ab0432 efavaleukin alfa, a novel Il-2 mutein, selectively expands regulatory T cells in patients with sle: final results of a phase 1b multiple ascending dose study. Ann. Rheum. Dis. 81, 1343–1344 (2022).Article
Tchao,N.等人Ab0432 efavaleukin alfa是一种新型Il-2突变蛋白,可选择性扩增sle患者的调节性T细胞:1b期多剂量递增研究的最终结果。安。瑞姆。Dis。811343-1344(2022)。文章
Google Scholar
谷歌学者
Fanton, C. et al. Selective expansion of regulatory T cells by NKTR-358 in healthy volunteers and patients with systemic lupus erythematosus. J. Transl. Autoimmun. 5, 100152 (2022).Article
Fanton,C.等人。NKTR-358在健康志愿者和系统性红斑狼疮患者中选择性扩增调节性T细胞。J、 翻译。自身免疫。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nektar announces promising new and corrected rezpegaldesleukin efficacy data which were previously reported in 2022 and incorrectly calculated by former collaborator Eli Lilly & Company. PR Newswire (7 August 2023); https://www.prnewswire.com/news-releases/nektar-announces-promising-new-and-corrected-rezpegaldesleukin-efficacy-data-which-were-previously-reported-in-2022-and-incorrectly-calculated-by-former-collaborator-eli-lilly--company-301894443.html.VanDyke, D.
Nektar宣布了有希望的新的和校正的rezpegaldesleukin疗效数据,这些数据先前是在2022年报告的,由前合作者礼来公司错误计算的。PR Newswire(2023年8月7日);https://www.prnewswire.com/news-releases/nektar-announces-promising-new-and-corrected-rezpegaldesleukin-efficacy-data-which-were-previously-reported-in-2022-and-incorrectly-calculated-by-former-collaborator-eli-lilly--company-301894443.html.VanDyke,D。
et al. Engineered human cytokine/antibody fusion proteins expand regulatory T cells and confer autoimmune disease protection. Cell Rep. 41, 111478 (2022). An anti-IL-2 antibody complexed with IL-2 selectively expands Treg cells to protect against multiple preclinical autoimmune diseases.Article .
工程化的人类细胞因子/抗体融合蛋白可扩增调节性T细胞并赋予自身免疫性疾病保护作用。。与IL-2复合的抗IL-2抗体选择性地扩增Treg细胞以防止多种临床前自身免疫疾病。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Stremska, M. E. et al. IL233, a novel IL-2 and IL-33 hybrid cytokine, ameliorates renal injury. J. Am. Soc. Nephrol. 28, 2681–2693 (2017).Article
Stremska,M.E。等人IL233是一种新型的IL-2和IL-33杂合细胞因子,可改善肾损伤。J、 美国社会肾脏病学会。282681-2693(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Venkatadri, R. et al. Hybrid cytokine IL233 renders protection in murine acute graft vs host disease (aGVHD). Cell. Immunol. 364, 104345 (2021).Article
Venkatadri,R。等人。杂交细胞因子IL233在小鼠急性移植物抗宿主病(aGVHD)中提供保护。细胞。免疫。364104345(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Benne, N., Ter Braake, D., Stoppelenburg, A. J. & Broere, F. Nanoparticles for inducing antigen-specific T cell tolerance in autoimmune diseases. Front. Immunol. 13, 864403 (2022).Article
Benne,N.,Ter Braake,D.,Stoppelenburg,A.J。&Broere,F。纳米粒子用于诱导自身免疫性疾病中的抗原特异性T细胞耐受性。正面。免疫。13864403(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Krienke, C. et al. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science 371, 145–153 (2021). A nanoparticle loaded with autoantigen-encoding m1Ψ mRNA expands Treg cells to treat a mouse model of multiple sclerosis.Article
Krienke,C。等人。一种用于治疗实验性自身免疫性脑脊髓炎的非炎性mRNA疫苗。科学371145-153(2021)。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Prasad, S. et al. Tolerogenic Ag-PLG nanoparticles induce tregs to suppress activated diabetogenic CD4 and CD8 T cells. J. Autoimmun. 89, 112–124 (2018).Article
Prasad,S。等人。致耐受性Ag-PLG纳米颗粒诱导tregs抑制活化的致糖尿病CD4和CD8 T细胞。J、 自身免疫。89112-124(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Liu, Q. et al. Use of polymeric nanoparticle platform targeting the liver to induce treg-mediated antigen-specific immune tolerance in a pulmonary allergen sensitization model. ACS Nano 13, 4778–4794 (2019).Article
Liu,Q。等人。使用靶向肝脏的聚合物纳米颗粒平台在肺过敏原致敏模型中诱导treg介导的抗原特异性免疫耐受。ACS Nano 134778–4794(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Maldonado, R. A. et al. Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. Proc. Natl Acad. Sci. USA 112, E156–E165 (2015).Article
Maldonado,R.A。等人。用于诱导抗原特异性免疫耐受的聚合物合成纳米颗粒。程序。国家科学院。科学。美国112,E156–E165(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Casey, L. M. et al. Conjugation of transforming growth factor beta to antigen-loaded poly(lactide- co-glycolide) nanoparticles enhances efficiency of antigen-specific tolerance. Bioconjug. Chem. 29, 813–823 (2018).Article
Casey,L.M.等人。将转化生长因子β与抗原负载的聚(丙交酯-共-乙交酯)纳米颗粒结合可提高抗原特异性耐受的效率。生物共轭。。29813-823(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rhodes, K. R. et al. Bioengineered particles expand myelin-specific regulatory T cells and reverse autoreactivity in a mouse model of multiple sclerosis. Sci. Adv. 9, eadd8693 (2023).Article
生物工程颗粒在多发性硬化症小鼠模型中扩增髓鞘特异性调节性T细胞并逆转自身反应性。科学。Adv.9,eadd8693(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Kivitz, A. et al. Phase 2 dose-finding study in patients with gout using SEL-212, a novel PEGylated uricase (SEL-037) combined with tolerogenic nanoparticles (SEL-110). Rheumatol. Ther. 10, 825–847 (2023).Article
Kivitz,A。等人。使用SEL-212(一种新型聚乙二醇化尿酸酶(SEL-037)与致耐受性纳米颗粒(SEL-110)联合治疗痛风患者的2期剂量发现研究。风湿病。他们。10825-847(2023)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Kishimoto, T. K. et al. Rapamycin nanoparticles increase the therapeutic window of engineered interleukin-2 and drive expansion of antigen-specific regulatory T cells for protection against autoimmune disease. J. Autoimmun. 140, 103125 (2023).Article
Kishimoto,T.K.等人雷帕霉素纳米颗粒增加了工程化白细胞介素-2的治疗窗口,并驱动抗原特异性调节性T细胞的扩增,以防止自身免疫性疾病。J、 自身免疫。140103125(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Fraser, H. et al. A rapamycin-based GMP-compatible process for the isolation and expansion of regulatory T cells for clinical trials. Mol. Ther. Methods Clin. Dev. 8, 198–209 (2018).Article
Fraser,H.等人。一种基于雷帕霉素的GMP兼容工艺,用于临床试验中调节性T细胞的分离和扩增。摩尔热。方法临床。第8198-209页(2018年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Hoffmann, P. et al. Only the CD45RA+ subpopulation of CD4+CD25high T cells gives rise to homogeneous regulatory T-cell lines upon in vitro expansion. Blood 108, 4260–4267 (2006).Article
Hoffmann,P。等人。只有CD4+CD25高T细胞的CD45RA+亚群在体外扩增时产生均匀的调节性T细胞系。血液1084260-4267(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hoffmann, P. et al. Loss of FOXP3 expression in natural human CD4+CD25+ regulatory T cells upon repetitive in vitro stimulation. Eur. J. Immunol. 39, 1088–1097 (2009).Article
Hoffmann,P。等人。重复体外刺激后天然人CD4+CD25+调节性T细胞中FOXP3表达的丧失。欧洲免疫学杂志。391088-1097(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Brown, M. E. et al. Human CD4+CD25+CD226- Tregs demonstrate increased purity, lineage stability, and suppressive capacity versus CD4+CD25+CD127lo/- Tregs for adoptive cell therapy. Front. Immunol. 13, 873560 (2022).Article
Brown,M.E。等人。人类CD4+CD25+CD226-Tregs与CD4+CD25+CD127lo/-Tregs相比,在过继细胞治疗中表现出更高的纯度,谱系稳定性和抑制能力。正面。免疫。13873560(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Opstelten, R. et al. GPA33: a marker to identify stable human regulatory T cells. J. Immunol. 204, 3139–3148 (2020).Article
Opstelten,R。等人。GPA33:鉴定稳定的人类调节性T细胞的标记。J、 。2043139-3148(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Seay, H. R. et al. Expansion of human Tregs from cryopreserved umbilical cord blood for GMP-compliant autologous adoptive cell transfer therapy. Mol. Ther. Methods Clin. Dev. 4, 178–191 (2017).Article
Seay,H.R.等人。从冷冻保存的脐带血中扩增人Tregs,用于符合GMP的自体过继细胞转移疗法。摩尔热。方法临床。第4178-191页(2017年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Motwani, K. et al. Human regulatory T cells from umbilical cord blood display increased repertoire diversity and lineage stability relative to adult peripheral blood. Front. Immunol. 11, 611 (2020).Article
Motwani,K。等人。相对于成人外周血,来自脐带血的人类调节性T细胞显示出增加的谱系多样性和谱系稳定性。正面。免疫。11611(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Brunstein, C. G. et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood 117, 1061–1070 (2011).Article
Brunstein,C.G.等人,《移植脐带血的成人体外扩增T调节细胞的输注:安全性和检测动力学》。血液1171061-1070(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Brunstein, C. G. et al. Umbilical cord blood-derived T regulatory cells to prevent GVHD: kinetics, toxicity profile, and clinical effect. Blood 127, 1044–1051 (2016).Article
Brunstein,C.G.等人。脐带血来源的T调节细胞预防GVHD:动力学,毒性特征和临床效果。血液1271044-1051(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kellner, J. N. et al. Third party, umbilical cord blood derived regulatory T-cells for prevention of graft versus host disease in allogeneic hematopoietic stem cell transplantation: feasibility, safety and immune reconstitution. Oncotarget 9, 35611–35622 (2018).Article
Kellner,J.N.等人,《第三方,脐带血来源的调节性T细胞,用于预防异基因造血干细胞移植中的移植物抗宿主病:可行性,安全性和免疫重建》。Oncotarget935611-35622(2018)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Gladstone, D. E. et al. Randomized, double blinded, placebo controlled trial of allogeneic cord blood T-regulatory cell for treatment of COVID-19 ARDS. Blood Adv. 7, 3075–3079 (2023).Article
Gladstone,D.E.等人。同种异体脐血T调节细胞治疗COVID-19 ARDS的随机,双盲,安慰剂对照试验。血液Adv.73075–3079(2023)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Caplan, H. W. et al. Human cord blood-derived regulatory T-cell therapy modulates the central and peripheral immune response after traumatic brain injury. Stem Cell Transl. Med. 9, 903–916 (2020).Article
Caplan,H.W。等人。人脐带血来源的调节性T细胞疗法调节创伤性脑损伤后的中枢和外周免疫反应。干细胞转运。医学杂志9903-916(2020)。文章
Google Scholar
谷歌学者
Lyu, M. A. et al. Allogeneic cord blood regulatory T cells can resolve lung inflammation. Cytotherapy 25, 245–253 (2023).Article
Lyu,M.A.等人。同种异体脐血调节性T细胞可以解决肺部炎症。细胞疗法25245-253(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dijke, I. E. et al. Discarded human thymus is a novel source of stable and long-lived therapeutic regulatory T cells. Am. J. Transpl. 16, 58–71 (2016).Article
丢弃的人胸腺是稳定和长寿的治疗性调节性T细胞的新来源。美国交通杂志。16,58-71(2016)。文章
CAS
中科院
Google Scholar
谷歌学者
Romano, M. et al. Isolation and expansion of thymus-derived regulatory T cells for use in pediatric heart transplant patients. Eur. J. Immunol. 51, 2086–2092 (2021).Article
Romano,M.等人。用于小儿心脏移植患者的胸腺衍生调节性T细胞的分离和扩增。欧洲免疫学杂志。512086-2092(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bernaldo-de-Quiros, E. et al. A novel GMP protocol to produce high-quality Treg cells from the pediatric thymic tissue to be employed as cellular therapy. Front. Immunol. 13, 893576 (2022).Article
Bernaldo de Quiros,E.等人。一种新的GMP方案,用于从儿科胸腺组织中产生高质量的Treg细胞,用作细胞疗法。正面。免疫。13893576(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
MacDonald, K. N. et al. Consequences of adjusting cell density and feed frequency on serum-free expansion of thymic regulatory T cells. Cytotherapy 24, 1121–1135 (2022).Article
MacDonald,K.N.等人。调节细胞密度和进食频率对胸腺调节性T细胞无血清扩增的影响。细胞疗法241121-1135(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bernaldo-de-Quiros, E. et al. First-in-human therapy with Treg produced from thymic tissue (thyTreg) in a heart transplant infant. J. Exp. Med. 220, e20231045 (2023). Autologous thymic Treg cells administered to a patient receiving a heart transplant enabled Treg cell engraftment and was not associated with adverse effects.Article .
Bernaldo de Quiros,E.等人首次在心脏移植婴儿中用胸腺组织(thyTreg)产生的Treg进行人体治疗。J、 实验医学220,e20231045(2023)。。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
MacMillan, M. L. et al. First-in-human phase 1 trial of induced regulatory T cells for graft-versus-host disease prophylaxis in HLA-matched siblings. Blood Adv. 5, 1425–1436 (2021).Article
MacMillan,M.L.等人首次在HLA匹配的兄弟姐妹中进行诱导调节性T细胞预防移植物抗宿主病的人类1期临床试验。血液杂志51425-1436(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Schmidt, A., Eriksson, M., Shang, M. M., Weyd, H. & Tegner, J. Comparative analysis of protocols to induce human CD4+Foxp3+ regulatory T cells by combinations of IL-2, TGF-beta, retinoic acid, rapamycin and butyrate. PLoS One 11, e0148474 (2016).Article
Schmidt,A.,Eriksson,M.,Shang,M.M.,Weyd,H。&Tegner,J。通过IL-2,TGF-β,视黄酸,雷帕霉素和丁酸的组合诱导人CD4+Foxp3+调节性T细胞的方案的比较分析。PLoS One 11,e0148474(2016)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Cook, L. et al. Induction of stable human FOXP3+ Tregs by a parasite-derived TGF-β mimic. Immunol. Cell Biol. 99, 833–847 (2021).Article
Cook,L.等人。通过寄生虫衍生的TGF-β模拟物诱导稳定的人FOXP3+Tregs。免疫。细胞生物学。99833-847(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Yano, H. et al. Human iPSC-derived CD4+ Treg-like cells engineered with chimeric antigen receptors control GvHD in a xenograft model. Cell Stem Cell 31, 795–802.e6 (2024). First published report of successful generation of human Treg cells from induced pluripotent stem cells.Article .
Yano,H。等人。用嵌合抗原受体工程化的人iPSC衍生的CD4+Treg样细胞在异种移植模型中控制GvHD。细胞干细胞31795–802.e6(2024)。首次发表了从诱导多能干细胞成功产生人类Treg细胞的报告。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Fong, H. et al. A serum- and feeder-free system to generate CD4 and regulatory T cells from human iPSCs. Preprint at BioRxiv https://doi.org/10.1101/2023.07.01.547333 (2023).Article
Fong,H。等人。一种从人iPSC产生CD4和调节性T细胞的无血清和无饲养系统。BioRxiv预印本https://doi.org/10.1101/2023.07.01.547333(2023年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sato, Y. et al. Human-engineered Treg-like cells suppress FOXP3-deficient T cells but preserve adaptive immune responses in vivo. Clin. Transl. Immunol. 9, e1214 (2020).Article
Sato,Y。等人。人类工程Treg样细胞抑制FOXP3缺陷型T细胞,但在体内保持适应性免疫应答。临床。。免疫。9,e1214(2020)。文章
CAS
中科院
Google Scholar
谷歌学者
Honaker, Y. et al. Gene editing to induce FOXP3 expression in human CD4+ T cells leads to a stable regulatory phenotype and function. Sci. Transl. Med 12, eaay6422 (2020).Article
Honaker,Y。等人。在人类CD4+T细胞中诱导FOXP3表达的基因编辑导致稳定的调节表型和功能。科学。。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Santoni de Sio, F. R. et al. Ectopic FOXP3 expression preserves primitive features of human hematopoietic stem cells while impairing functional T cell differentiation. Sci. Rep. 7, 15820 (2017).Article
Santoni de Sio,F.R.等人。异位FOXP3表达保留了人类造血干细胞的原始特征,同时损害了功能性T细胞的分化。科学。代表715820(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Masiuk, K. E., Laborada, J., Roncarolo, M. G., Hollis, R. P. & Kohn, D. B. Lentiviral gene therapy in HSCs restores lineage-specific Foxp3 expression and suppresses autoimmunity in a mouse model of IPEX syndrome. Cell Stem Cell 24, 309–317.e7 (2019).Article
Masiuk,K.E.,Laborada,J.,Roncarolo,M.G.,Hollis,R.P。&Kohn,D.B。HSC中的慢病毒基因治疗可恢复谱系特异性Foxp3表达并抑制IPEX综合征小鼠模型中的自身免疫。细胞干细胞24309-317.e7(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Seng, A. et al. Coexpression of FOXP3 and a Helios isoform enhances the effectiveness of human engineered regulatory T cells. Blood Adv. 4, 1325–1339 (2020).Article
Seng,A。等人。FOXP3和Helios亚型的共表达增强了人类工程调节性T细胞的有效性。血液杂志41325-1339(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sato, Y. et al. A novel FOXP3 knockout-humanized mouse model for pre-clinical safety and efficacy evaluation of Treg-like cell products. Mol. Ther. Methods Clin. Dev. 31, 101150 (2023). Humanized mouse model to test effects of Treg cell therapies on intestinal inflammation; proof of concept that basiliximab can be used as a safety switch.Article .
Sato,Y.等人。一种新型FOXP3基因敲除人源化小鼠模型,用于Treg样细胞产物的临床前安全性和有效性评估。摩尔热。方法临床。德文31101150(2023)。人源化小鼠模型,以测试Treg细胞疗法对肠道炎症的影响;巴利昔单抗可用作安全开关的概念证明。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Bluestone, J. A., McKenzie, B. S., Beilke, J. & Ramsdell, F. Opportunities for Treg cell therapy for the treatment of human disease. Front. Immunol. 14, 1166135 (2023).Article
Bluestone,J.A.,McKenzie,B.S.,Beilke,J。&Ramsdell,F。Treg细胞疗法治疗人类疾病的机会。正面。免疫。141166135(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Sawitzki, B. et al. Regulatory cell therapy in kidney transplantation (The ONE Study): a harmonised design and analysis of seven non-randomised, single-arm, phase 1/2A trials. Lancet 395, 1627–1639 (2020). A multi-site, phase 1/2A trial reported that autologous polyclonal Treg cellular therapy is safe in kidney transplantation and reduces the expected incidence of viral complications.Article .
Sawitzki,B。等人,《肾移植中的调节性细胞疗法(ONE研究):七项非随机单臂1/2A期试验的协调设计和分析》。柳叶刀3951627-1639(2020)。一项多部位1/2A期试验报道,自体多克隆Treg细胞治疗在肾移植中是安全的,并降低了病毒并发症的预期发生率。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Roemhild, A. et al. Regulatory T cells for minimising immune suppression in kidney transplantation: phase I/IIa clinical trial. BMJ 371, m3734 (2020).Article
Roemhild,A。等人。肾移植中免疫抑制最小化的调节性T细胞:I/IIa期临床试验。BMJ 371,m3734(2020)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Brook, M. O. et al. Transplantation Without Overimmunosuppression (TWO) study protocol: a phase 2b randomised controlled single-centre trial of regulatory T cell therapy to facilitate immunosuppression reduction in living donor kidney transplant recipients. BMJ Open 12, e061864 (2022).Article .
。BMJ公开赛12,e061864(2022)。文章。
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Brook, M. O. et al. Late treatment with autologous expanded regulatory T-cell therapy after alemtuzumab induction is safe and facilitates immunosuppression minimization in living donor renal transplantation. Transplantation 108, 2278–2286 (2024).Article
Brook,M.O.等人。阿仑单抗诱导后自体扩大调节性T细胞治疗的晚期治疗是安全的,并且有助于活体供体肾移植中免疫抑制的最小化。移植1082278-2286(2024)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Meyer, E. H. et al. Transplantation of donor grafts with defined ratio of conventional and regulatory T cells in HLA-matched recipients. JCI Insight 4, 127244 (2019).Article
Meyer,E.H.等人。HLA匹配受体中常规和调节性T细胞比例确定的供体移植物移植。JCI Insight 4127244(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Landwehr-Kenzel, S. et al. Adoptive transfer of ex vivo expanded regulatory T cells improves immune cell engraftment and therapy-refractory chronic GvHD. Mol. Ther. 30, 2298–2314 (2022).Article
Landwehr-Kenzel,S.等人。过继转移离体扩增的调节性T细胞可改善免疫细胞植入和治疗难治性慢性GvHD。摩尔热。302298-2314(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Whangbo, J. et al. A phase 1 study of donor regulatory T-cell infusion plus low-dose interleukin-2 for steroid-refractory chronic graft-vs-host disease. Blood Adv. 6, 5786–5796 (2022).Article
Whangbo,J.等人。供体调节性T细胞输注加低剂量白细胞介素-2治疗类固醇难治性慢性移植物抗宿主病的1期研究。血液杂志65786-5796(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Meyer, E. H. et al. Orca-T, a precision Treg-engineered donor product, prevents acute GVHD with less immunosuppression in an early multicenter experience with myeloablative HLA-matched transplants. Blood 136, 47–48 (2020). Orca Bio’s Orca-T cell product, consisting of a dose of Treg cells and CD34+ cells followed by conventional T cell administration, reduced the risk of GVHD in patients with haematologic malignancies.Article .
Meyer,E.H.等人的Orca-T是一种精确的Treg工程供体产品,在早期多中心的清髓性HLA匹配移植经验中,可以预防急性GVHD,免疫抑制较少。血液136,47-48(2020)。Orca Bio的Orca-T细胞产品由一定剂量的Treg细胞和CD34+细胞组成,然后常规T细胞给药,可降低血液恶性肿瘤患者发生GVHD的风险。文章。
Google Scholar
谷歌学者
Villar-Prados, A. et al. Phase 1 trial results for patients with advanced hematologic malignancies undergoing reduced intensity allogeneic HCT with orca-T donor cell therapy product and single agent tacrolimus. Blood 142, 3560 (2023).Article
Villar-Prados,A。等人对晚期血液系统恶性肿瘤患者进行orca-T供体细胞治疗产品和单药他克莫司降低强度同种异体HCT的1期临床试验结果。。文章
Google Scholar
谷歌学者
Marek-Trzonkowska, N. et al. Therapy of type 1 diabetes with CD4+CD25highCD127− regulatory T cells prolongs survival of pancreatic islets — results of one year follow-up. Clin. Immunol. 153, 23–30 (2014).Article
Marek Trzonkowska,N.等人。用CD4+CD25highCD127-调节性T细胞治疗1型糖尿病可延长胰岛的存活时间-一年随访结果。临床。免疫。153,23-30(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Marek-Trzonkowska, N. et al. Administration of CD4+CD25highCD127− regulatory T cells preserves β-cell function in type 1 diabetes in children. Diabetes Care 35, 1817–1820 (2012).Article
Marek-Trzonkowska,N。等人。CD4+CD25highCD127-调节性T细胞的施用保留了儿童1型糖尿病的β细胞功能。糖尿病护理351817-1820(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zielinski, M. et al. Combined therapy with CD4+ CD25highCD127− T regulatory cells and anti-CD20 antibody in recent-onset type 1 diabetes is superior to monotherapy: randomized phase I/II trial. Diabetes Obes. Metab. 24, 1534–1543 (2022). A combination of polyclonal Treg cells and rituximab significantly enhanced c-peptide preservation in patients with recent-onset T1D.Article .
Zielinski,M.等人。在近期发作的1型糖尿病中,CD4+CD25highCD127-T调节细胞和抗CD20抗体的联合治疗优于单一疗法:随机I/II期试验。糖尿病Obes。代谢。241534-1543(2022)。多克隆Treg细胞和利妥昔单抗的组合显着增强了近期发作的T1D患者的c肽保存。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bluestone, J. A. et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci. Transl. Med. 7, 315ra189 (2015).Article
Bluestone,J.A。等人。使用多克隆调节性T细胞的1型糖尿病免疫治疗。科学。。医学杂志7315RA189(2015)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Bender, C. et al. A phase 2 randomized trial with autologous polyclonal expanded regulatory T cells in children with new-onset type 1 diabetes. Sci. Transl. Med. 16, eadn2404 (2024). A phase 2 autologous polyclonal Treg cell therapy trial showed no clinical benefit in children with recent onset type 1 diabetes.Article .
Bender,C.等人,一项针对新发1型糖尿病儿童的自体多克隆扩增调节性T细胞的2期随机试验。科学。。医学16,eadn2404(2024)。一项2期自体多克隆Treg细胞治疗试验显示,近期发作的1型糖尿病儿童没有临床益处。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dall’Era, M. et al. Adoptive Treg cell therapy in a patient with systemic lupus erythematosus. Arthritis Rheumatol. 71, 431–440 (2019).Article
Dall'Era,M.等人。系统性红斑狼疮患者的过继性Treg细胞治疗。风湿性关节炎。71431-440(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Voskens, C. et al. Autologous regulatory T-cell transfer in refractory ulcerative colitis with concomitant primary sclerosing cholangitis. Gut 72, 49–53 (2022).Article
Voskens,C。等人。难治性溃疡性结肠炎伴原发性硬化性胆管炎的自体调节性T细胞转移。肠道72,49-53(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Boardman, D. A., Jacob, J., Smyth, L. A., Lombardi, G. & Lechler, R. I. What is direct allorecognition? Curr. Transpl. Rep. 3, 275–283 (2016).Article
Boardman,D.A.,Jacob,J.,Smyth,L.A.,Lombardi,G。和Lechler,R.I。什么是直接同种异体识别?货币。运输。代表3275-283(2016)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Putnam, A. L. et al. Clinical grade manufacturing of human alloantigen-reactive regulatory T cells for use in transplantation. Am. J. Transpl. 13, 3010–3020 (2013).Article
。美国交通杂志。133010-3020(2013)。文章
CAS
中科院
Google Scholar
谷歌学者
Guinan, E. C. et al. Donor antigen-specific regulatory T cell administration to recipients of live donor kidneys: a ONE Study consortium pilot trial. Am. J. Transpl. 23, 1872–1881 (2023).Article
Guinan,E.C.等人,《活体供肾受者的供体抗原特异性调节性T细胞给药:一项单一研究联盟试点试验》。美国交通杂志。231872-1881(2023)。文章
Google Scholar
谷歌学者
Tang, Q. et al. Selective decrease of donor-reactive Tregs after liver transplantation limits Treg therapy for promoting allograft tolerance in humans. Sci. Transl. Med. 14, eabo2628 (2022).Article
Tang,Q。等人。肝移植后供体反应性Tregs的选择性降低限制了Treg治疗促进人类同种异体移植耐受。科学。。医学杂志14,eabo2628(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Ezzelarab, M. B. et al. Ex vivo expanded donor alloreactive regulatory T cells lose immunoregulatory, proliferation, and antiapoptotic markers after infusion into ATG-lymphodepleted, nonhuman primate heart allograft recipients. Transplantation 105, 1965–1979 (2021).Article
Ezzelarab,M.B。等人。体外扩增的供体同种异体反应性调节性T细胞在输注到ATG淋巴耗尽的非人灵长类心脏同种异体移植受体后失去免疫调节,增殖和抗凋亡标志物。移植1051965-1979(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Tuomela, K., Salim, K. & Levings, M. K. Eras of designer Tregs: harnessing synthetic biology for immune suppression. Immunol. Rev. 320, 250–267 (2023).Article
Tuomela,K.,Salim,K。&Levings,M.K。设计师Tregs的时代:利用合成生物学进行免疫抑制。免疫。修订版320250–267(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hull, C. M. et al. Generation of human islet-specific regulatory T cells by TCR gene transfer. J. Autoimmun. 79, 63–73 (2017).Article
Hull,C.M.等人。通过TCR基因转移产生人胰岛特异性调节性T细胞。J、 自身免疫。79,63-73(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yang, S. J. et al. Pancreatic islet-specific engineered Tregs exhibit robust antigen-specific and bystander immune suppression in type 1 diabetes models. Sci. Transl. Med. 14, eabn1716 (2022). Generation of antigen-specific, therapeutic Treg cells by editing conventional T cells to over-express FOXP3 and diabetes relevant TCRs.Article .
Yang,S.J.等人。胰岛特异性工程化Tregs在1型糖尿病模型中表现出强大的抗原特异性和旁观者免疫抑制。科学。。医学14,eabn1716(2022)。通过编辑常规T细胞以过表达FOXP3和糖尿病相关TCR来产生抗原特异性治疗性Treg细胞。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cook, P. J. et al. A chemically inducible IL-2 receptor signaling complex allows for effective in vitro and in vivo selection of engineered CD4+ T cells. Mol. Ther. 31, 2472–2488 (2023).Article
Cook,P.J。等人。化学诱导的IL-2受体信号复合物允许在体外和体内有效选择工程化CD4+T细胞。摩尔热。312472-2488(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Boardman, D. A. & Levings, M. K. Emerging strategies for treating autoimmune disorders with genetically modified Treg cells. J. Allergy Clin. Immunol. 149, 1–11 (2022).Article
。J、 过敏临床。免疫。149,1-11(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dawson, N. A. et al. Systematic testing and specificity mapping of alloantigen-specific chimeric antigen receptors in regulatory T cells. JCI Insight 4, e123672 (2019).PubMed
Dawson,N.A。等人。调节性T细胞中同种异体抗原特异性嵌合抗原受体的系统测试和特异性作图。JCI Insight 4,e123672(2019)。PubMed出版社
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Muller, Y. D. et al. Precision engineering of an anti-HLA-A2 chimeric antigen receptor in regulatory T cells for transplant immune tolerance. Front. Immunol. 12, 686439 (2021).Article
Muller,Y.D.等人。移植免疫耐受调节性T细胞中抗HLA-A2嵌合抗原受体的精确工程。正面。免疫。12686439(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Wagner, J. C., Ronin, E., Ho, P., Peng, Y. & Tang, Q. Anti-HLA-A2-CAR Tregs prolong vascularized mouse heterotopic heart allograft survival. Am. J. Transpl. 22, 2237–2245 (2022).Article
。美国交通杂志。222237-2245(2022)。文章
CAS
中科院
Google Scholar
谷歌学者
Boroughs, A. C. et al. Chimeric antigen receptor costimulation domains modulate human regulatory T cell function. JCI Insight 5, e126194 (2019).Article
Boroughs,A.C.等人。嵌合抗原受体共刺激结构域调节人类调节性T细胞功能。JCI Insight 5,e126194(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Rosado-Sanchez, I. et al. Regulatory T cells integrate native and CAR-mediated co-stimulatory signals for control of allograft rejection. JCI Insight 8, e167215 (2023).Article
Rosado Sanchez,I。等人。调节性T细胞整合天然和CAR介导的共刺激信号以控制同种异体移植排斥反应。JCI Insight 8,e167215(2023)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Imura, Y., Ando, M., Kondo, T., Ito, M. & Yoshimura, A. CD19-targeted CAR regulatory T cells suppress B cell pathology without GvHD. JCI Insight 5, e136185 (2020).Article
Imura,Y.,Ando,M.,Kondo,T.,Ito,M。&Yoshimura,A。靶向CD19的CAR调节性T细胞抑制B细胞病理而没有GvHD。JCI Insight 5,e136185(2020)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Bolivar-Wagers, S. et al. Murine CAR19 Tregs suppress acute graft-versus-host disease and maintain graft-versus-tumor responses. JCI Insight 7, e160674 (2022).Article
Bolivar Wagers,S。等人。鼠CAR19 Tregs抑制急性移植物抗宿主病并维持移植物抗肿瘤反应。JCI Insight 7,e160674(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shimabukuro-Vornhagen, A. et al. Cytokine release syndrome. J. Immunother. Cancer 6, 56 (2018).Article
Shimabukuro-Vornhagen,A。等人。细胞因子释放综合征。J、 免疫疗法。癌症6,56(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Doglio, M. et al. Regulatory T cells expressing CD19-targeted chimeric antigen receptor restore homeostasis in systemic lupus erythematosus. Nat. Commun. 15, 2542 (2024). FOXP3-overexpressing CD19-CAR Treg cells restrict autoantibody production in a humanized mouse model of systemic lupus erythematosus in the absence of toxicity.Article .
Doglio,M。等人。表达CD19靶向嵌合抗原受体的调节性T细胞恢复系统性红斑狼疮的体内平衡。国家公社。152542(2024)。过表达FOXP3的CD19-CAR Treg细胞在没有毒性的情况下限制了系统性红斑狼疮的人源化小鼠模型中自身抗体的产生。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Spanier, J. A. et al. Tregs with an MHC class II peptide-specific chimeric antigen receptor prevent autoimmune diabetes in mice. J. Clin. Invest. 133, e168601 (2023).CAS
具有MHC II类肽特异性嵌合抗原受体的Tregs可预防小鼠自身免疫性糖尿病。J、 临床。投资。133,e168601(2023)。中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Obarorakpor, N. et al. Regulatory T cells targeting a pathogenic MHC class II: Insulin peptide epitope postpone spontaneous autoimmune diabetes. Front. Immunol. 14, 1207108 (2023).Article
Obarorakpor,N。等人。靶向致病性MHC II类:胰岛素肽表位的调节性T细胞延缓自发性自身免疫性糖尿病。正面。免疫。141207108(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Rana, J. et al. CAR- and TRuC-redirected regulatory T cells differ in capacity to control adaptive immunity to FVIII. Mol. Ther. 29, 2660–2676 (2021).Article
Rana,J。等人。CAR和TRuC重定向的调节性T细胞在控制对FVIII的适应性免疫方面的能力不同。摩尔热。292660–2676(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Yoon, J. et al. FVIII-specific human chimeric antigen receptor T-regulatory cells suppress T- and B-cell responses to FVIII. Blood 129, 238–245 (2017).Article
Yoon,J。等人。FVIII特异性人嵌合抗原受体T调节细胞抑制T细胞和B细胞对FVIII的反应。血液129238-245(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Boardman, D. A. et al. Flagellin-specific human CAR Tregs for immune regulation in IBD. J. Autoimmun. 134, 102961 (2023).Article
Boardman,D.A。等人。用于IBD免疫调节的鞭毛蛋白特异性人CAR Tregs。J、 自身免疫。134102961(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
McGovern, J., Holler, A., Thomas, S. & Stauss, H. J. Forced Fox-P3 expression can improve the safety and antigen-specific function of engineered regulatory T cells. J. Autoimmun. 132, 102888 (2022).Article
McGovern,J.,Holler,A.,Thomas,S。&Stauss,H.J。强制Fox-P3表达可以提高工程调节性T细胞的安全性和抗原特异性功能。J、 自身免疫。132102888(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Lamarche, C. et al. Tonic-signaling chimeric antigen receptors drive human regulatory T cell exhaustion. Proc. Natl Acad. Sci. USA 120, e2219086120 (2023).Article
Lamarche,C。等人。滋补信号嵌合抗原受体驱动人类调节性T细胞耗竭。程序。国家科学院。科学。美国120,e2219086120(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lamarthee, B. et al. Transient mTOR inhibition rescues 4-1BB CAR-Tregs from tonic signal-induced dysfunction. Nat. Commun. 12, 6446 (2021).Article
Lamarthee,B。等人。瞬时mTOR抑制从强直信号诱导的功能障碍中拯救4-1BB CAR Tregs。国家公社。126446(2021年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Ratnasothy, K. et al. IL-2 therapy preferentially expands adoptively transferred donor-specific Tregs improving skin allograft survival. Am. J. Transpl. 19, 2092–2100 (2019).Article
Ratnasothy,K。等人。IL-2疗法优先扩大过继转移的供体特异性Tregs,改善皮肤同种异体移植物的存活。美国交通杂志。192092-2100(2019)。文章
CAS
中科院
Google Scholar
谷歌学者
Cabello-Kindelan, C. et al. Immunomodulation followed by antigen-specific Treg infusion controls islet autoimmunity. Diabetes 69, 215–227 (2020).Article
Cabello-Kindelan,C。等人。免疫调节随后抗原特异性Treg输注控制胰岛自身免疫。糖尿病69215-227(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Muckenhuber, M. et al. Optimum timing of antithymocyte globulin in relation to adoptive regulatory T cell therapy. Am. J. Transpl. 23, 84–92 (2023).Article
Muckenhuber,M。等人。抗胸腺细胞球蛋白与过继性调节性T细胞疗法的最佳时机。美国交通杂志。23,84-92(2023)。文章
Google Scholar
谷歌学者
Camirand, G. & Riella, L. V. Treg-centric view of immunosuppressive drugs in transplantation: a balancing act. Am. J. Transpl. 17, 601–610 (2017).Article
Camirand,G。&Riella,L。V。Treg以移植免疫抑制药物为中心的观点:平衡行为。美国交通杂志。17601-610(2017)。文章
CAS
中科院
Google Scholar
谷歌学者
Amini, L. et al. CRISPR-Cas9-edited tacrolimus-resistant antiviral T cells for advanced adoptive immunotherapy in transplant recipients. Mol. Ther. 29, 32–46 (2021).Article
Amini,L.等人,CRISPR-Cas9编辑的他克莫司耐药抗病毒T细胞,用于移植受者的晚期过继免疫治疗。摩尔热。29,32-46(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Poirot, L. et al. Multiplex genome-edited T-cell manufacturing platform for “off-the-shelf” adoptive T-cell immunotherapies. Cancer Res. 75, 3853–3864 (2015).Article
Poirot,L.等人。多重基因组编辑的T细胞制造平台,用于“现成”过继性T细胞免疫疗法。癌症研究753853-3864(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sockolosky, J. T. et al. Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science 359, 1037–1042 (2018).Article
Sockolosky,J.T。等人。使用正交IL-2细胞因子受体复合物选择性靶向工程化T细胞。科学3591037-1042(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Zhang, Q. et al. A human orthogonal IL-2 and IL-2Rβ system enhances CAR T cell expansion and antitumor activity in a murine model of leukemia. Sci. Transl. Med. 13, eabg6986 (2021).Article
Zhang,Q。等人。人类正交IL-2和IL-2Rβ系统在白血病小鼠模型中增强CAR T细胞扩增和抗肿瘤活性。科学。。医学杂志13,eabg6986(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ramos, T. L. et al. Prevention of acute GVHD using an orthogonal IL-2/IL-2Rβ system to selectively expand regulatory T cells in vivo. Blood 141, 1337–1352 (2023).Article
Ramos,T.L.等人。使用正交IL-2/IL-2Rβ系统在体内选择性扩增调节性T细胞来预防急性GVHD。血液1411337-1352(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Hirai, T. et al. Selective expansion of regulatory T cells using an orthogonal IL-2/IL-2 receptor system facilitates transplantation tolerance. J. Clin. Invest. 131, e139991 (2021).Article
Hirai,T。等人。使用正交IL-2/IL-2受体系统选择性扩增调节性T细胞有助于移植耐受。J、 临床。投资。131,e139991(2021)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Bittner, S. et al. Biosensors for inflammation as a strategy to engineer regulatory T cells for cell therapy. Proc. Natl Acad. Sci. USA 119, e2208436119 (2022). Expression of CARs with TNFR family cytokine receptors on the exterior portion allows Treg cells to be activated by generalized inflammation.Article .
Bittner,S.等人,《炎症生物传感器》,作为设计调节性T细胞用于细胞治疗的策略。程序。国家科学院。科学。美国119,e2208436119(2022)。在外部部分表达具有TNFR家族细胞因子受体的CAR允许Treg细胞被全身炎症激活。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Sicard, A. et al. Donor-specific chimeric antigen receptor Tregs limit rejection in naive but not sensitized allograft recipients. Am. J. Transpl. 20, 1562–1573 (2020).Article
Sicard,A。等人。供体特异性嵌合抗原受体Tregs限制了幼稚但未致敏的同种异体移植受者的排斥反应。美国交通杂志。201562-1573(2020)。文章
CAS
中科院
Google Scholar
谷歌学者
Mohseni, Y. R. et al. Chimeric antigen receptor-modified human regulatory T cells that constitutively express IL-10 maintain their phenotype and are potently suppressive. Eur. J. Immunol. 51, 2522–2530 (2021).Article
Mohseni,Y。R。等人。组成型表达IL-10的嵌合抗原受体修饰的人调节性T细胞维持其表型并具有有效的抑制作用。欧洲免疫学杂志。512522-2530(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cook, L. et al. Suppressive and gut-reparative functions of human type 1 T regulatory cells. Gastroenterology 157, 1584–1598 (2019).Article
Cook,L.等人。人类1型T调节细胞的抑制和肠道修复功能。胃肠病学1571584-1598(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Stadtmauer, E. A. et al. CRISPR-engineered T cells in patients with refractory cancer. Science 367, eaba7365 (2020).Article
Stadtmauer,E.A。等人,CRISPR工程化T细胞在难治性癌症患者中的应用。科学367,eaba7365(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hu, Y. et al. Safety and efficacy of CRISPR-based non-viral PD1 locus specifically integrated anti-CD19 CAR-T cells in patients with relapsed or refractory Non-Hodgkin’s lymphoma: a first-in-human phase I study. EClinicalMedicine 60, 102010 (2023).Article
Hu,Y.等人。基于CRISPR的非病毒PD1基因座特异性整合抗CD19 CAR-T细胞在复发或难治性非霍奇金淋巴瘤患者中的安全性和有效性:人类第一阶段研究。EClinicalMedicine 60102010(2023)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
McCallion, O. et al. Matching or genetic engineering of HLA Class I and II facilitates successful allogeneic ‘off-the-shelf’ regulatory T cell therapy. Preprint at bioRxiv https://doi.org/10.1101/2023.08.06.551956 (2023).Article
HLA I类和II类的匹配或基因工程有助于成功的同种异体“现成”调节性T细胞治疗。bioRxiv预印本https://doi.org/10.1101/2023.08.06.551956(2023年)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Gornalusse, G. G. et al. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat. Biotechnol. 35, 765–772 (2017).Article
表达HLA-E的多能干细胞逃避同种异体反应和NK细胞的裂解。美国国家生物技术公司。35765-772(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Jo, S. et al. Endowing universal CAR T-cell with immune-evasive properties using TALEN-gene editing. Nat. Commun. 13, 3453 (2022).Article
Jo,S.等人使用TALEN基因编辑赋予通用CAR T细胞免疫逃避特性。国家公社。133453(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Li, W. et al. Simultaneous editing of TCR, HLA-I/II and HLA-E resulted in enhanced universal CAR-T resistance to allo-rejection. Front. Immunol. 13, 1052717 (2022).Article
Li,W。等人。同时编辑TCR,HLA-I/II和HLA-E导致增强的通用CAR-T对同种异体排斥的抗性。正面。免疫。131052717(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Jandus, C. et al. Interactions between Siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance. J. Clin. Invest. 124, 1810–1820 (2014).Article
Jandus,C。等人。Siglec-7/9受体和配体之间的相互作用影响NK细胞依赖性肿瘤免疫监视。J、 临床。投资。1241810–1820(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Deuse, T. et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat. Biotechnol. 37, 252–258 (2019).Article
Deuse,T。等人。诱导多能干细胞的低免疫原性衍生物在完全免疫活性的同种异体受体中逃避免疫排斥。美国国家生物技术公司。37252-258(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Saleh, R. & Elkord, E. FoxP3+ T regulatory cells in cancer: prognostic biomarkers and therapeutic targets. Cancer Lett. 490, 174–185 (2020).Article
Saleh,R。&Elkord,E。癌症中的FoxP3+T调节细胞:预后生物标志物和治疗靶标。癌症Lett。490174-185(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Baur, A. S. et al. Denileukin diftitox (ONTAK) induces a tolerogenic phenotype in dendritic cells and stimulates survival of resting Treg. Blood 122, 2185–2194 (2013).Article
Baur,A.S。等人Denileukin diftitox(ONTAK)在树突状细胞中诱导致耐受性表型并刺激静息Treg的存活。血液1222185-2194(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kawai, H. et al. Phase II study of E7777 in Japanese patients with relapsed/refractory peripheral and cutaneous T-cell lymphoma. Cancer Sci. 112, 2426–2435 (2021).Article
Kawai,H。等。日本复发/难治性外周和皮肤T细胞淋巴瘤患者E7777的II期研究。癌症科学。1122426-2435(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Solomon, I. et al. CD25-Treg-depleting antibodies preserving IL-2 signaling on effector T cells enhance effector activation and antitumor immunity. Nat. Cancer 1, 1153–1166 (2020).Article
。《自然癌症》11153-1166(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Revenko, A. et al. Direct targeting of FOXP3 in Tregs with AZD8701, a novel antisense oligonucleotide to relieve immunosuppression in cancer. J. Immunother. Cancer 10, e003892 (2022).Article
Revenko,A。等人。用AZD8701直接靶向Tregs中的FOXP3,AZD8701是一种新型反义寡核苷酸,可缓解癌症的免疫抑制。J、 免疫疗法。癌症10,e003892(2022)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Nagira, Y. et al. S-531011, a novel anti-human CCR8 antibody, induces potent antitumor responses through depletion of tumor-infiltrating CCR8-expressing regulatory T cells. Mol. Cancer Ther. 22, 1063–1072 (2023). A human CCR8 antibody depletes intratumoral Treg cells in a preclinical cancer model without inducing autoimmunity.Article .
Nagira,Y。等人S-531011是一种新型抗人CCR8抗体,通过消耗表达肿瘤浸润性CCR8的调节性T细胞诱导有效的抗肿瘤反应。分子癌症治疗。221063-1072(2023)。人CCR8抗体在临床前癌症模型中消耗肿瘤内Treg细胞而不诱导自身免疫。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Kidani, Y. et al. CCR8-targeted specific depletion of clonally expanded Treg cells in tumor tissues evokes potent tumor immunity with long-lasting memory. Proc. Natl Acad. Sci. USA 119, e2114282119 (2022).Article
Kidani,Y。等人。CCR8靶向特异性消耗肿瘤组织中克隆扩增的Treg细胞,可引起持久记忆的有效肿瘤免疫。程序。国家科学院。科学。美国119,e2114282119(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Chuckran, C. A. et al. Prevalence of intratumoral regulatory T cells expressing neuropilin-1 is associated with poorer outcomes in patients with cancer. Sci. Transl. Med. 13, eabf8495 (2021).Article
Chuckran,C.A。等人。表达神经毡蛋白-1的肿瘤内调节性T细胞的患病率与癌症患者的预后较差有关。科学。。医学杂志13,eabf8495(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Zhao, J. et al. Selective depletion of CD4+CD25+Foxp3+ regulatory T cells by low-dose cyclophosphamide is explained by reduced intracellular ATP levels. Cancer Res. 70, 4850–4858 (2010).Article
Zhao,J。等人。低剂量环磷酰胺选择性消耗CD4+CD25+Foxp3+调节性T细胞的原因是细胞内ATP水平降低。癌症研究704850-4858(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Herbst, R. S. et al. COAST: an open-label, phase II, multidrug platform study of durvalumab alone or in combination with oleclumab or monalizumab in patients with unresectable, stage III non-small-cell lung cancer. J. Clin. Oncol. 40, 3383–3393 (2022).Article
Herbst,R.S.等人COAST:一项针对无法切除的III期非小细胞肺癌患者的durvalumab单独或与olaclumab或monalizumab联合使用的开放标签II期多药平台研究。J、 临床。Oncol公司。403383-3393(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Long, G. V. et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol. 20, 1083–1097 (2019).Article
Long,G.V.等人,Epacadostat加pembrolizumab与安慰剂加pembrolizumab治疗不可切除或转移性黑色素瘤(ECHO-301/KEYNOTE-252):一项3期随机双盲研究。柳叶刀Oncol。201083-1097(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Eynde, B. J. V. D., Baren, N. V. & Baurain, J.-F. Is there a clinical future for IDO1 inhibitors after the failure of epacadostat in melanoma? Annu. Rev. Cancer Biol. 4, 241–256 (2020).Article
Eynde,B.J.V.D.,Baren,N.V.&Baurain,J.-F。在epacadostat治疗黑色素瘤失败后,IDO1抑制剂是否有临床前景?年。。4241-256(2020)。文章
Google Scholar
谷歌学者
Tang, K., Wu, Y. H., Song, Y. & Yu, B. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors in clinical trials for cancer immunotherapy. J. Hematol. Oncol. 14, 68 (2021).Article
Tang,K.,Wu,Y.H.,Song,Y。&Yu,B。吲哚胺2,3-双加氧酶1(IDO1)抑制剂在癌症免疫治疗的临床试验中。J、 血液学。Oncol公司。14,68(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Holmgaard, R. B. et al. Targeting the TGFβ pathway with galunisertib, a TGFβRI small molecule inhibitor, promotes anti-tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade. J. Immunother. Cancer 6, 47 (2018).Article
Holmgaard,R.B。等人用galunisertib(一种TGFβRI小分子抑制剂)靶向TGFβ途径,可促进抗肿瘤免疫力,从而产生持久的完全反应,如单一疗法和与检查点阻断相结合。J、 免疫疗法。癌症6,47(2018)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Hira, S. K. et al. Galunisertib drives Treg fragility and promotes dendritic cell-mediated immunity against experimental lymphoma. iScience 23, 101623 (2020).Article
Hira,S.K.等人Galunisertib驱动Treg脆性并促进树突状细胞介导的针对实验性淋巴瘤的免疫。iScience 23101623(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Yamazaki, T. et al. Galunisertib plus neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer: a single-arm, phase 2 trial. Lancet Oncol. 23, 1189–1200 (2022).Article
Yamazaki,T。等。Galunisertib联合新辅助放化疗治疗局部晚期直肠癌:单臂2期临床试验。柳叶刀Oncol。231189-1200(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tan, C. L. et al. PD-1 restraint of regulatory T cell suppressive activity is critical for immune tolerance. J. Exp. Med. 218, e20182232 (2021).Article
Tan,C.L.等人。PD-1抑制调节性T细胞抑制活性对于免疫耐受至关重要。J、 实验医学218,e20182232(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kamada, T. et al. PD-1+ regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc. Natl Acad. Sci. USA 116, 9999–10008 (2019).Article
Kamada,T。等人。通过PD-1阻断扩增的PD-1+调节性T细胞促进癌症的过度进展。程序。国家科学院。科学。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Kumagai, S. et al. The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies. Nat. Immunol. 21, 1346–1358 (2020). Tumours infiltrated with high numbers of Treg cells expressing PD-1 are at a higher risk of hyper-progressive disease post-PD-1 blockade.Article .
Kumagai,S。等人。效应T细胞和调节性T细胞之间的PD-1表达平衡预测了PD-1阻断疗法的临床疗效。自然免疫。211346-1358(2020)。表达PD-1的大量Treg细胞浸润的肿瘤在PD-1阻断后发生超进展性疾病的风险更高。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Simpson, T. R. et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J. Exp. Med. 210, 1695–1710 (2013).Article
Simpson,T.R。等人,肿瘤浸润性调节性T细胞的Fc依赖性消耗共同定义了抗CTLA-4疗法对黑素瘤的功效。J、 实验医学2101695-1710(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Romano, E. et al. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc. Natl Acad. Sci. USA 112, 6140–6145 (2015).Article
Romano,E.等人。Ipilimumab依赖性细胞介导的黑色素瘤患者非经典单核细胞离体调节性T细胞的细胞毒性。程序。国家科学院。科学。美国1126140–6145(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
van Pul, K. M. et al. Local delivery of low-dose anti-CTLA-4 to the melanoma lymphatic basin leads to systemic Treg reduction and effector T cell activation. Sci. Immunol. 7, eabn8097 (2022).Article
van Pul,K.M.等人。将低剂量抗CTLA-4局部递送至黑素瘤淋巴盆导致全身Treg减少和效应T细胞活化。科学。免疫。7,eabn8097(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Sharma, A. et al. Anti-CTLA-4 immunotherapy does not deplete FOXP3+ regulatory T cells (Tregs) in human cancers. Clin. Cancer Res. 25, 1233–1238 (2019).Article
Sharma,A。等人。抗CTLA-4免疫疗法不会消耗人类癌症中的FOXP3+调节性T细胞(Tregs)。临床。癌症研究251233-1238(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Alissafi, T., Hatzioannou, A., Legaki, A. I., Varveri, A. & Verginis, P. Balancing cancer immunotherapy and immune-related adverse events: the emerging role of regulatory T cells. J. Autoimmun. 104, 102310 (2019).Article
Alissafi,T.,Hatzioannou,A.,Legaki,A.I.,Varveri,A。&Verginis,P。平衡癌症免疫治疗和免疫相关不良事件:调节性T细胞的新兴作用。J、 自身免疫。104102310(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Luoma, A. M. et al. Molecular pathways of colon inflammation induced by cancer immunotherapy. Cell 182, 655–671.e22 (2020).Article
Luoma,A.M.等。癌症免疫疗法诱导的结肠炎症的分子途径。细胞182655-671.e22(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Kartolo, A., Sattar, J., Sahai, V., Baetz, T. & Lakoff, J. M. Predictors of immunotherapy-induced immune-related adverse events. Curr. Oncol. 25, e403–e410 (2018).Article
Kartolo,A.,Sattar,J.,Sahai,V.,Baetz,T。&Lakoff,J.M。免疫疗法诱导的免疫相关不良事件的预测因子。货币。Oncol公司。25,e403-e410(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Cortellini, A. et al. Correlations between the immune-related adverse events spectrum and efficacy of anti-PD1 immunotherapy In NSCLC patients. Clin. Lung Cancer 20, 237–247.e1 (2019).Article
Cortellini,A。等人。NSCLC患者免疫相关不良事件谱与抗PD1免疫疗法疗效之间的相关性。临床。肺癌20237-247.e1(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tombacz, I. et al. Highly efficient CD4+ T cell targeting and genetic recombination using engineered CD4+ cell-homing mRNA-LNPs. Mol. Ther. 29, 3293–3304 (2021).Article
Tombacz,I。等人。使用工程化CD4+细胞归巢mRNA LNPs进行高效CD4+T细胞靶向和基因重组。摩尔热。293293-3304(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).Article
Hou,X.,Zaks,T.,Langer,R。&Dong,Y。用于mRNA递送的脂质纳米颗粒。自然修订材料。61078-1094(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Monian, B. et al. Peanut oral immunotherapy differentially suppresses clonally distinct subsets of T helper cells. J. Clin. Invest. 132, e150634 (2022).Article
Monian,B.等人,《花生口服免疫疗法》差异性地抑制了T辅助细胞的克隆不同亚群。J、 临床。投资。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Kulis, M. et al. High- and low-dose oral immunotherapy similarly suppress pro-allergic cytokines and basophil activation in young children. Clin. Exp. Allergy 49, 180–189 (2019).Article
Kulis,M.等人。高剂量和低剂量口服免疫疗法类似地抑制幼儿的促过敏细胞因子和嗜碱性粒细胞活化。临床。实验过敏49180-189(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, Y. et al. Successful milk oral immunotherapy promotes generation of casein-specific CD137+ FOXP3+ regulatory T cells detectable in peripheral blood. Front. Immunol. 12, 705615 (2021).Article
Zhang,Y。等人。成功的牛奶口服免疫疗法促进了外周血中可检测到的酪蛋白特异性CD137+FOXP3+调节性T细胞的产生。正面。免疫。12705615(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
de Picciotto, S. et al. Selective activation and expansion of regulatory T cells using lipid encapsulated mRNA encoding a long-acting IL-2 mutein. Nat. Commun. 13, 3866 (2022). A nanoparticle carrying mRNA encoding an IL-2 mutein selectively expands Treg cells in mice and non-human primates.Article .
de Picciotto,S.等人。使用脂质包裹的编码长效IL-2突变蛋白的mRNA选择性激活和扩增调节性T细胞。国家公社。133866(2022)。携带编码IL-2突变蛋白的mRNA的纳米颗粒选择性地扩增小鼠和非人灵长类动物中的Treg细胞。文章。
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Podojil, J. R. et al. Tolerogenic immune-modifying nanoparticles encapsulating multiple recombinant pancreatic β cell proteins prevent onset and progression of type 1 diabetes in nonobese diabetic mice. J. Immunol. 209, 465–475 (2022).Article
。J、 。209465-475(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Arpaia, N. et al. A distinct function of regulatory T cells in tissue protection. Cell 162, 1078–1089 (2015).Article
Arpaia,N。等人。调节性T细胞在组织保护中的独特功能。细胞1621078-1089(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Yang, H. et al. Adoptive therapy with amyloid-β specific regulatory T cells alleviates Alzheimer’s disease. Theranostics 12, 7668–7680 (2022).Article
Yang,H。等人。用淀粉样蛋白-β特异性调节性T细胞过继治疗可缓解阿尔茨海默病。Theranostics 127668-7680(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Sheean, R. K. et al. Association of regulatory T-cell expansion with progression of amyotrophic lateral sclerosis: a study of humans and a transgenic mouse model. JAMA Neurol. 75, 681–689 (2018).Article
Sheean,R.K.等人。调节性T细胞扩增与肌萎缩侧索硬化症进展的关联:人类和转基因小鼠模型的研究。JAMA Neurol。75681-689(2018)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Zacchigna, S. et al. Paracrine effect of regulatory T cells promotes cardiomyocyte proliferation during pregnancy and after myocardial infarction. Nat. Commun. 9, 2432 (2018).Article
Zacchigna,S。等人。调节性T细胞的旁分泌作用促进妊娠期间和心肌梗塞后的心肌细胞增殖。国家公社。92432(2018)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Leung, O. M. et al. Regulatory T cells promote apelin-mediated sprouting angiogenesis in type 2 diabetes. Cell Rep. 24, 1610–1626 (2018).Article
Leung,O.M.等人。调节性T细胞促进2型糖尿病中apelin介导的发芽血管生成。Cell Rep.241610–1626(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ito, M. et al. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 565, 246–250 (2019).Article
Ito,M。等人。脑调节性T细胞抑制星形胶质细胞增生并增强神经恢复。自然565246-250(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yshii, L. et al. Astrocyte-targeted gene delivery of interleukin 2 specifically increases brain-resident regulatory T cell numbers and protects against pathological neuroinflammation. Nat. Immunol. 23, 878–891 (2022). Astrocyte-targeted IL-2 delivery expands brain Treg cells that protect against mouse models of traumatic brain injury, stroke and multiple sclerosis.Article .
白细胞介素2的星形胶质细胞靶向基因递送特异性地增加脑驻留调节性T细胞数量并防止病理性神经炎症。自然免疫。23878-891(2022)。星形胶质细胞靶向的IL-2递送扩大了脑Treg细胞,可防止创伤性脑损伤,中风和多发性硬化症的小鼠模型。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Park, T. Y. et al. Co-transplantation of autologous Treg cells in a cell therapy for Parkinson’s disease. Nature 619, 606–615 (2023).Article
Park,T.Y.等人。自体Treg细胞在帕金森病细胞治疗中的共移植。自然619606-615(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Download referencesAcknowledgementsThe authors’ work in this area is funded by the Canadian Institutes for Health Research (CIHR; FDN-154304), Juvenile Diabetes Research Foundation Canada (3-COE-2022-1103-M-B), U.S. Department of Defense/Reconstructive Transplant Research Program (HT94252310626), and the Leona M.
下载参考文献致谢作者在这方面的工作由加拿大卫生研究院(CIHR;FDN-154304),加拿大青少年糖尿病研究基金会(3-COE-2022-1103-M-B),美国国防部/重建移植研究计划(HT94252310626)和Leona M。
and Harry B. Helmsley Charitable Trust. C.M.W. is supported by a CIHR doctoral award. D.A.B. was supported by fellowships from the CIHR and Michael Smith Health Research BC. M.K.L. is Canada Research Chair in Immune Engineering and receives a Scientist Salary Award from the BC Children’s Hospital Research Institute.
和Harry B.Helmsley慈善信托基金。C、 M.W.获得了CIHR博士学位的支持。D、 。M、 K.L.是加拿大免疫工程研究主席,并获得不列颠哥伦比亚省儿童医院研究所颁发的科学家工资奖。
We thank K. Salim for providing sample flow plots displayed in Fig. 2.Author informationAuthors and AffiliationsBC Children’s Hospital Research Institute, Vancouver, British Columbia, CanadaChristine M. Wardell, Dominic A. Boardman & Megan K. LevingsDepartment of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, CanadaChristine M.
我们感谢K.Salim提供图2所示的样本流程图。作者信息作者和所属机构BC儿童医院研究所,不列颠哥伦比亚省温哥华,CanadaChristine M.Wardell,Dominic A.Boardman&Megan K.LevingsDepartment of Surgery,Faculty of Medicine,不列颠哥伦比亚大学,温哥华,不列颠哥伦比亚省,CanadaChristine M。
Wardell, Dominic A. Boardman & Megan K. LevingsSchool of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, CanadaMegan K. LevingsAuthorsChristine M. WardellView author publicationsYou can also search for this author in.
Wardell,Dominic A.Boardman&Megan K.LevingsSchool of Biomedical Engineering,不列颠哥伦比亚大学,温哥华,不列颠哥伦比亚,CanadaMegan K.LevingsAuthorsChristine M.WardellView作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarDominic A. BoardmanView author publicationsYou can also search for this author in
PubMed Google ScholarDominic A.BoardmanView作者出版物您也可以在
PubMed Google ScholarMegan K. LevingsView author publicationsYou can also search for this author in
PubMed Google ScholarMegan K.LevingsView作者出版物您也可以在
PubMed Google ScholarContributionsC.M.W. and M.K.L. conceived the article. All authors contributed to the research, writing and editing of the manuscript.Corresponding authorCorrespondence to
PubMed谷歌学术贡献中心。M、 。所有作者都为稿件的研究,撰写和编辑做出了贡献。对应作者对应
Megan K. Levings.Ethics declarations
。道德宣言
Competing interests
相互竞争的利益
M.K.L. is a science advisory board member for Anokion, advises for and holds shares in Integrated Nanotherapeutics, and is an inventor on patent applications related to A2-chimaeric antigen receptor regulatory T cells with licensed technology to Sangamo Therapeutics. C.M.W. and D.A.B. declare no competing interests..
M、 K.L.是Anokion的科学顾问委员会成员,为综合纳米治疗药物提供建议并持有其股份,并且是与A2嵌合抗原受体调节性T细胞相关的专利申请的发明人,拥有Sangamo Therapeutics的许可技术。C、 M.W.和D.A.B.声明没有利益冲突。。
Peer review
同行评审
Peer review information
同行评审信息
Nature Reviews Drug Discovery thanks Leonardo Ferreira and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
《自然评论》药物发现感谢莱昂纳多·费雷拉(LeonardoFerreira)和另一位匿名审稿人对这项工作的同行评审做出的贡献。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Related linksClinicalTrials.gov: https://clinicaltrials.gov/EudraCT: https://eudract.ema.europa.eu/Rights and permissionsSpringer Nature or its licensor (e.g.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。相关链接ClinicalTrials.gov:https://clinicaltrials.gov/EudraCT:(笑声)https://eudract.ema.europa.eu/Rights和许可证原告性质或其许可人(例如。
a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.Reprints and permissionsAbout this articleCite this articleWardell, C.M., Boardman, D.A.
协会或其他合作伙伴)根据与作者或其他权利持有人的出版协议对本文拥有专有权;。转载和许可本文引用本文沃德尔,C.M.,博德曼,D.A。
& Levings, M.K. Harnessing the biology of regulatory T cells to treat disease..
&Levings,M.K.利用调节性T细胞的生物学来治疗疾病。。
Nat Rev Drug Discov (2024). https://doi.org/10.1038/s41573-024-01089-xDownload citationAccepted: 25 October 2024Published: 16 December 2024DOI: https://doi.org/10.1038/s41573-024-01089-xShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Nat Rev Drug Discov(2024)。https://doi.org/10.1038/s41573-024-01089-xDownload引文接受日期:2024年10月25日发布日期:2024年12月16日OI:https://doi.org/10.1038/s41573-024-01089-xShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
Subjects
主题
Applied immunologyAutoimmunityCell deliveryImmunotherapyTranslational research
应用免疫学自动免疫细胞传递免疫治疗翻译研究