商务合作
动脉网APP
可切换为仅中文
AbstractObjectiveEvaluating immediate and delayed micro shear bond strength (µSBS) between composite resin and glass ionomer cements using different adhesive systems and mechanical surface treatment.Materials and methodsA total of 240 specimens of glass ionomer restorative materials were divided into two groups: Resin Modified Glass Ionomer Cement (RMGIC) namely Riva Light Cure and Conventional Glass Ionomer Cement (CGIC) namely Riva Self Cure.
摘要目的评估使用不同粘合剂体系和机械表面处理的复合树脂和玻璃离子水门汀之间的即时和延迟微剪切粘结强度(μSBS)。材料与方法将240例玻璃离子水门汀修复材料标本分为两组:树脂改性玻璃离子水门汀(RMGIC)即Riva光固化和常规玻璃离子水门汀(CGIC)即Riva自固化。
These were subdivided into immediate (24 h) and delayed (3 months) storage and further divided into smooth, medium, and rough surface treatment with either total etch (TE) or self-etch (SE) adhesive strategies. Composite resin was applied and µSBS of the sample was determined and failure modes were examined.ResultsImmediate µSBS of RMGIC was superior than CGIC and TE was better than SE.
这些被细分为立即(24小时)和延迟(3个月)储存,并进一步分为光滑,中等和粗糙的表面处理,采用全蚀刻(TE)或自蚀刻(SE)粘合剂策略。应用复合树脂并测定样品的μSBS并检查失效模式。结果RMGIC的即刻μSBS优于CGIC,TE优于SE。
Within RMGIC, smooth surface has significantly higher bond strength than medium and rough stone surface treatment. Delayed µSBS of RMGIC was superior than CGIC. Within RMGIC specimens, TE and smooth and medium grit had significantly better bond strength than SE and rough grit. Within CGIC, statistically higher bond strength values were found with medium grit compared to smooth while no difference was found between TE and SE.ConclusionBonding composite resin to smooth RMGIC using TE yielded higher bond strength values than CGIC regardless of the time.
在RMGIC中,光滑表面的粘结强度明显高于中等和粗糙的石材表面处理。RMGIC的延迟μSBS优于CGIC。在RMGIC标本中,TE和光滑和中等粒度的粘结强度明显优于SE和粗糙粒度。在CGIC中,中等粒度的粘结强度值比光滑的粘结强度值高,而TE和SE之间没有差异。结论无论时间如何,使用TE将复合树脂粘结到光滑的RMGIC上都比CGIC产生更高的粘结强度值。
Bonding composite resin immediately to CGIC is best done using a TE technique. However, delayed bonding to CGIC requires roughening of the CGIC surface prior to placement of the composite resin to obtain improved bonding..
最好使用TE技术将复合树脂立即粘合到CGIC上。然而,延迟键合到CGIC需要在放置复合树脂之前将CGIC表面粗糙化以获得改进的键合。。
IntroductionDental restorative materials are intended to replace lost tooth structure with materials that are compatible with the oral environment and have enough strength to endure the stress produced during mastication. In 1972 Wilson and Kent have introduced Glass-Ionomer Cements (GICs) to dentistry and since then, they are commonly used in modern dentistry and are well recognized for their advantages, physical and chemical properties [1, 2].
引言牙科修复材料旨在用与口腔环境相容的材料代替丢失的牙齿结构,并具有足够的强度来承受咀嚼过程中产生的压力。1972年,威尔逊(Wilson)和肯特(Kent)将玻璃离子水门汀(GICs)引入牙科,从那时起,它们被广泛用于现代牙科,并因其优点,物理和化学性质而得到公认[1,2]。
Among these properties, their biocompatibility with the pulp, anticariogenic activity, low shrinkage, coefficient of thermal expansion and fluoride release are considered to be the most important advantages of GICs [3]. Nevertheless, GICs are frequently used as a liner beneath resin composite restorations to seal the dentin and its dentinal tubules and reduce microleakage at the restoration margin.
。然而,GIC经常被用作树脂复合修复体下方的衬垫,以密封牙本质及其牙本质小管,并减少修复边缘的微渗漏。
This has been reported to increase the clinical success of the restoration [1, 4]. However, lack of chemical bonding between composite resin and conventional GICs affects the longevity of the final restoration [5].Accordingly, to improve the clinical application, bonding and mechanical properties of conventional GICs, hydrophilic monomers and the functional group HEMA [hydroxyl-ethyl methacrylate] have been added to GIC forming resin-modified glass ionomer cement (RMGIC) [6, 7].
据报道,这可以提高修复的临床成功率[1,4]。然而,复合树脂和常规GIC之间缺乏化学键合会影响最终修复体的寿命(5)。因此,为了改善常规GIC的临床应用,粘合和力学性能,将亲水性单体和官能团HEMA[甲基丙烯酸羟乙酯]添加到GIC成型树脂改性玻璃离子水门汀(RMGIC)中[6,7]。
It was shown that RMGICs have much higher flexural strength and improved bonding to composite resin compared to conventional GICs [8].The bond between conventional GICs and composite resin is micromechanical. One method to optimize this bond is to create porosities on the surface of the GICs during the bonding process by total acid etching using phosphoric acid (etch-and-rinse systems) which improves the micro mechanical retention [9].
结果表明,与传统GIC(8)相比,RMGIC具有更高的弯曲强度和改善的与复合树脂的结合。常规GIC与复合树脂之间的键合是微观力学的。优化这种键合的一种方法是在键合过程中通过使用磷酸(蚀刻和冲洗系统)的总酸蚀刻在GIC表面上产生孔隙,这提高了微机械保留率(9)。
Etching time is another .
蚀刻时间是另一个。
Data availability
数据可用性
All data included in this study are available from the corresponding author upon request.
本研究中包含的所有数据均可应要求从通讯作者处获得。
ReferencesMakanjuola J, Deb S. Chemically activated glass-ionomer cements as bioactive materials in dentistry: a review. Prosthesis. 2023;5:327–45.Article
参考文献Makanjuola J,Deb S.化学活化玻璃离子水门汀作为牙科生物活性材料:综述。假体。2023年;5: 327-45.文章
Google Scholar
谷歌学者
Nicholson JW. Adhesion of glass-ionomer cements to teeth: a review. Int J Adhes Adhes. 2016;69:33–8.Article
尼科尔森JW。玻璃离子水门汀对牙齿的粘附:综述。Int J Adhes Adhes。2016年;69:33–8.文章
Google Scholar
谷歌学者
Ching HS, Luddin N, Kannan TP, Ab Rahman I, Abdul Ghani NR. Modification of glass ionomer cements on their physical‐mechanical and antimicrobial properties. J Esthet Restor Dent. 2018;30:557–71.Article
Ching HS,Luddin N,Kannan TP,Ab Rahman I,Abdul Ghani NR。玻璃离子水门汀对其物理机械和抗菌性能的改性。J Esthet Restor Dent公司。2018年;30:557–71.文章
PubMed
PubMed
Google Scholar
谷歌学者
Sun L, Yan Z, Duan Y, Zhang J, Liu B. Improvement of the mechanical, tribological and antibacterial properties of glass ionomer cements by fluorinated graphene. Dent Mater. 2018;34:e115–e27.Article
Sun L,Yan Z,Duan Y,Zhang J,Liu B.氟化石墨烯改善玻璃离子水门汀的机械,摩擦学和抗菌性能。凹痕材料。2018年;34:e115–e27.文章
PubMed
PubMed
Google Scholar
谷歌学者
Alatawi RA, Elsayed NH, Mohamed WS. Influence of hydroxyapatite nanoparticles on the properties of glass ionomer cement. J Mater Res Technol. 2019;8:344–9.Article
Alatawi RA,Elsayed NH,Mohamed WS。羟基磷灰石纳米粒子对玻璃离子水门汀性能的影响。J Mater Res Technol公司。2019年;8: 344-9.文章
Google Scholar
谷歌学者
Nicholson JW, Sidhu SK, Czarnecka B. Enhancing the mechanical properties of glass-ionomer dental cements: a review. Mater. 2020;13:2510.Article
Nicholson JW,Sidhu SK,Czarnecka B.增强玻璃离子牙科水泥的力学性能:综述。马特。2020年;13: 第2510条
Google Scholar
谷歌学者
Sidhu SK, Nicholson JW. A review of glass-ionomer cements for clinical dentistry. J Funct Biomater. 2016;7:16.Article
Sidhu SK,Nicholson JW。临床牙科用玻璃离子水门汀的综述。J Funct生物表。2016年;7: 16、条款
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Poggio C, Beltrami R, Scribante A, Colombo M, Lombardini M. Effects of dentin surface treatments on shear bond strength of glass-ionomer cements. Ann Stomatol. 2014;5:15.
Poggio C,Beltrami R,Scribante A,Colombo M,Lombardini M.牙本质表面处理对玻璃离子水门汀剪切粘结强度的影响。安·斯托斯托尔。2014年;5: 十五。
Google Scholar
谷歌学者
Panahandeh N, Torabzadeh H, Ghassemi A, Mahdian M, Bagheban AA, Moayyedi S. Effect of bonding application time on bond strength of composite resin to glass ionomer cement. J Dent (Tehran, Iran). 2015;12:859
Panahandeh N,Torabzadeh H,Ghassemi A,Mahdian M,Bagheban AA,Moayyedi S.粘结应用时间对复合树脂与玻璃离子水门汀粘结强度的影响。J Dent(伊朗德黑兰)。2015年;12: 859个
Google Scholar
谷歌学者
Bortoletto CC, Miranda Junior WG, Motta LJ, Bussadori SK. Influence of acid etching on shear strength of different glass ionomer cements. Braz J Oral Sci. 2013;12:11–5.Article
Bortoletto CC,Miranda Junior WG,Motta LJ,Bussadori SK。酸蚀对不同玻璃离子水门汀剪切强度的影响。Braz J口腔科学。2013年;12: 11-5.文章
Google Scholar
谷歌学者
Munari LS, Antunes AN, Monteiro DD, Moreira AN, Alvim HH, Magalhães CS. Microtensile bond strength of composite resin and glass ionomer cement with total-etching or self-etching universal adhesive. Int J Adhes Adhes. 2018;82:36–40.Article
穆纳里LS,安图内斯AN,蒙泰罗DD,莫雷拉AN,阿尔维姆HH,马加莱斯CS。全酸蚀或自酸蚀通用胶复合树脂与玻璃离子水门汀的微拉伸粘结强度。Int J Adhes Adhes。2018年;
Google Scholar
谷歌学者
Hashem DF, Foxton R, Manoharan A, Watson TF, Banerjee A. The physical characteristics of resin composite–calcium silicate interface as part of a layered/laminate adhesive restoration. Dent Mater. 2014;30:343–9.Article
Hashem DF,Foxton R,Manoharan A,Watson TF,Banerjee A.树脂复合材料-硅酸钙界面的物理特性,作为分层/层压粘合剂修复的一部分。凹痕材料。2014年;30:343–9.文章
PubMed
PubMed
Google Scholar
谷歌学者
Sato T, Takagaki T, Hatayama T, Nikaido T, Tagami J. Update on enamel bonding strategies. Front Dent Med. 2021;2:666379.Article
Sato T,Takagaki T,Hatayama T,Nikaido T,Tagami J.牙釉质结合策略的最新进展。前凹痕医学2021;2: 666379条
Google Scholar
谷歌学者
Toshniwal N, Singh N, Dhanjani V, Mote N, Mani S. Self etching system v/s conventional bonding: Advantages, disadvantages. Int J Appl Dent Sci. 2019;5:379–83.
Toshniwal N,Singh N,Dhanjani V,Mote N,Mani S.自蚀刻系统V/S常规键合:优点,缺点。国际应用科学杂志。2019年;5: 。
Google Scholar
谷歌学者
Al-Ashou WM, Taher R, Ali AH. Shear-bond strength of different Self-Etching adhesive systems to dentin with or without laser irradiation before photopolymerization (A comparative Study). Saudi Dent J. 2022;34:779–87.Article
Al Ashou WM,Taher R,Ali AH。在光聚合之前,在有或没有激光照射的情况下,不同自酸蚀粘合剂系统与牙本质的剪切粘结强度(比较研究)。沙特Dent J.2022;34:779–87.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ghubaryi AAA, Ingle N, Basser MA. Surface treatment of RMGIC to composite resin using different photosensitizers and lasers: a bond assessment of closed Sandwich restoration. Photodiagnosis Photodyn Ther. 2020;32:101965.Article
Ghubaryi AAA,Ingle N,Basser MA。使用不同光敏剂和激光对RMGIC进行复合树脂的表面处理:封闭三明治修复体的粘结评估。光诊断光同步器。2020年;32:101965.文章
PubMed
PubMed
Google Scholar
谷歌学者
Al-Taee L, Banerjee A, Deb S. In-vitro adhesive and interfacial analysis of a phosphorylated resin polyalkenoate cement bonded to dental hard tissues. J Dent. 2022;118:104050.Article
Al Taee L,Banerjee A,Deb S.与牙科硬组织结合的磷酸化树脂聚烷基酸酯水泥的体外粘合剂和界面分析。J登特。2022年;118:104050.文章
PubMed
PubMed
Google Scholar
谷歌学者
Bilgrami A, Maqsood A, Alam MK, Ahmed N, Mustafa M, Alqahtani AR, et al. Evaluation of shear bond strength between resin composites and conventional glass ionomer cement in class II restorative technique—an in vitro study. Mater. 2022;15:4293.Article
Bilgrami A,Maqsood A,Alam MK,Ahmed N,Mustafa M,Alqahtani AR等。II级修复技术中树脂复合材料与常规玻璃离子水门汀之间剪切粘结强度的评估体外研究。马特。2022年;15: 第4293条
Google Scholar
谷歌学者
Umesi DC, Oremosu OA, Makanjuola JO. Amalgam phase down: baseline data preceding implementation in Nigeria. Int Dent J. 2020;70:161–6.Article
Umesi DC,Oremosu OA,Makanjuola JO。汞合金逐步淘汰:尼日利亚实施之前的基线数据。Int Dent J.2020;70:161–6.文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Askar H, Krois J, Goestemeyer G, Schwendicke F. Secondary caries risk of different adhesive strategies and restorative materials in permanent teeth: Systematic review and network meta-analysis. J Dent. 2021;104:103541.Article
Askar H,Krois J,Goestemeyer G,Schwendicke F.恒牙中不同粘合策略和修复材料的继发龋风险:系统评价和网络荟萃分析。J登特。;104:103541.文章
PubMed
PubMed
Google Scholar
谷歌学者
Kheur M, Kantharia N, Iakha T, Kheur S, Husain NA-H, Özcan M. Evaluation of mechanical and adhesion properties of glass ionomer cement incorporating nano-sized hydroxyapatite particles. Odontology. 2020;108:66–73.Article
Kheur M,Kantharia N,Iakha T,Kheur S,Husain NA-H,Özcan M.评估掺入纳米羟基磷灰石颗粒的玻璃离子水门汀的机械和粘附性能。牙科。2020年;108:66–73.文章
PubMed
PubMed
Google Scholar
谷歌学者
Saleh SA, Hashem D, Salem RM. Effect of aging and different surface treatments on repair bond strength of hybrid resin composites. Open Dent J. 2023;17:1–8.Perdigão J. Current perspectives on dental adhesion:(1) Dentin adhesion–not there yet. Jpn Dent Sci Rev. 2020;56:190–207.Article .
Saleh SA,Hashem D,Salem RM。老化和不同表面处理对杂化树脂复合材料修复粘结强度的影响。Open Dent J.2023;17: 1-8。Perdigão J.关于牙齿粘连的当前观点:(1)牙本质粘连-尚未出现。Jpn Dent Sci版本2020;56:190-207。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Al-Hasan R, Al-Taee L. Interfacial bond strength and morphology of sound and Caries-affected dentin surfaces Bonded to two Resin-modified Glass Ionomer cements. Oper Dent. 2022;47:E188–E96.Article
Al Hasan R,Al Taee L.界面结合强度以及声音和龋齿的形态影响了与两种树脂改性玻璃离子水门汀结合的牙本质表面。操作凹痕。2022年;47:E188–E96.文章
PubMed
PubMed
Google Scholar
谷歌学者
Farshidfar N, Agharokh M, Ferooz M, Bagheri R. Microtensile bond strength of glass ionomer cements to a resin composite using universal bonding agents with and without acid etching. Heliyon. 2022;8:1–6.Manihani AKD, Mulay S, Beri L, Shetty R, Gulati S, Dalsania R. Effect of total-etch and self-etch adhesives on the bond strength of composite to glass-ionomer cement/resin-modified glass-ionomer cement in the sandwich technique–a systematic review.
Farshidfar N,Agharokh M,Ferooz M,Bagheri R.使用具有和不具有酸蚀刻的通用粘合剂,玻璃离子水门汀与树脂复合材料的微拉伸粘合强度。海伦。2022年;8: 1-6.Manihani AKD,Mulay S,Beri L,Shetty R,Gulati S,Dalsania R.夹心技术中全蚀刻和自蚀刻粘合剂对复合材料与玻璃离子水泥/树脂改性玻璃离子水泥粘结强度的影响-系统综述。
Dent Res J. 2021;18:1–10.Becci ACDO, Benetti MDS, Domingues NB, Giro EMA. Bond strength of a composite resin to glass ionomer cements using different adhesive systems. Rev Odontol UNESP. 2017;46:214–9.Article .
Dent Res J.2021;18: 1-10.Becci ACDO,Benetti MDS,Domingues NB,Giro EMA。使用不同粘合剂系统的复合树脂与玻璃离子水门汀的粘合强度。修订版Odontol UNESP。2017年;46:214-9。文章。
Google Scholar
谷歌学者
Camilleri J. Investigation of Biodentine as dentine replacement material. J Dent. 2013;41:600–10.Article
Camilleri J.生物牙本质作为牙本质替代材料的研究。J登特。2013年;41:600–10.文章
PubMed
PubMed
Google Scholar
谷歌学者
Sofan E, Sofan A, Palaia G, Tenore G, Romeo U, Migliau G. Classification review of dental adhesive systems: from the IV generation to the universal type. Ann Stomatol. 2017;8:1.Article
Sofan E,Sofan A,Palaia G,Tenore G,Romeo U,Migliau G.牙科粘合剂系统的分类审查:从IV代到通用型。安·斯托斯托尔。2017年;8: 1、条款
Google Scholar
谷歌学者
Kermanshah H, Omrani LR, Hemati O, Pedram P, Ahmadi E. Modified microtensile bond strength of glass ionomer to composite resin using universal adhesive in self-etch and total-etch modes. Open Dent J. 2020;14:390–5.Gupta R, Mahajan S. Shear bond strength evaluation of resin composite bonded to GIC using different adhesives.
Kermanshah H,Omrani LR,Hemati O,Pedram P,Ahmadi E.在自蚀刻和全蚀刻模式下使用通用粘合剂改进玻璃离子与复合树脂的微拉伸粘合强度。Open Dent J.2020;14: 390–5.Gupta R,Mahajan S.使用不同粘合剂粘合到GIC的树脂复合材料的剪切粘合强度评估。
J Clin Diagn Res. 2015;9:ZC27.PubMed .
J 临床诊断 Res. 2015;9:ZC27.PubMed。
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Otsuka E, Tsujimoto A, Takamizawa T, Furuichi T, Yokokawa M, Tsubota K, et al. Influence of surface treatment of glass-ionomers on surface free energy and bond strength of resin composite. Dent Mater J. 2013;32:702–8.Article
Otsuka E,Tsujimoto A,Takamizawa T,Furuichi T,Yokokawa M,Tsubota K等。玻璃离子表面处理对树脂复合材料表面自由能和结合强度的影响。Dent Mater J.2013;32:702–8.文章
PubMed
PubMed
Google Scholar
谷歌学者
Kasraie S, Shokripour M, Safari M. Evaluation of micro-shear bond strength of resin modified glass-ionomer to composite resins using various bonding systems. J Cons Dent. 2013;16:550.Article
Kasraie S,Shokripour M,Safari M.使用各种粘合系统评估树脂改性玻璃离子与复合树脂的微剪切粘合强度。J康斯坦特。2013年;16: 第550条
Google Scholar
谷歌学者
Alzraikat H, Taha NA, Qasrawi D, Burrow MF. Shear bond strength of a novel light cured calcium silicate based-cement to resin composite using different adhesive systems. Dent Mater J. 2016;35:881–7.Article
Alzraikat H,Taha NA,Qasrawi D,Burrow MF。使用不同粘合剂体系的新型光固化硅酸钙基水泥-树脂复合材料的剪切粘结强度。Dent Mater J.2016;35:881–7.文章
PubMed
PubMed
Google Scholar
谷歌学者
Al-Taee L, Deb S, Banerjee A. An in vitro assessment of the physical properties of manually-mixed and encapsulated glass-ionomer cements. BDJ Open. 2020;6:12.Article
Al Taee L,Deb S,Banerjee A.手动混合和封装玻璃离子水门汀物理性能的体外评估。。2020年;6: 12、条款
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Al Taee L, Banerjee A, Deb S. An integrated multifunctional hybrid cement (pRMGIC) for dental applications. Dent Mater. 2019;35:636–49.Article
Al Taee L,Banerjee A,Deb S.一种用于牙科应用的集成多功能混合水泥(pRMGIC)。凹痕材料。2019年;35:636–49.文章
PubMed
PubMed
Google Scholar
谷歌学者
Download referencesAuthor informationAuthors and AffiliationsDepartment of Operative Dentistry, Faculty of Dentistry, Ain Shams University, Cairo, EgyptSomaya Ali SalehDepartment of Restorative Dental Science, College of Dentistry, Taibah University, Madinah, Saudi ArabiaSomaya Ali Saleh, Nisreen Nabiel Hassan, Amna Algarni, Ranya Zahran, Abeer Farag & Danya HashemDepartment of Restorative Dentistry, Faculty of Dentistry, Minia University, Minia, EgyptAbeer FaragAuthorsSomaya Ali SalehView author publicationsYou can also search for this author in.
。
PubMed Google ScholarNisreen Nabiel HassanView author publicationsYou can also search for this author in
PubMed Google ScholarNisreen Nabiel HassanView作者出版物您也可以在
PubMed Google ScholarAmna AlgarniView author publicationsYou can also search for this author in
PubMed Google Scholarmamna AlgarniView作者出版物您也可以在
PubMed Google ScholarRanya ZahranView author publicationsYou can also search for this author in
PubMed Google ScholarRanya ZahranView作者出版物您也可以在
PubMed Google ScholarAbeer FaragView author publicationsYou can also search for this author in
PubMed Google ScholarAbeer FaragView作者出版物您也可以在
PubMed Google ScholarDanya HashemView author publicationsYou can also search for this author in
PubMed Google ScholarDanya HashemView作者出版物您也可以在
PubMed Google ScholarContributionsSS: conceptualization, methodology, data collection, data analysis, and writing original draft. NH: methodology, writing original draft. AA: methodology, validation, writing, review and editing. RZ: data collection, data analysis, validation.
PubMed谷歌学术贡献:概念化,方法论,数据收集,数据分析和撰写原稿。NH:方法论,撰写原稿。AA:方法论,验证,写作,评论和编辑。。
AF: conceptualization, writing original draft. DH: conceptualization, methodology, writing, review, and editing. All authors critically reviewed and approved the final draft.Corresponding authorCorrespondence to.
AF:概念化,撰写原稿。DH:概念化,方法论,写作,评论和编辑。所有作者都严格审查并批准了最终草案。对应作者对应。
Danya Hashem.Ethics declarations
丹雅·哈希姆。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Ethics approval
道德认可
No ethical approval or consent was required as this study did not involve human participants/tissues or laboratory animals.
不需要伦理批准或同意,因为这项研究不涉及人类参与者/组织或实验动物。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。权限和权限
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleSaleh, S.A., Hassan, N.N., Algarni, A. et al. Immediate and delayed micro shear bond strength evaluation of two glass ionomer cements to composite resin by using different bonding techniques—an in vitro study.
转载和许可本文引用本文Saleh,S.A.,Hassan,N.N.,Algarni,A。等人。通过使用不同的粘合技术对两种玻璃离子水门汀与复合树脂的即时和延迟微剪切粘合强度进行评估体外研究。
BDJ Open 10, 94 (2024). https://doi.org/10.1038/s41405-024-00283-8Download citationReceived: 08 September 2024Revised: 19 November 2024Accepted: 21 November 2024Published: 17 December 2024DOI: https://doi.org/10.1038/s41405-024-00283-8Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
BDJ公开赛10,94(2024)。https://doi.org/10.1038/s41405-024-00283-8Download引文接收日期:2024年9月8日修订日期:2024年11月19日接受日期:2024年11月21日发布日期:2024年12月17日OI:https://doi.org/10.1038/s41405-024-00283-8Share。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
Subjects
主题
Bonded restorationsComposite resinGlass-ionomer cement
粘结修复复合树脂玻璃离子水门汀