商务合作
动脉网APP
可切换为仅中文
AbstractPositive-sense single-stranded RNA (+ssRNA) viruses exert a profound influence on cellular organelles and metabolic pathway by usurping host processes to promote their replication. In this review, we present a portrait of selected cellular pathways perturbed in SARS-CoV-2 infection: the effect of viral translation, replication and assembly on the morphology and function of the ER, the remodelling of degradative pathways with a focus on the autophagic processes, and the alterations affecting cellular membranes and lipid metabolism.
摘要正义单链RNA(+ssRNA)病毒通过篡夺宿主过程促进其复制,对细胞器和代谢途径产生深远影响。在这篇综述中,我们介绍了SARS-CoV-2感染中受干扰的选定细胞途径的肖像:病毒翻译,复制和组装对ER形态和功能的影响,降解途径的重塑,重点是自噬过程,以及影响细胞膜和脂质代谢的改变。
For each of these cellular processes, we highlight the specific viral and host factors involved and their interplay in this microscopic tug-of-war between pro-viral and anti-viral effects that ultimately tip the scale toward the propagation or the resolution of the infection..
对于这些细胞过程中的每一个,我们都强调了所涉及的特定病毒和宿主因素及其在促病毒和抗病毒作用之间的微观拔河中的相互作用,最终将规模推向传播或解决感染。。
IntroductionSARS-CoV-2, the aetiological agent of the fast evolving COVID-19 pandemic, belongs to the group of β-coronaviruses within the Coronaviridae family (order Nidovirales) of +ssRNA viruses1,2. After viral entry mediated by the ACE-2 receptor, SARS-CoV-2 positive-sense RNA genome is directly translated into the large ORF1a and ORF1ab polyproteins, which are then cleaved in a total of 16 non-structural proteins (NSPs).
引言SARS-CoV-2是快速发展的COVID-19大流行的病原体,属于+ssRNA病毒的冠状病毒科(Nidovirales)中的β-冠状病毒组1,2。在ACE-2受体介导的病毒进入后,SARS-CoV-2阳性RNA基因组直接翻译成大的ORF1a和ORF1ab多蛋白,然后将其切割成总共16种非结构蛋白(NSP)。
The NSPs assemble to form the replication and transcription complex (RTC), containing the RNA-dependent RNA polymerase (RdRp), responsible for the transcription of subgenomic and genomic viral RNA. After the interaction between the newly synthesized genomic RNA and the Nucleocapsid (N) protein, new virions assemble at the ER—Golgi intermediate compartment (ERGIC) and are released through either the conventional secretory pathway or by exocytic lysosomes via multivesicular bodies (MVBs) (Fig.
NSP组装形成复制和转录复合物(RTC),包含RNA依赖性RNA聚合酶(RdRp),负责亚基因组和基因组病毒RNA的转录。在新合成的基因组RNA和核衣壳(N)蛋白之间的相互作用后,新的病毒粒子在ER-高尔基体中间区室(ERGIC)组装,并通过常规分泌途径或通过多囊泡体(MVB)的胞外溶酶体释放(图)。
1)3. Similarly to other +ssRNA viruses, genome replication occurs within the cytosol of the infected cells. However, the cytoplasm represents a hostile environment due to the presence of the innate immune sensors able to detect the viral RNA and the double-stranded RNA (dsRNA) replication intermediate.
1) 三。与其他+ssRNA病毒类似,基因组复制发生在感染细胞的胞质溶胶内。然而,由于存在能够检测病毒RNA和双链RNA(dsRNA)复制中间体的先天免疫传感器,细胞质代表了一种恶劣的环境。
To protect the dsRNA from the host immune sensing, +ssRNA genome replication occurs within specialised, virus-induced membrane-delimited compartments called viral replication organelles (vROs). The compartmentalisation and RNA replication step within the vROs brings several advantages: (i) the dsRNA present within the vROs interior cannot be reached by the cytosolic host immune sensors, (ii) the membrane-delimited environment allows to achieve higher local concentration of metabolites and factors required for RNA synthesis, and (iii) the separation between the rep.
为了保护dsRNA免受宿主免疫感应,+ssRNA基因组复制发生在称为病毒复制细胞器(VRO)的专门的,病毒诱导的膜分隔区室内。vROs内的区室化和RNA复制步骤带来了几个优点:(i)存在于vROs内部的dsRNA不能被胞质宿主免疫传感器达到,(ii)膜分隔的环境允许实现更高的局部代谢物浓度和RNA合成所需的因子,以及(iii)rep之间的分离。
Data availability
数据可用性
No datasets were generated or analysed during the current study.
在当前的研究中,没有生成或分析数据集。
ReferencesCui, X. et al. Future trajectory of SARS-CoV-2: Constant spillover back and forth between humans and animals. Virus Res. 328, 199075 (2023).Article
参考文献Cui,X。等人。SARS-CoV-2的未来轨迹:人与动物之间不断的来回溢出。Virus Res.328199075(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Araf, Y. et al. Omicron variant of SARS-CoV-2: Genomics, transmissibility, and responses to current COVID-19 vaccines. J. Med. Virol. 94, 1825–1832 (2022).Article
Araf,Y。等人。SARS-CoV-2的Omicron变体:基因组学,传播性和对当前COVID-19疫苗的反应。J、 医学博士Virol。941825-1832(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ghosh, S. et al. β-Coronaviruses Use Lysosomes for Egress Instead of the Biosynthetic Secretory Pathway. Cell 183, 1520–1535.e14 (2020).Article
Ghosh,S。等人。β-冠状病毒使用溶酶体作为出口,而不是生物合成分泌途径。细胞1831520-1535.e14(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Malone, B., Urakova, N., Snijder, E. J. & Campbell, E. A. Structures and functions of coronavirus replication–transcription complexes and their relevance for SARS-CoV-2 drug design. Nat. Rev. Mol. Cell Biol. 23, 21–39 (2022).Article
Malone,B.,Urakova,N.,Snijder,E.J。&Campbell,E.A。冠状病毒复制-转录复合物的结构和功能及其与SARS-CoV-2药物设计的相关性。Nat。Rev。Mol。Cell Biol。23,21-39(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Neufeldt, C. J. et al. SARS-CoV-2 infection induces a pro-inflammatory cytokine response through cGAS-STING and NF-κB. Commun. Biol. 5, 45 (2022).Article
Neufeldt,C.J。等人。SARS-CoV-2感染通过cGAS-STING和NF-κB诱导促炎细胞因子反应。Commun公司。生物学5,45(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ricciardi, S. et al. The role of NSP6 in the biogenesis of the SARS-CoV-2 replication organelle. Nature 606, 761–768 (2022).Article
Ricciardi,S。等人。NSP6在SARS-CoV-2复制细胞器生物发生中的作用。自然606761-768(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cortese, M. et al. Integrative Imaging Reveals SARS-CoV-2-Induced Reshaping of Subcellular Morphologies. Cell Host Microbe 28, 853–866.e5 (2020).Article
Cortese,M。等人。综合成像揭示了SARS-CoV-2诱导的亚细胞形态重塑。细胞宿主微生物28853-866.e5(2020)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Chen, D., Zhao, Y. G. & Zhang, H. Endomembrane remodeling in SARS-CoV-2 infection. Cell Insight 1, 100031 (2022).Article
Chen,D.,Zhao,Y.G。&Zhang,H。SARS-CoV-2感染中的内膜重塑。Cell Insight 1100031(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Andronov, L. et al. Nanoscale cellular organization of viral RNA and proteins in SARS-CoV-2 replication organelles. Nat. Commun. 15, 4644 (2024).Article
Andronov,L。等人。SARS-CoV-2复制细胞器中病毒RNA和蛋白质的纳米级细胞组织。国家公社。154644(2024)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Snijder, E. J. et al. A unifying structural and functional model of the coronavirus replication organelle: Tracking down RNA synthesis. PLOS Biol. 18, e3000715 (2020).Article
Snijder,E.J.等人。冠状病毒复制细胞器的统一结构和功能模型:追踪RNA合成。《公共科学图书馆·生物学》。18,e3000715(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Klein, S., Wachsmuth-Melm, M., Winter, S. L., Kolovou, A. & Chlanda, P. Cryo-correlative light and electron microscopy workflow for cryo-focused ion beam milled adherent cells. in Methods in Cell Biology vol. 162 273–302 (Elsevier, 2021).Bills, C. J. et al. Mutations in SARS-CoV-2 variant nsp6 enhance type-I interferon antagonism.
Klein,S.,Wachsmuth-Melm,M.,Winter,S.L.,Kolovou,A。&Chlanda,P。低温聚焦离子束研磨贴壁细胞的低温相关光学和电子显微镜工作流程。在《细胞生物学方法》第162卷273-302(Elsevier,2021)中。Bills,C.J。等人。SARS-CoV-2变体nsp6中的突变增强了I型干扰素的拮抗作用。
Emerg. Microbes Infect. 12, 2209208 (2023).Article .
紧急微生物感染。122209208(2023)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sergio, M. C., Ricciardi, S., Guarino, A. M., Giaquinto, L. & De Matteis, M. A. Membrane remodeling and trafficking piloted by SARS-CoV-2. Trends Cell Biol. 34, 785–800 (2024).Article
Sergio,M.C.,Ricciardi,S.,Guarino,A.M.,Giaquinto,L。和De Matteis,M.A。由SARS-CoV-2试点的膜重塑和运输。趋势细胞生物学。34785-800(2024)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Gavilán, E., Medina-Guzman, R., Bahatyrevich-Kharitonik, B. & Ruano, D. Protein quality control systems and ER stress as key players in SARS-CoV-2-induced neurodegeneration. Cells 13, 123 (2024).Article
Gavilán,E.,Medina-Guzman,R.,Bahatyrevich-Kharitonik,B。&Ruano,D。蛋白质质量控制系统和内质网应激是SARS-CoV-2诱导的神经变性的关键参与者。细胞13123(2024)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gong, Y., Qin, S., Dai, L. & Tian, Z. The glycosylation in SARS-CoV-2 and its receptor ACE2. Signal Transduct. Target. Ther. 6, 396 (2021).Article
Gong,Y.,Qin,S.,Dai,L。&Tian,Z。SARS-CoV-2及其受体ACE2中的糖基化。信号传输管。目标。他们。6396(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schjoldager, K. T., Narimatsu, Y., Joshi, H. J. & Clausen, H. Global view of human protein glycosylation pathways and functions. Nat. Rev. Mol. Cell Biol. 21, 729–749 (2020).Article
Schjoldager,K.T.,Narimatsu,Y.,Joshi,H.J。&Clausen,H。人类蛋白质糖基化途径和功能的全球观点。Nat。Rev。Mol。Cell Biol。21729-749(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Basha, B., Samuel, S. M., Triggle, C. R. & Ding, H. Endothelial dysfunction in diabetes mellitus: Possible involvement of endoplasmic reticulum stress? Exp. Diabetes Res. 2012, 1–14 (2012).Article
Basha,B.,Samuel,S.M.,Triggle,C.R。&Ding,H。糖尿病中的内皮功能障碍:内质网应激的可能参与?Exp.Diabetes Res.2012,1-14(2012)。文章
Google Scholar
谷歌学者
Puzyrenko, A. et al. Pneumocytes are distinguished by highly elevated expression of the ER stress biomarker GRP78, a co-receptor for SARS-CoV-2, in COVID-19 autopsies. Cell Stress Chaperones 26, 859–868 (2021).Article
Puzyrenko,A。等人。在COVID-19尸检中,肺细胞的特征在于内质网应激生物标志物GRP78(SARS-CoV-2的共同受体)的高度表达。细胞应激伴侣26859-868(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shin, W.-J., Ha, D. P., Machida, K. & Lee, A. S. The stress-inducible ER chaperone GRP78/BiP is upregulated during SARS-CoV-2 infection and acts as a pro-viral protein. Nat. Commun. 13, 6551 (2022).Article
。国家公社。136551(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rashid, F., Dzakah, E. E., Wang, H. & Tang, S. The ORF8 protein of SARS-CoV-2 induced endoplasmic reticulum stress and mediated immune evasion by antagonizing production of interferon beta. Virus Res. 296, 198350 (2021).Article
Rashid,F.,Dzakah,E.E.,Wang,H。&Tang,S。SARS-CoV-2的ORF8蛋白通过拮抗干扰素β的产生诱导内质网应激并介导免疫逃避。Virus Res.296198350(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Wang, X. et al. SARS-CoV-2 ORF8 protein induces endoplasmic reticulum stress-like responses and facilitates virus replication by triggering calnexin: An unbiased study. J. Virol. 97, e00011–e00023 (2023).Article
Wang,X。等人。SARS-CoV-2 ORF8蛋白诱导内质网应激样反应,并通过触发钙连蛋白促进病毒复制:一项无偏见的研究。J、 维罗尔。97,e00011–e00023(2023)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Davies, J. P. et al. Expression of SARS-CoV-2 Nonstructural Proteins 3 and 4 Can Tune the Unfolded Protein Response in Cell Culture. J. Proteome Res. 23, 356–367 (2024).Article
Davies,J.P。等人。SARS-CoV-2非结构蛋白3和4的表达可以调节细胞培养中未折叠的蛋白反应。J、 蛋白质组研究23356-367(2024)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ibrahim, I. M., Abdelmalek, D. H. & Elfiky, A. A. GRP78: A cell’s response to stress. Life Sci. 226, 156–163 (2019).Article
Ibrahim,I.M.,Abdelmalek,D.H。和Elfiky,A.A.GRP78:细胞对压力的反应。生命科学。226156-163(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, P. et al. SARS-CoV-2 ORF8 reshapes the ER through forming mixed disulfides with ER oxidoreductases. Redox Biol. 54, 102388 (2022).Article
Liu,P。等人。SARS-CoV-2 ORF8通过与ER氧化还原酶形成混合二硫化物来重塑ER。氧化还原生物。54102388(2022)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Nguyen, L. C. et al. SARS-CoV-2 diverges from other betacoronaviruses in only partially activating the IRE1α/XBP1 endoplasmic reticulum stress pathway in human lung-derived cells. mBio 13, e02415–e02422 (2022).Article
Nguyen,L.C.等人,SARS-CoV-2与其他β-冠状病毒不同,仅部分激活人肺源性细胞中的IRE1α/XBP1内质网应激途径。mBio 13,e02415–e02422(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Oda, J. M., Den Hartigh, A. B., Jackson, S. M., Tronco, A. R. & Fink, S. L. The unfolded protein response components IRE1α and XBP1 promote human coronavirus infection. mBio e00540-23. https://doi.org/10.1128/mbio.00540-23 (2023).Prasad, V. et al. Enhanced SARS-CoV-2 entry via UPR-dependent AMPK-related kinase NUAK2.
Oda,J.M.,Den Hartigh,A.B.,Jackson,S.M.,Tronco,A.R。&Fink,S.L。未折叠的蛋白质应答成分IRE1α和XBP1促进人类冠状病毒感染。mBio e00540-23。https://doi.org/10.1128/mbio.00540-23(2023年)。Prasad,V。等人通过UPR依赖性AMPK相关激酶NUAK2增强SARS-CoV-2的进入。
Mol. Cell 83, 2559–2577.e8 (2023).Article .
分子细胞832559-2577.e8(2023)。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Fernández, J. J. et al. The IRE1α-XBP1 arm of the unfolded protein response is a host factor activated in SARS-CoV-2 infection. Biochim. Biophys. Acta BBA Mol. Basis Dis. 1870, 167193 (2024).Article
Fernández,J.J.等人。未折叠蛋白反应的IRE1α-XBP1臂是SARS-CoV-2感染中激活的宿主因子。生物化学。生物物理。。1870167193(2024)。文章
Google Scholar
谷歌学者
Waisner, H. et al. SARS-CoV-2 harnesses host translational shutoff and autophagy to optimize virus yields: the role of the envelope (E) protein. Microbiol. Spectr. 11, e03707–e03722 (2023).Article
SARS-CoV-2利用宿主翻译关闭和自噬来优化病毒产量:包膜(E)蛋白的作用。微生物。光谱。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Keramidas, P., Papachristou, E., Papi, R. M., Mantsou, A. & Choli-Papadopoulou, T. Inhibition of PERK kinase, an orchestrator of the unfolded protein response (UPR), significantly reduces apoptosis and inflammation of lung epithelial cells triggered by SARS-CoV-2 ORF3a protein. Biomedicines 11, 1585 (2023).Article .
Keramidas,P.,Papachristou,E.,Papi,R.M.,Mantsou,A。&Choli-Papadopoulou,T。抑制PERK激酶(一种未折叠蛋白反应(UPR)的协调器)可显着减少由SARS-CoV-2 ORF3a蛋白触发的肺上皮细胞的凋亡和炎症。生物医学111585(2023)。文章。
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Oka, O. B. V. et al. Activation of the UPR sensor ATF6α is regulated by its redox-dependent dimerization and ER retention by ERp18. Proc. Natl. Acad. Sci. 119, e2122657119 (2022).Article
Oka,O.B.V.等人。UPR传感器ATF6α的激活受其氧化还原依赖性二聚化和ERp18保留ER的调节。程序。。阿卡德。科学。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Almasy, K. M., Davies, J. P. & Plate, L. Comparative host interactomes of the SARS-CoV-2 nonstructural protein 3 and human coronavirus homologs. Mol. Cell. Proteomics 20, 100120 (2021).Article
Almasy,K.M.,Davies,J.P。和Plate,L。SARS-CoV-2非结构蛋白3和人冠状病毒同源物的比较宿主相互作用组。摩尔电池。蛋白质组学20100120(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jassey, A. & Jackson, W. T. Viruses and autophagy: Bend, but don’t break. Nat. Rev. Microbiol. 22, 309–321 (2024).Article
Jassey,A。&Jackson,W.T。病毒和自噬:弯曲,但不要断裂。自然修订版微生物学。22309-321(2024)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Twu, W.-I. et al. Contribution of autophagy machinery factors to HCV and SARS-CoV-2 replication organelle formation. Cell Rep. 37, 110049 (2021).Article
Twu,W.-I.等人。自噬机制因子对HCV和SARS-CoV-2复制细胞器形成的贡献。Cell Rep.37110049(2021)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Kemball, C. C. et al. Coxsackievirus infection induces autophagy-like vesicles and megaphagosomes in pancreatic acinar cells in vivo. J. Virol. 84, 12110–12124 (2010).Article
柯萨奇病毒感染在体内诱导胰腺腺泡细胞中的自噬样囊泡和巨噬体。J、 维罗尔。8412110-12124(2010)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Choi, Y., Bowman, J. W. & Jung, J. U. Autophagy during viral infection — a double-edged sword. Nat. Rev. Microbiol. 16, 341–354 (2018).Article
Choi,Y.,Bowman,J.W。和Jung,J.U。病毒感染期间的自噬-一把双刃剑。自然修订版微生物学。16341-354(2018)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Koepke, L., Hirschenberger, M., Hayn, M., Kirchhoff, F. & Sparrer, K. M. Manipulation of autophagy by SARS-CoV-2 proteins. Autophagy 17, 2659–2661 (2021).Article
Koepke,L.,Hirschenberger,M.,Hayn,M.,Kirchhoff,F。&Sparrer,K.M。通过SARS-CoV-2蛋白操纵自噬。自噬172659-2661(2021)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Tabata, K. et al. Convergent use of phosphatidic acid for hepatitis C virus and SARS-CoV-2 replication organelle formation. Nat. Commun. 12, 7276 (2021).Article
Tabata,K。等人。磷脂酸在丙型肝炎病毒和SARS-CoV-2复制细胞器形成中的融合应用。国家公社。127276(2021)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Hui, X. et al. SARS-CoV-2 promote autophagy to suppress type I interferon response. Signal Transduct. Target. Ther. 6, 180 (2021).Article
Hui,X。等人。SARS-CoV-2促进自噬以抑制I型干扰素反应。信号传输管。目标。他们。6180(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gassen, N. C. et al. SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals. Nat. Commun. 12, 3818 (2021).Article
Gassen,N.C。等人,SARS-CoV-2介导的代谢和自噬失调揭示了宿主靶向抗病毒药物。国家公社。123818(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Miao, G. et al. ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation. Dev. Cell 56, 427–442.e5 (2021).Article
Miao,G。等人,新型冠状病毒SARS-CoV-2的ORF3a阻断了啤酒花复合物介导的自体溶酶体形成所需的SNARE复合物的组装。开发单元56427–442.e5(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Hou, P. et al. The ORF7a protein of SARS-CoV-2 initiates autophagy and limits autophagosome-lysosome fusion via degradation of SNAP29 to promote virus replication. Autophagy 19, 551–569 (2023).Article
Hou,P。等人。SARS-CoV-2的ORF7a蛋白通过降解SNAP29来促进病毒复制,从而启动自噬并限制自噬体-溶酶体融合。自噬19551-569(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Li, F. et al. SARS-CoV-2 spike promotes inflammation and apoptosis through autophagy by ROS-suppressed PI3K/AKT/mTOR signaling. Biochim. Biophys. Acta BBA Mol. Basis Dis. 1867, 166260 (2021).Article
Li,F。等人。SARS-CoV-2尖峰通过ROS抑制的PI3K/AKT/mTOR信号传导通过自噬促进炎症和细胞凋亡。生物化学。生物物理。。1867166260(2021)。文章
Google Scholar
谷歌学者
Zhang, Y. et al. The SARS-CoV-2 protein ORF3a inhibits fusion of autophagosomes with lysosomes. Cell Discov. 7, 31 (2021).Article
Zhang,Y。等人。SARS-CoV-2蛋白ORF3a抑制自噬体与溶酶体的融合。细胞Discov。7,31(2021)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Tan, X. et al. Coronavirus subverts ER-phagy by hijacking FAM134B and ATL3 into p62 condensates to facilitate viral replication. Cell Rep. 42, 112286 (2023).Article
Tan,X。等人。冠状病毒通过将FAM134B和ATL3劫持成p62凝聚物以促进病毒复制来破坏ER吞噬。细胞代表42112286(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Su, W., Yu, X. & Zhou, C. SARS-CoV-2 ORF3a induces incomplete autophagy via the unfolded protein response. Viruses 13, 2467 (2021).Article
Su,W.,Yu,X。&Zhou,C。SARS-CoV-2 ORF3a通过未折叠的蛋白质反应诱导不完全自噬。病毒132467(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Koči, J., Novotová, M., Sláviková, M., Klempa, B. & Zahradník, I. SARS-CoV-2 exploits non-canonical autophagic processes to replicate, mature, and egress the infected vero E6 cells. Pathogens 11, 1535 (2022).Article
Koči,J.,Novotová,M.,Sláviková,M.,Klempa,B。&Zahradník,i。SARS-CoV-2利用非经典自噬过程来复制,成熟和排出感染的vero E6细胞。病原体111535(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ji, M. et al. VMP1 and TMEM41B are essential for DMV formation during β-coronavirus infection. J. Cell Biol. 221, e202112081 (2022).Article
Ji,M。等人。VMP1和TMEM41B对于β-冠状病毒感染期间DMV的形成至关重要。J、 。221,e202112081(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, X. et al. SARS-CoV-2 ORF10 suppresses the antiviral innate immune response by degrading MAVS through mitophagy. Cell. Mol. Immunol. 19, 67–78 (2022).Article
Li,X。等人。SARS-CoV-2 ORF10通过线粒体自噬降解MAVS来抑制抗病毒先天免疫反应。细胞。分子免疫。19,67-78(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Han, L. et al. SARS‐CoV‐2 ORF10 antagonizes STING‐dependent interferon activation and autophagy. J. Med. Virol. 94, 5174–5188 (2022).Article
Han,L。等人。SARS-CoV-2 ORF10拮抗STING依赖性干扰素激活和自噬。J、 医学博士Virol。945174-5188(2022)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Sui, C. et al. SARS-CoV-2 NSP13 inhibits type I IFN production by degradation of TBK1 via p62-dependent selective autophagy. J. Immunol. 208, 753–761 (2022).Article
Sui,C。等人。SARS-CoV-2 NSP13通过p62依赖性选择性自噬降解TBK1来抑制I型IFN的产生。J、 免疫。208753-761(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, Y. et al. The ORF8 protein of SARS-CoV-2 mediates immune evasion through down-regulating MHC-Ι. Proc. Natl. Acad. Sci. 118, e2024202118 (2021).Article
Zhang,Y。等人。SARS-CoV-2的ORF8蛋白通过下调MHC-Ⅰ介导免疫逃避。程序。。阿卡德。科学。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Barbati, C. et al. Autophagy hijacking in PBMC From COVID-19 patients results in lymphopenia. Front. Immunol. 13, 903498 (2022).Article
Barbati,C。等人。COVID-19患者PBMC中的自噬劫持导致淋巴细胞减少。正面。免疫。13903498(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nguyen, M. et al. High plasma concentration of non-esterified polyunsaturated fatty acids is a specific feature of severe COVID-19 pneumonia. Sci. Rep. 11, 10824 (2021).Article
Nguyen,M.等人。血浆中高浓度的非酯化多不饱和脂肪酸是严重新型冠状病毒肺炎的一个特征。科学。代表1110824(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Törnquist, K. et al. Golipids as modulators of SARS-CoV-2 infection. Front Cell Dev. Biol. 9, 689854 (2021).Article
Törnquist,K。等人。Golipids作为SARS-CoV-2感染的调节剂。前细胞发育生物学。9689854(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Carpinteiro, A. et al. Pharmacological Inhibition of Acid Sphingomyelinase Prevents Uptake of SARS-CoV-2 by Epithelial Cells. Cell Rep. Med. 1, 100142 (2020).Article
Carpinteiro,A。等人。酸性鞘磷脂酶的药理学抑制作用可防止上皮细胞摄取SARS-CoV-2。细胞代表医学1100142(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Farley, S. E. et al. A global lipid map reveals host dependency factors conserved across SARS-CoV-2 variants. Nat. Commun. 13, 3487 (2022).Article
Farley,S.E.等人的全球脂质图谱揭示了SARS-CoV-2变体中保守的宿主依赖因子。国家公社。133487(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hoffmann, H.-H. et al. Functional interrogation of a SARS-CoV-2 host protein interactome identifies unique and shared coronavirus host factors. Cell Host Microbe 29, 267–280.e5 (2021).Article
Hoffmann,H.-H.等人。SARS-CoV-2宿主蛋白相互作用组的功能性询问确定了独特和共享的冠状病毒宿主因子。细胞宿主微生物29267–280.e5(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Wang, R. et al. Genetic screens identify host factors for SARS-CoV-2 and common cold coronaviruses. Cell 184, 106–119.e14 (2021).Article
Wang,R。等人。基因筛选鉴定SARS-CoV-2和常见感冒冠状病毒的宿主因子。细胞184106–119.e14(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Yuan, S. et al. SREBP-dependent lipidomic reprogramming as a broad-spectrum antiviral target. Nat. Commun. 10, 120 (2019).Article
Yuan,S。等人。SREBP依赖性脂质体重编程作为广谱抗病毒靶标。国家公社。10120(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, S. et al. Cholesterol 25‐Hydroxylase inhibits SARS ‐CoV‐2 and other coronaviruses by depleting membrane cholesterol. EMBO J. 39, e106057 (2020).Article
Wang,S。等人。胆固醇25-羟化酶通过消耗膜胆固醇来抑制SARS-CoV-2和其他冠状病毒。EMBO J.39,e106057(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kaiser, Fader et al. Biogenesis and breakdown of lipid droplets in pathological conditions. Front. Cell Dev. Biol. 9, 826248 (2022).Article
Kaiser,Fader等人。病理条件下脂滴的生物发生和分解。正面。细胞开发生物学。9826248(2022)。文章
Google Scholar
谷歌学者
Heaton, N. S. & Randall, G. Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe 8, 422–432 (2010).Article
Heaton,N.S。&Randall,G。登革热病毒诱导的自噬调节脂质代谢。细胞宿主微生物8422-432(2010)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Samsa, M. M. et al. Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog. 5, e1000632 (2009).Article
Samsa,M.M.等人。登革热病毒衣壳蛋白篡夺脂质滴以形成病毒颗粒。PLoS Pathog。5,e1000632(2009)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dias, S. S. G. et al. Lipid droplets fuel SARS-CoV-2 replication and production of inflammatory mediators. PLOS Pathog. 16, e1009127 (2020).Article
Dias,S.S.G.等人。脂滴促进SARS-CoV-2复制和炎症介质的产生。PLOS Pathog。16,e1009127(2020)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Williams, C. G. et al. Inhibitors of VPS34 and fatty-acid metabolism suppress SARS-CoV-2 replication. Cell Rep. 36, 109479 (2021).Article
Williams,C.G.等人。VPS34和脂肪酸代谢抑制剂抑制SARS-CoV-2复制。Cell Rep.36109479(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu, Z. et al. Palmitoylation of SARS-CoV-2 S protein is essential for viral infectivity. Signal Transduct. Target. Ther. 6, 231 (2021).Article
Wu,Z。等人。SARS-CoV-2 S蛋白的棕榈酰化对于病毒感染性至关重要。信号传输管。目标。他们。6231(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chu, J. et al. Pharmacological inhibition of fatty acid synthesis blocks SARS-CoV-2 replication. Nat. Metab. 3, 1466–1475 (2021).Article
Chu,J。等人。脂肪酸合成的药理学抑制阻断SARS-CoV-2复制。自然代谢。31466-1475(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Baek, Y.-B. et al. Therapeutic strategy targeting host lipolysis limits infection by SARS-CoV-2 and influenza A virus. Signal Transduct. Target. Ther. 7, 367 (2022).Article
Baek,Y.-B.等人。针对宿主脂解的治疗策略限制了SARS-CoV-2和甲型流感病毒的感染。信号传输管。目标。他们。7367(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yang, Q. et al. SARS‐CoV‐2 infection activates CREB/CBP in cellular cyclic AMP‐dependent pathways. J. Med. Virol. 95, e28383 (2023).Article
Yang,Q。等人。SARS-CoV-2感染在细胞环AMP依赖性途径中激活CREB/CBP。J、 医学博士Virol。95,e28383(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Diamond, M. S. & Kanneganti, T.-D. Innate immunity: the first line of defense against SARS-CoV-2. Nat. Immunol. 23, 165–176 (2022).Article
Diamond,M.S.&Kanneganti,T.-D。先天免疫:抗击SARS-CoV-2的第一道防线。自然免疫。23165-176(2022)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Minkoff, J. M. & tenOever, B. Innate immune evasion strategies of SARS-CoV-2. Nat. Rev. Microbiol. 21, 178–194 (2023).PubMed
。自然修订版微生物学。21178-194(2023)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsAll the figures in this review were generated with Biorender. MC is supported by the Human Technopole Early Career Fellowship Programme (HT-ECF 763 Programme). SMLT and ŠV are supported by a PhD Fellowship from the Scuola Superiore Meridionale (SSM).Author informationAuthor notesThese authors contributed equally: Valentina Marano, Štěpánka Vlachová, Sofia Maria Luigia Tiano.Authors and AffiliationsTelethon Institute of Genetics and Medicine, Pozzuoli, ItalyValentina Marano, Štěpánka Vlachová, Sofia Maria Luigia Tiano & Mirko CorteseUniversity of Rome Tor Vergata, Rome, ItalyValentina MaranoScuola Superiore Meridionale, Naples, ItalyŠtěpánka Vlachová & Sofia Maria Luigia TianoUniversity of Campania Luigi Vanvitelli, Caserta, ItalyMirko CorteseAuthorsValentina MaranoView author publicationsYou can also search for this author in.
下载参考文献致谢本评价中的所有数字均由Biorender生成。MC得到了人类技术极早期职业奖学金计划(HT-ECF 763计划)的支持。SMLT和ŠV得到了Scuola Superiore Meridionale(SSM)的博士奖学金的支持。作者信息作者注意到这些作者做出了同样的贡献:瓦伦蒂娜·马拉诺,什蒂安·潘卡·弗拉乔娃,索菲亚·玛丽亚·路易贾·蒂亚诺。作者和附属机构意大利瓦伦蒂娜·马拉诺,波佐利,意大利瓦伦蒂娜·马拉诺,什切帕斯卡·弗拉乔娃,索菲亚·玛利亚·路易贾·蒂亚诺和米尔科·科尔特斯大学,罗马托尔加塔,意大利那不勒斯,意大利瓦伦蒂娜·马拉诺斯科拉高级梅里迪奥纳勒,意大利瓦伦蒂娜·弗拉乔娃和索菲亚·玛利亚·路易贾·蒂亚诺坎帕尼亚大学路易吉·瓦维泰利分校,卡塞塔,意大利瓦伦蒂娜·科尔特斯作家瓦伦蒂娜·马拉诺维作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarŠtěpánka VlachováView author publicationsYou can also search for this author in
PubMed Google Scholar查看作者的出版物您也可以搜索此作者
PubMed Google ScholarSofia Maria Luigia TianoView author publicationsYou can also search for this author in
PubMed Google ScholarMirko CorteseView author publicationsYou can also search for this author in
PubMed Google Scholarmarko CorteseView作者出版物您也可以在
PubMed Google ScholarContributionsVM, SMLT, ŠV and MC wrote and reviewed the manuscript. VM, SMLT and ŠV prepared the figures and share equal contribution. All authors have read and approved the manuscript.Corresponding authorCorrespondence to
PubMed Google ScholarContributionsVM,SMLT,ŠV和MC撰写并审阅了手稿。VM、SMLT和ŠV编制了数字,并分享了同等的贡献。所有作者都阅读并批准了手稿。对应作者对应
Mirko Cortese.Ethics declarations
。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。权限和权限
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.
开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。
You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..
Reprints and permissionsAbout this articleCite this articleMarano, V., Vlachová, Š., Tiano, S.M.L. et al. A portrait of the infected cell: how SARS-CoV-2 infection reshapes cellular processes and pathways.
转载和许可本文引用本文Marano,V.,Vlachová,Š。,Tiano,S.M.L.等人,《感染细胞的肖像:SARS-CoV-2感染如何重塑细胞过程和途径》。
npj Viruses 2, 66 (2024). https://doi.org/10.1038/s44298-024-00076-8Download citationReceived: 10 September 2024Accepted: 22 November 2024Published: 17 December 2024DOI: https://doi.org/10.1038/s44298-024-00076-8Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
npj病毒2,66(2024)。https://doi.org/10.1038/s44298-024-00076-8Download引文收到日期:2024年9月10日接受日期:2024年11月22日发布日期:2024年12月17日OI:https://doi.org/10.1038/s44298-024-00076-8Share。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供