商务合作
动脉网APP
可切换为仅中文
AbstractThe ER-resident proteins VMP1 and TMEM41B share a conserved DedA domain, which confers lipid scramblase activity. Loss of either gene results in embryonic lethality in mice and defects in autophagy and lipid droplet metabolism. To investigate their role in pluripotency and lineage specification, we generated Vmp1 and Tmem41b mutations in mouse embryonic stem cells (ESCs).
摘要ER驻留蛋白VMP1和TMEM41B共享一个保守的DedA结构域,该结构域赋予脂质scramblase活性。任一基因的缺失都会导致小鼠胚胎致死率以及自噬和脂滴代谢缺陷。为了研究它们在多能性和谱系规范中的作用,我们在小鼠胚胎干细胞(ESC)中产生了Vmp1和Tmem41b突变。
We observed that ESCs carrying mutations in Vmp1 and Tmem41b show robust self-renewal and an unperturbed pluripotent expression profile but accumulate LC3-positive autophagosomes and lipid droplets consistent with defects in autophagy and lipid metabolism. ESCs carrying combined mutations in Vmp1 and Tmem41b can differentiate into a wide range of embryonic cell types.
。携带Vmp1和Tmem41b联合突变的胚胎干细胞可以分化为多种胚胎细胞类型。
However, differentiation into primitive endoderm-like cells in culture is impaired, and the establishment of extra-embryonic endoderm stem (XEN) cells is delayed. Mechanistically, we show the deregulation of genes that are associated with WNT signaling. This is further confirmed by cell surface proteome profiling, which identified a significant reduction of the WNT-receptor FZD2 at the plasma membrane in Vmp1 and Tmem41b double mutant ESCs.
然而,在培养物中分化为原始内胚层样细胞受到损害,并且胚胎外内胚层干(XEN)细胞的建立被延迟。从机制上讲,我们显示了与WNT信号相关的基因的失调。细胞表面蛋白质组分析进一步证实了这一点,该分析确定了Vmp1和Tmem41b双突变ESC中质膜上WNT受体FZD2的显着减少。
Importantly, we show that transgenic expression of Fzd2 rescues XEN differentiation. Our findings identify the role of the lipid scramblases VMP1 and TMEM41B in WNT signaling during extra-embryonic endoderm development and characterize their distinct and overlapping functions..
重要的是,我们表明Fzd2的转基因表达可以挽救XEN分化。我们的发现确定了脂质scramblases VMP1和TMEM41B在胚外内胚层发育过程中WNT信号传导中的作用,并表征了它们独特且重叠的功能。。
IntroductionVesicle trafficking and membrane synthesis are intricately interconnected within cellular signaling networks. Lipid scramblases, with their property to shape lipid membrane composition, play a crucial role in facilitating inter-organelle communication. Beyond their integral involvement in maintaining cell homeostasis, recent studies have unveiled their implications in various pathological conditions, such as viral infection [1,2,3,4,5], cancer development [6,7,8,9,10,11], and inflammatory diseases [12,13,14,15,16].
引言囊泡运输和膜合成在细胞信号网络中错综复杂地相互关联。脂质scramblases具有形成脂质膜组成的特性,在促进细胞器间通讯方面起着至关重要的作用。除了参与维持细胞稳态外,最近的研究揭示了它们在各种病理条件下的意义,如病毒感染[1,2,3,4,5],癌症发展[6,7,8,9,10,11]和炎症性疾病[12,13,14,15,16]。
The vacuole membrane protein 1 (VMP1) and transmembrane protein 41B (TMEM41B) are lipid scramblases with a highly conserved DedA domain [17, 18]. They localize at the ER membrane and are distinguished from other ER-associated flippases or scramblases as they facilitate bi-directional lipid diffusion in an ATP- and Ca2+-independent manner.
液泡膜蛋白1(VMP1)和跨膜蛋白41B(TMEM41B)是具有高度保守的DedA结构域的脂质scramblases[17,18]。它们位于ER膜上,与其他ER相关的翻转酶或scramblases不同,因为它们以不依赖ATP和Ca2+的方式促进双向脂质扩散。
VMP1 and TMEM41B are necessary for autophagosome formation [19, 20], lipid droplet metabolism [17, 21], and lipoprotein formation [22]. Additional reports proposed a more global role in ER protein homeostasis [23] and vesicle transport [24]. Despite multifaceted functions, their absence does not influence cell survival significantly.
VMP1和TMEM41B是自噬体形成[19,20],脂滴代谢[17,21]和脂蛋白形成[22]所必需的。其他报道提出了ER蛋白稳态(23)和囊泡运输(24)中更具全球性的作用。尽管具有多方面的功能,但它们的缺失不会显着影响细胞存活。
Compensatory mechanisms shared by VMP1 and TMEM41B or other ER scramblases likely maintain cellular homeostasis. While VMP1 depletion leads to a pronounced defect in autophagosome assembly [19, 20], TMEM41B appears to play a pivotal role in sustaining lipid droplet homeostasis and serves as a crucial factor in RNA virus replication [3, 25].
VMP1和TMEM41B或其他ER scramblases共享的补偿机制可能维持细胞稳态。虽然VMP1耗竭导致自噬体组装的明显缺陷[19,20],但TMEM41B似乎在维持脂滴稳态中起关键作用,并且是RNA病毒复制的关键因素[3,25]。
Differences in cellular systems and depletion methods across studies complicate comparisons of VMP1 and TMEM41B functions. While their role in autophagy has been directly compared [26], similar studies are needed to assess their specificity or red.
不同研究中细胞系统和耗竭方法的差异使VMP1和TMEM41B功能的比较变得复杂。。
Data availability
数据可用性
The transcriptomic data have been deposited on NCBI SRA database under the accession: PRJNA1031567. The proteomic dataset, including raw data, generated tables, and scripts used for the data analysis, is available in the PRIDE repository: PXD053039.
转录组数据已保存在NCBI SRA数据库中,登录号为:PRJNA1031567。PRIDE存储库中提供了蛋白质组数据集,包括原始数据,生成的表和用于数据分析的脚本:PXD053039。
ReferencesTrimarco JD, Heaton BE, Chaparian RR, Burke KN, Binder RA, Gray GC, et al. TMEM41B is a host factor required for the replication of diverse coronaviruses including SARS-CoV-2. PLoS Pathog. 2021;17:e1009599.CAS
参考文献Trimarco JD,Heaton BE,Chaparian RR,Burke KN,Binder RA,Gray GC等。TMEM41B是复制包括SARS-CoV-2在内的多种冠状病毒所需的宿主因子。PLoS Pathog。2021年;17: e1009599.CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sun L, Zhao C, Fu Z, Fu Y, Su Z, Li Y, et al. Genome-scale CRISPR screen identifies TMEM41B as a multi-function host factor required for coronavirus replication. PLoS Pathog. 2021;17:e1010113.CAS
Sun L,Zhao C,Fu Z,Fu Y,Su Z,Li Y等。基因组规模的CRISPR筛选将TMEM41B鉴定为冠状病毒复制所需的多功能宿主因子。PLoS Pathog。2021年;17: e1010113.CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hoffmann HH, Schneider WM, Rozen-Gagnon K, Miles LA, Schuster F, Razooky B, et al. TMEM41B Is a Pan-flavivirus Host Factor. Cell. 2021;184:133–48.e120.CAS
Hoffmann HH,Schneider WM,Rozen Gagnon K,Miles LA,Schuster F,Razooky B等。TMEM41B是泛黄病毒宿主因子。细胞。2021年;184:133–48.e120.CAS
PubMed
PubMed
Google Scholar
谷歌学者
Kratzel A, Kelly JN, V’Kovski P, Portmann J, Bruggemann Y, Todt D, et al. A genome-wide CRISPR screen identifies interactors of the autophagy pathway as conserved coronavirus targets. PLoS Biol. 2021;19:e3001490.CAS
。《公共科学图书馆·生物学》。2021年;19: e3001490.CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Baggen J, Vanstreels E, Jansen S, Daelemans D. Cellular host factors for SARS-CoV-2 infection. Nat Microbiol. 2021;6:1219–32.CAS
Baggen J,Vanstrels E,Jansen S,Daelemans D.SARS-CoV-2感染的细胞宿主因子。Nat微生物。2021年;6: 1219–32.CAS
PubMed
PubMed
Google Scholar
谷歌学者
Lin W, Sun Y, Qiu X, Huang Q, Kong L, Lu JJ. VMP1, a novel prognostic biomarker, contributes to glioma development by regulating autophagy. J Neuroinflammation. 2021;18:165.CAS
林文,孙毅,邱X,黄Q,孔L,陆JJ。VMP1是一种新型的预后生物标志物,通过调节自噬促进神经胶质瘤的发展。J神经炎症。2021年;18: 165.CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ropolo A, Catrinacio C, Renna FJ, Boggio V, Orquera T, Gonzalez CD, et al. A novel E2F1-EP300-VMP1 pathway mediates gemcitabine-induced autophagy in pancreatic cancer cells carrying oncogenic KRAS. Front Endocrinol. 2020;11:411.
Ropolo A,Catrinacio C,Renna FJ,Boggio V,Orquera T,Gonzalez CD等。一种新的E2F1-EP300-VMP1途径介导吉西他滨诱导的携带致癌KRAS的胰腺癌细胞自噬。前内分泌。2020年;11: 411页。
Google Scholar
谷歌学者
Folkerts H, Wierenga AT, van den Heuvel FA, Woldhuis RR, Kluit DS, Jaques J, et al. Elevated VMP1 expression in acute myeloid leukemia amplifies autophagy and is protective against venetoclax-induced apoptosis. Cell Death Dis. 2019;10:421.PubMed
Folkerts H,Wierenga AT,van den Heuvel FA,Woldhuis RR,Kluit DS,Jaques J等。急性髓性白血病中VMP1表达升高会放大自噬,并对venetoclax诱导的细胞凋亡具有保护作用。细胞死亡Dis。2019年;10: 421.PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rodriguez ME, Catrinacio C, Ropolo A, Rivarola VA, Vaccaro MI. A novel HIF-1alpha/VMP1-autophagic pathway induces resistance to photodynamic therapy in colon cancer cells. Photochem Photobiol Sci. 2017;16:1631–42.CAS
Rodriguez ME,Catrinacio C,Ropolo A,Rivarola VA,Vaccaro MI。新型HIF-1α/VMP1自噬途径诱导结肠癌细胞对光动力疗法的抗性。Photochem Photobiol Sci。2017年;16:
PubMed
PubMed
Google Scholar
谷歌学者
Gilabert M, Vaccaro MI, Fernandez-Zapico ME, Calvo EL, Turrini O, Secq V, et al. Novel role of VMP1 as modifier of the pancreatic tumor cell response to chemotherapeutic drugs. J Cell Physiol. 2013;228:1834–43.CAS
Gilabert M,Vaccaro MI,Fernandez-Zapico ME,Calvo EL,Turrini O,Secq V等。VMP1作为胰腺肿瘤细胞对化疗药物反应调节剂的新作用。J细胞生理学。2013年;228:1834-43.CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Guo L, Yang LY, Fan C, Chen GD, Wu F. Novel roles of Vmp1: inhibition metastasis and proliferation of hepatocellular carcinoma. Cancer Sci. 2012;103:2110–9.CAS
Guo L,Yang LY,Fan C,Chen GD,Wu F.Vmp1的新作用:抑制肝细胞癌的转移和增殖。癌症科学。2012年;103:2110–9.CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zack SR, Nikolaienko R, Cook B, Melki R, Zima AV, Campbell EM. Altered vacuole membrane protein 1 (VMP1) expression is associated with increased NLRP3 inflammasome activation and mitochondrial dysfunction. Inflamm Res. 2024;73:563–80.Yao Y, Gu J, Li M, Li G, Ai J, Zhao L. WHSC1L1-mediated epigenetic downregulation of VMP1 participates in herpes simplex virus 1 infection-induced mitophagy impairment and neuroinflammation.
Zack SR,Nikolaienko R,Cook B,Melki R,Zima AV,Campbell EM.液泡膜蛋白1(VMP1)表达改变与NLRP3炎性体激活和线粒体功能障碍增加有关。Inflamm Res.2024;73:563–80.Yao Y,Gu J,Li M,Li G,Ai J,Zhao L.WHSC1L1介导的VMP1表观遗传下调参与单纯疱疹病毒1感染诱导的线粒体自噬损伤和神经炎症。
Mol Immunol. 2023;163:63–74.CAS .
摩尔免疫。2023年;163:63-74。CAS。
PubMed
PubMed
Google Scholar
谷歌学者
Li XQ, Zeng L, Liang DG, Qi YL, Yang GY, Zhong K, et al. TMEM41B is an interferon-stimulated gene that promotes pseudorabies virus replication. J Virol. 2023;97:e0041223.PubMed
Li XQ,Zeng L,Liang DG,Qi YL,Yang GY,Zhong K等。TMEM41B是一种干扰素刺激的基因,可促进伪狂犬病病毒的复制。J维罗尔。2023年;97:e0041223.PubMed
Google Scholar
谷歌学者
Loncle C, Molejon MI, Lac S, Tellechea JI, Lomberk G, Gramatica L, et al. The pancreatitis-associated protein VMP1, a key regulator of inducible autophagy, promotes Kras(G12D)-mediated pancreatic cancer initiation. Cell Death Dis. 2016;7:e2295.CAS
Loncle C,Molejon MI,Lac S,Tellechea JI,Lomberk G,Gramatica L等。胰腺炎相关蛋白VMP1是诱导型自噬的关键调节剂,可促进Kras(G12D)介导的胰腺癌发生。细胞死亡Dis。2016年;7: e2295.CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jiang X, Fulte S, Deng F, Chen S, Xie Y, Chao X, et al. Lack of VMP1 impairs hepatic lipoprotein secretion and promotes non-alcoholic steatohepatitis. J Hepatol. 2022;77:619–31.CAS
江X,富尔特S,邓F,陈S,谢Y,赵X等。缺乏VMP1会损害肝脏脂蛋白分泌并促进非酒精性脂肪性肝炎。J Hepatol。2022年;77:619–31.CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li YE, Wang Y, Du X, Zhang T, Mak HY, Hancock SE, et al. TMEM41B and VMP1 are scramblases and regulate the distribution of cholesterol and phosphatidylserine. J Cell Biol. 2021;220:e202103105.Ghanbarpour A, Valverde DP, Melia TJ, Reinisch KM A model for a partnership of lipid transfer proteins and scramblases in membrane expansion and organelle biogenesis.
Li YE,Wang Y,Du X,Zhang T,Mak HY,Hancock SE等。TMEM41B和VMP1是scramblase,可调节胆固醇和磷脂酰丝氨酸的分布。J细胞生物学。2021年;220:e202103105.Ghanbarpour A,Valverde DP,Melia TJ,Reinisch KM是脂质转移蛋白和scramblases在膜扩张和细胞器生物发生中的伙伴关系的模型。
Proc Natl Acad Sci USA. 2021;118:e2101562118.Molejon MI, Ropolo A, Re AL, Boggio V, Vaccaro MI. The VMP1-Beclin 1 interaction regulates autophagy induction. Sci Rep. 2013;3:1055.PubMed .
美国国家科学院院刊2021;118:e2101562118.Molejon MI,Ropolo A,Re AL,Boggio V,Vaccaro MI。VMP1-Beclin 1相互作用调节自噬诱导。Sci代表2013;3: PubMed出版。
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Moretti F, Bergman P, Dodgson S, Marcellin D, Claerr I, Goodwin JM, et al. TMEM41B is a novel regulator of autophagy and lipid mobilization. EMBO Rep. 2018;19:e45889.Morishita H, Zhao YG, Tamura N, Nishimura T, Kanda Y, Sakamaki Y, et al. A critical role of VMP1 in lipoprotein secretion.
Moretti F,Bergman P,Dodgson S,Marcellin D,Claerr I,Goodwin JM等。TMEM41B是自噬和脂质动员的新型调节剂。;19: e45889。Morishita H,Zhao YG,Tamura N,Nishimura T,Kanda Y,Sakamaki Y等。VMP1在脂蛋白分泌中的关键作用。
Elife. 2019;8:e48834.Hama Y, Morishita H, Mizushima N. Regulation of ER-derived membrane dynamics by the DedA domain-containing proteins VMP1 and TMEM41B. EMBO Rep. 2022;23:e53894.CAS .
埃利夫。2019年;8: e48834。Hama Y,Morishita H,Mizushima N。通过含有DedA结构域的蛋白质VMP1和TMEM41B调节ER衍生的膜动力学。EMBO代表2022;23:e53894。CAS。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tornero-Ecija A, Tabara LC, Bueno-Arribas M, Anton-Esteban L, Navarro-Gomez C, Sanchez I, et al. A Dictyostelium model for BPAN disease reveals a functional relationship between the WDR45/WIPI4 homolog Wdr45l and Vmp1 in the regulation of autophagy-associated PtdIns3P and ER stress. Autophagy.
Tornero Ecija A,Tabara LC,Bueno Arribas M,Anton Esteban L,Navarro Gomez C,Sanchez I等。BPAN疾病的盘基网柄菌模型揭示了WDR45/WIPI4同源物Wdr45l和Vmp1在调节自噬相关PtdIns3P和ER应激中的功能关系。自噬。
2022;18:661–77.CAS .
2022年;18: 661-77年。
PubMed
PubMed
Google Scholar
谷歌学者
Bard F, Casano L, Mallabiabarrena A, Wallace E, Saito K, Kitayama H, et al. Functional genomics reveals genes involved in protein secretion and Golgi organization. Nature. 2006;439:604–7.CAS
Bard F,Casano L,Mallabiabarrena A,Wallace E,Saito K,Kitayama H等。功能基因组学揭示了与蛋白质分泌和高尔基体组织有关的基因。自然。2006年;439:604–7.CAS
PubMed
PubMed
Google Scholar
谷歌学者
Huang D, Xu B, Liu L, Wu L, Zhu Y, Ghanbarpour A, et al. TMEM41B acts as an ER scramblase required for lipoprotein biogenesis and lipid homeostasis. Cell Metab. 2021;33:1655–70.e1658.CAS
Huang D,Xu B,Liu L,Wu L,Zhu Y,Ghanbarpour A等。TMEM41B充当脂蛋白生物发生和脂质体内平衡所需的ER scramblase。细胞代谢。2021年;33:1655–70.e1658.CAS
PubMed
PubMed
Google Scholar
谷歌学者
Morita K, Hama Y, Izume T, Tamura N, Ueno T, Yamashita Y, et al. Genome-wide CRISPR screen identifies TMEM41B as a gene required for autophagosome formation. J Cell Biol. 2018;217:3817–28.CAS
Morita K,Hama Y,Izume T,Tamura N,Ueno T,Yamashita Y等。全基因组CRISPR筛选将TMEM41B鉴定为自噬体形成所需的基因。J细胞生物学。2018年;217:3817–28.CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Van Alstyne M, Lotti F, Dal Mas A, Area-Gomez E, Pellizzoni L. Stasimon/Tmem41b localizes to mitochondria-associated ER membranes and is essential for mouse embryonic development. Biochem Biophys Res Commun. 2018;506:463–70.PubMed
Van Alstyne M,Lotti F,Dal Mas A,Area Gomez E,Pellizzoni L.Stasimon/Tmem41b定位于线粒体相关的ER膜,对小鼠胚胎发育至关重要。生物化学Biophys Res Commun。2018年;
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Farese RV Jr, Ruland SL, Flynn LM, Stokowski RP, Young SG. Knockout of the mouse apolipoprotein B gene results in embryonic lethality in homozygotes and protection against diet-induced hypercholesterolemia in heterozygotes. Proc Natl Acad Sci USA. 1995;92:1774–8.CAS
Farese RV Jr,Ruland SL,Flynn LM,Stokowski RP,Young SG。敲除小鼠载脂蛋白B基因可导致纯合子的胚胎致死率,并保护杂合子免受饮食诱导的高胆固醇血症。美国国家科学院院刊1995;92:1774-8.CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Raabe M, Flynn LM, Zlot CH, Wong JS, Veniant MM, Hamilton RL, et al. Knockout of the abetalipoproteinemia gene in mice: reduced lipoprotein secretion in heterozygotes and embryonic lethality in homozygotes. Proc Natl Acad Sci USA. 1998;95:8686–91.CAS
Raabe M,Flynn LM,Zlot CH,Wong JS,Veniant MM,Hamilton RL等。小鼠abetalipoproteinemia基因的敲除:杂合子中脂蛋白分泌减少和纯合子中胚胎致死率降低。;95:8686–91.CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Arnold SJ, Robertson EJ. Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat Rev Mol Cell Biol. 2009;10:91–103.CAS
阿诺德SJ,罗伯逊EJ。做出承诺:早期小鼠胚胎中的细胞谱系分配和轴模式。Nat Rev Mol细胞生物学。2009年;10: 91–103.CAS
PubMed
PubMed
Google Scholar
谷歌学者
O’Rourke EJ, Soukas AA, Carr CE, Ruvkun G. C. elegans major fats are stored in vesicles distinct from lysosome-related organelles. Cell Metab. 2009;10:430–5.PubMed
O'Rourke EJ,Soukas AA,Carr CE,Ruvkun G.线虫主要脂肪储存在不同于溶酶体相关细胞器的囊泡中。细胞代谢。2009年;10: 430–5.PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kim K, Lee S, Yoon J, Heo J, Choi C, Park Y. Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes. Sci Rep. 2016;6:36815.CAS
Kim K,Lee S,Yoon J,Heo J,Choi C,Park Y.活肝细胞中脂滴的三维无标记成像和定量。Sci代表2016;6: 36815.CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kim H, Oh S, Lee S, Lee KS, Park Y. Recent advances in label-free imaging and quantification techniques for the study of lipid droplets in cells. Curr Opin Cell Biol. 2024;87:102342.CAS
Kim H,Oh S,Lee S,Lee KS,Park Y.用于研究细胞中脂滴的无标记成像和定量技术的最新进展。Curr Opin细胞生物学。2024年;87:102342.CAS
PubMed
PubMed
Google Scholar
谷歌学者
Zeevaert K, Elsafi Mabrouk MH, Wagner W, Goetzke R. Cell mechanics in embryoid bodies. Cells. 2020;9:2270.Kruithof-de Julio M, Alvarez MJ, Galli A, Chu J, Price SM, Califano A, et al. Regulation of extra-embryonic endoderm stem cell differentiation by Nodal and Cripto signaling. Development.
Zeevaert K,Elsafi Mabrouk MH,Wagner W,Goetzke R.胚状体中的细胞力学。细胞。2020年;9: 2270.Kruithof-de Julio M,Alvarez MJ,Galli A,Chu J,Price SM,Califano A等。通过Nodal和Cripto信号调节胚外内胚层干细胞分化。发展。
2011;138:3885–95.CAS .
2011年;138:3885-95年。
PubMed
PubMed
Google Scholar
谷歌学者
Niakan KK, Schrode N, Cho LT, Hadjantonakis AK. Derivation of extraembryonic endoderm stem (XEN) cells from mouse embryos and embryonic stem cells. Nat Protoc. 2013;8:1028–41.CAS
。从小鼠胚胎和胚胎干细胞衍生胚外内胚层干(XEN)细胞。Nat协议。2013年;8: 1028–41.CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ngondo RP, Cirera-Salinas D, Yu J, Wischnewski H, Bodak M, Vandormael-Pournin S, et al. Argonaute 2 Is required for extra-embryonic endoderm differentiation of mouse embryonic stem cells. Stem Cell Rep. 2018;10:461–76.CAS
Ngondo RP,Cirera Salinas D,Yu J,Wischnewski H,Bodak M,Vandormael Pournin S等。Argonaute 2是小鼠胚胎干细胞胚外内胚层分化所必需的。干细胞代表2018;10: 461-76.CAS
Google Scholar
谷歌学者
Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999;398:422–6.CAS
Tetsu O,McCormick F.β-连环蛋白调节结肠癌细胞中细胞周期蛋白D1的表达。自然。1999年;398:422–6.CAS
PubMed
PubMed
Google Scholar
谷歌学者
Du YC, Oshima H, Oguma K, Kitamura T, Itadani H, Fujimura T, et al. Induction and down-regulation of Sox17 and its possible roles during the course of gastrointestinal tumorigenesis. Gastroenterology. 2009;137:1346–57.CAS
Du YC,Oshima H,Oguma K,Kitamura T,Itadani H,Fujimura T等。Sox17的诱导和下调及其在胃肠道肿瘤发生过程中的可能作用。胃肠病学。2009年;137:1346-57.CAS
PubMed
PubMed
Google Scholar
谷歌学者
Zhang Z, Deb A, Zhang Z, Pachori A, He W, Guo J, et al. Secreted frizzled related protein 2 protects cells from apoptosis by blocking the effect of canonical Wnt3a. J Mol Cell Cardiol. 2009;46:370–7.CAS
Zhang Z,Deb A,Zhang Z,Pachori A,He W,Guo J等。分泌型卷曲相关蛋白2通过阻断经典Wnt3a的作用来保护细胞免于凋亡。。2009年;46:370–7.CAS
PubMed
PubMed
Google Scholar
谷歌学者
Aguilera O, Pena C, Garcia JM, Larriba MJ, Ordonez-Moran P, Navarro D, et al. The Wnt antagonist DICKKOPF-1 gene is induced by 1alpha,25-dihydroxyvitamin D3 associated to the differentiation of human colon cancer cells. Carcinogenesis. 2007;28:1877–84.CAS
Aguilera O,Pena C,Garcia JM,Larriba MJ,Ordonez-Moran P,Navarro D等。Wnt拮抗剂DICKKOPF-1基因由与人结肠癌细胞分化相关的1α,25-二羟基维生素D3诱导。致癌作用。2007年;28:1877-84.CAS
PubMed
PubMed
Google Scholar
谷歌学者
Athanasouli P, Balli M, De Jaime-Soguero A, Boel A, Papanikolaou S, van der Veer BK, et al. The Wnt/TCF7L1 transcriptional repressor axis drives primitive endoderm formation by antagonizing naive and formative pluripotency. Nat Commun. 2023;14:1210.CAS
Athanasouli P,Balli M,De Jaime Soguero A,Boel A,Papanikolaou S,van der Veer BK等。Wnt/TCF7L1转录阻遏物轴通过拮抗幼稚和形成性多能性来驱动原始内胚层的形成。纳特公社。2023年;14: 1210.CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chiu CS, Tsai CH, Hsieh MS, Tsai SC, Jan YJ, Lin WY, et al. Exploiting Honokiol-induced ER stress CHOP activation inhibits the growth and metastasis of melanoma by suppressing the MITF and beta-catenin pathways. Cancer Lett. 2019;442:113–25.CAS
Chiu CS,Tsai CH,Hsieh MS,Tsai SC,Jan YJ,Lin WY等。利用和厚朴酚诱导的ER应激CHOP激活通过抑制MITF和β-连环蛋白途径抑制黑素瘤的生长和转移。癌症Lett。2019年;442:113–25.CAS
PubMed
PubMed
Google Scholar
谷歌学者
Wang S, Chao X, Jiang X, Wang T, Rodriguez Y, Yang L, et al. Loss of acinar cell VMP1 triggers spontaneous pancreatitis in mice. Autophagy. 2022;18:1572–82.CAS
Wang S,Chao X,Jiang X,Wang T,Rodriguez Y,Yang L等。腺泡细胞VMP1的丢失会引发小鼠自发性胰腺炎。自噬。2022年;18: 1572-82.CAS
PubMed
PubMed
Google Scholar
谷歌学者
Goth CK, Petaja-Repo UE, Rosenkilde MM. G protein-coupled receptors in the sweet spot: glycosylation and other post-translational modifications. ACS Pharmacol Transl Sci. 2020;3:237–45.CAS
Goth CK,Petaja Repo UE,Rosenkilde MM.G蛋白质偶联受体在甜点:糖基化和其他翻译后修饰。ACS Pharmacol Transl Sci。2020年;3: 237-45.CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang C, Peng R, Zeng M, Zhang Z, Liu S, Jiang D, et al. An autoregulatory feedback loop of miR-21/VMP1 is responsible for the abnormal expression of miR-21 in colorectal cancer cells. Cell Death Dis. 2020;11:1067.PubMed
Wang C,Peng R,Zeng M,Zhang Z,Liu S,Jiang D,et al。miR-21/VMP1的自动调节反馈环负责结直肠癌细胞中miR-21的异常表达。细胞死亡Dis。2020年;11: 1067.PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lo Re AE, Fernandez-Barrena MG, Almada LL, Mills LD, Elsawa SF, Lund G, et al. Novel AKT1-GLI3-VMP1 pathway mediates KRAS oncogene-induced autophagy in cancer cells. J Biol Chem. 2012;287:25325–34.CAS
Lo Re AE,Fernandez-Barrena MG,Almada LL,Mills LD,Elsawa SF,Lund G等。新型AKT1-GLI3-VMP1途径介导KRAS癌基因诱导的癌细胞自噬。生物化学杂志。2012年;287:25325–34.CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Futterer A, Raya A, Llorente M, Izpisua-Belmonte JC, de la Pompa JL, Klatt P, et al. Ablation of Dido3 compromises lineage commitment of stem cells in vitro and during early embryonic development. Cell Death Differ. 2012;19:132–43.CAS
Futterer A,Raya A,Llorente M,Izpisua Belmonte JC,de la Pompa JL,Klatt P等。Dido3的消融会损害干细胞在体外和早期胚胎发育过程中的谱系承诺。细胞死亡不同。2012年;19: 132–43.CAS
PubMed
PubMed
Google Scholar
谷歌学者
Yu H, Smallwood PM, Wang Y, Vidaltamayo R, Reed R, Nathans J. Frizzled 1 and frizzled 2 genes function in palate, ventricular septum and neural tube closure: general implications for tissue fusion processes. Development. 2010;137:3707–17.CAS
Yu H,Smallwood PM,Wang Y,Vidaltamayo R,Reed R,Nathans J.Frizzled 1和Frizzled 2基因在腭,室间隔和神经管闭合中的功能:对组织融合过程的一般意义。发展。2010年;137:3707-17.CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen P, Tao L, Wang T, Zhang J, He A, Lam KH, et al. Structural basis for recognition of frizzled proteins by Clostridium difficile toxin B. Science. 2018;360:664–9.CAS
Chen P,Tao L,Wang T,Zhang J,He A,Lam KH,等。艰难梭菌毒素B识别卷曲蛋白的结构基础。科学。2018年;360:664–9.CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zheng S, Sheng R. The emerging understanding of Frizzled receptors. FEBS Lett. 2024;598:1939–54.CAS
郑S,盛R.对卷曲受体的新兴理解。FEBS Lett公司。2024年;598:1939-54.CAS
PubMed
PubMed
Google Scholar
谷歌学者
Renna FJ, Gonzalez CD, Vaccaro MI. Decoding the versatile landscape of autophagic protein VMP1 in cancer: a comprehensive review across tissue types and regulatory mechanisms. Int J Mol Sci. 2024;25:3758.Di Minin G, Holzner M, Grison A, Dumeau CE, Chan W, Monfort A, et al. TMED2 binding restricts SMO to the ER and Golgi compartments.
Renna FJ,Gonzalez CD,Vaccaro MI。解码癌症中自噬蛋白VMP1的多功能景观:跨组织类型和调节机制的全面综述。国际分子科学杂志。2024年;25:3758。Di Minin G,Holzner M,Grison A,Dumeau CE,Chan W,Monfort A等。TMED2结合将SMO限制在ER和高尔基体区室。
PLoS Biol. 2022;20:e3001596.PubMed .
《公共科学图书馆·生物学》。2022;20:e3001596.生物医学。
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Holzner M, Wutz A, Di Minin G. Applying Spinal Cord Organoids as a quantitative approach to study the mammalian Hedgehog pathway. PLoS ONE. 2024;19:e0301670.CAS
Holzner M,Wutz A,Di Minin G.应用脊髓类器官作为定量方法来研究哺乳动物刺猬通路。PLoS ONE。2024年;19: e0301670.CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ershov D, Phan MS, Pylvanainen JW, Rigaud SU, Le Blanc L, Charles-Orszag A, et al. TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking pipelines. Nat Methods. 2022;19:829–32.CAS
Ershov D,Phan MS,Pylvanainen JW,Rigaud SU,Le Blanc L,Charles Orszag A等。TrackMate 7:将最先进的分割算法集成到跟踪管道中。Nat方法。2022年;19: 829–32.CAS
PubMed
PubMed
Google Scholar
谷歌学者
Tinevez JY, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E, et al. TrackMate: an open and extensible platform for single-particle tracking. Methods. 2017;115:80–90.CAS
Tinevez JY,Perry N,Schindelin J,Hoopes GM,Reynolds GD,Laplantine E等。TrackMate:一个开放且可扩展的单粒子跟踪平台。方法。2017年;115:80–90.CAS
PubMed
PubMed
Google Scholar
谷歌学者
Download referencesAcknowledgementsWe acknowledge the Functional Genomics Center Zurich (FGCZ) for technical support and Sungsik Lee from ScopeM facility for help on the RF microscopy. We thank G.J. Pereira, C. Fimiani, and U. Sutter for their help with reagents. We thank C. Ciaudo, A.
下载参考文献致谢我们感谢苏黎世功能基因组学中心(FGCZ)的技术支持,以及ScopeM facility的Sungsik Lee在射频显微镜方面的帮助。我们感谢G.J.Pereira,C.Fimiani和U.Sutter在试剂方面的帮助。我们感谢C.Ciaudo,A。
Grison, R. Di Minin, J. Corn, and K. Basler for their helpful discussions. GDM was supported by the ETH Zurich Postdoctoral Fellowship Program as well as the Marie Curie Actions for People COFUND Program.FundingOpen access funding provided by Swiss Federal Institute of Technology Zurich.Author informationAuthor notesFederico UlianaPresent address: Johannes Gutenberg University of Mainz, Mainz, GermanyAuthors and AffiliationsInstitute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, SwitzerlandMarkus Holzner, Tea Sonicki, Hugo Hunn, Weijun Jiang, Anton Wutz & Giulio Di MininInstitute of Biochemistry, Department of Biology, ETH Zurich, Zurich, SwitzerlandFederico Uliana, Vamshidhar R.
Grison,R。Di Minin,J。Corn和K。Basler的有益讨论。GDM得到了苏黎世理工学院博士后奖学金计划以及玛丽·居里人民行动联合基金计划的支持。资金开放获取资金由瑞士苏黎世联邦理工学院提供。。
Gade & Karsten WeisAuthorsMarkus HolznerView author publicationsYou can also search for this author in.
Gade&KarstenWeisauthorsmarkusHolznerview作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarTea SonickiView author publicationsYou can also search for this author in
PubMed Google ScholarTea SonickiView作者出版物您也可以在
PubMed Google ScholarHugo HunnView author publicationsYou can also search for this author in
PubMed Google ScholarHugo HunnView作者出版物您也可以在
PubMed Google ScholarFederico UlianaView author publicationsYou can also search for this author in
PubMed Google ScholarFederico UlianaView作者出版物您也可以在
PubMed Google ScholarWeijun JiangView author publicationsYou can also search for this author in
PubMed Google ScholarWeijun JiangView作者出版物您也可以在
PubMed Google ScholarVamshidhar R. GadeView author publicationsYou can also search for this author in
PubMed Google ScholarVamshidhar R.GadeView作者出版物您也可以在
PubMed Google ScholarKarsten WeisView author publicationsYou can also search for this author in
PubMed Google ScholarKarsten WeisView作者出版物您也可以在
PubMed Google ScholarAnton WutzView author publicationsYou can also search for this author in
PubMed Google ScholarAnton WutzView作者出版物您也可以在
PubMed Google ScholarGiulio Di MininView author publicationsYou can also search for this author in
PubMed Google ScholarGiulio Di MininView作者出版物您也可以在
PubMed Google ScholarContributionsConceptualization: MH, AW, and GDM; Data curation: MH, FU, VG, and GDM; Formal analysis: MH, TS, HH, FU, VG, and GDM; Funding acquisition: KW, AW, and GDM; Investigation: MH, AW, and GDM; Methodology: MH, TS, HH, FU, VG, WJ, and GDM; Project administration: AW and GDM; Resources: MH, KW, AW, and GDM; Supervision: KW, AW, and GDM; Validation: MH and GDM; Visualization: MH, FU, VG, and GDM; Writing – original draft: MH, AW, and GDM; Writing – review & editing: MH, TS, HH, FU, VG, WJ, KW, AW, and GDM.Corresponding authorsCorrespondence to.
PubMed谷歌学术贡献概念:MH,AW和GDM;数据管理:MH,FU,VG和GDM;;资金收购:KW,AW和GDM;调查:MH,AW和GDM;方法:MH,TS,HH,FU,VG,WJ和GDM;项目管理:AW和GDM;资源:MH,KW,AW和GDM;监督:KW,AW和GDM;验证:MH和GDM;可视化:MH,FU,VG和GDM;写作-原稿:MH,AW和GDM;写作-评论和编辑:MH,TS,HH,FU,VG,WJ,KW,AW和GDM。通讯作者通讯。
Anton Wutz or Giulio Di Minin.Ethics declarations
安东·伍兹或朱利奥·迪米宁。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Ethical approval and consent to participate
道德认可和参与同意
All methods in this study were carried out in strict accordance with relevant ethical guidelines and institutional regulations. The embryonic stem cells (ESCs) used for genome editing were obtained from previously derived sources. No animal models or human patient samples were involved in this research..
本研究中的所有方法均严格按照相关道德准则和机构法规进行。用于基因组编辑的胚胎干细胞(ESC)是从以前的来源获得的。本研究未涉及动物模型或人类患者样本。。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplemental InformationTable_S1-Gene_classesTable_S2-ESC_DSEq2-analysisTable_S3-XEN_DSEq2-analysis_DoubleKOvsWTTable_S4-MS_plasma_membraneVideo S1 - Cardiomyocyte specification in WT EBsVideo S2 - Cardiomyocyte specification in DoubleKO EBsRights and permissions.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息Table\u S1-Gene\u classesTable\u S2-ESC\u DSEq2-analysisTable\u S3-XEN\u DSEq2-Analysisable\u DoubleKOvsWTTable\u S4-MS\u plasma\u membraneVideo S1-WT EBsVideo S2中的心肌细胞规格-DoubleKO eBS中的心肌细胞规格和权限。
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleHolzner, M., Sonicki, T., Hunn, H. et al. The scramblases VMP1 and TMEM41B are required for primitive endoderm specification by targeting WNT signaling.
转载和许可本文引用本文Holzner,M.,Sonicki,T.,Hunn,H。等人。通过靶向WNT信号传导,scramblases VMP1和TMEM41B是原始内胚层规范所必需的。
Cell Death Differ (2024). https://doi.org/10.1038/s41418-024-01435-xDownload citationReceived: 13 July 2024Revised: 27 November 2024Accepted: 10 December 2024Published: 18 December 2024DOI: https://doi.org/10.1038/s41418-024-01435-xShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
。https://doi.org/10.1038/s41418-024-01435-xDownload引文收到日期:2024年7月13日修订日期:2024年11月27日接受日期:2024年12月10日发布日期:2024年12月18日OI:https://doi.org/10.1038/s41418-024-01435-xShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供