EN
登录

染色体间转录中心塑造了非洲锥虫的3D基因组结构

Inter-chromosomal transcription hubs shape the 3D genome architecture of African trypanosomes

Nature 等信源发布 2024-12-23 02:05

可切换为仅中文


AbstractThe eukaryotic nucleus exhibits a highly organized 3D genome architecture, with RNA transcription and processing confined to specific nuclear structures. While intra-chromosomal interactions, such as promoter-enhancer dynamics, are well-studied, the role of inter-chromosomal interactions remains poorly understood.

摘要真核细胞核表现出高度组织化的3D基因组结构,RNA转录和加工仅限于特定的核结构。虽然染色体内相互作用(例如启动子-增强子动力学)得到了很好的研究,但染色体间相互作用的作用仍然知之甚少。

Investigating these interactions in mammalian cells is challenging due to large genome sizes and the need for deep sequencing. Additionally, transcription-dependent 3D topologies in mixed cell populations further complicate analyses. To address these challenges, we used high-resolution DNA-DNA contact mapping (Micro-C) in Trypanosoma brucei, a parasite with continuous RNA polymerase II (RNAPII) transcription and polycistronic transcription units (PTUs).

由于基因组大小较大且需要深度测序,因此研究哺乳动物细胞中的这些相互作用具有挑战性。此外,混合细胞群中依赖转录的3D拓扑结构进一步使分析复杂化。为了应对这些挑战,我们在布氏锥虫(一种具有连续RNA聚合酶II(RNAPII)转录和多顺反子转录单位(PTU)的寄生虫)中使用了高分辨率DNA-DNA接触作图(Micro-C)。

With approximately 300 transcription start sites (TSSs), this genome organization simplifies data interpretation. To minimize scaffolding artifacts, we also generated a highly contiguous phased genome assembly using ultra-long sequencing reads. Our Micro-C analysis revealed an intricate 3D genome organization.

该基因组组织具有大约300个转录起始位点(TSS),简化了数据解释。为了最大程度地减少支架伪影,我们还使用超长测序读数生成了高度连续的相控基因组组装。我们的Micro-C分析揭示了一个复杂的3D基因组组织。

While the T. brucei genome displays features resembling chromosome territories, its chromosomes are arranged around polymerase-specific transcription hubs. RNAPI-transcribed genes cluster, as expected from their localization to the nucleolus. However, we also found that RNAPII TSSs form distinct inter-chromosomal transcription hubs with other RNAPII TSSs.

虽然布鲁氏菌基因组显示出类似于染色体区域的特征,但其染色体排列在聚合酶特异性转录中心周围。RNAPI转录的基因簇,正如从它们定位到核仁所预期的那样。然而,我们还发现RNAPII TSS与其他RNAPII TSS形成不同的染色体间转录中心。

These findings highlight the evolutionary significance of inter-chromosomal transcription hubs and provide new insights into genome organization in T. brucei..

这些发现突出了染色体间转录中心的进化意义,并为布鲁氏菌的基因组组织提供了新的见解。。

IntroductionTo fit inside the nucleus of a cell, the long polymers of DNA that contain a cell’s genetic information must be tightly packaged1. Research over the past few decades has shown that DNA is not randomly packaged and that the 3D genome organization inside the nucleus regulates vital cellular processes, including gene expression and DNA repair2,3,4.

引言为了适合细胞核内,含有细胞遗传信息的DNA长聚合物必须紧密包装1。。

Chromosome conformation capture (3C)-based techniques, which measure the frequency of DNA-DNA contacts between any two DNA loci, have revealed a large number of distinct structures, collectively referred to as ‘contact domains’. Although it has long been recognized that contact domains vary in size and function, the terminology used to describe different contact domains has changed over time.

基于染色体构象捕获(3C)的技术测量了任何两个DNA基因座之间DNA-DNA接触的频率,揭示了大量不同的结构,统称为“接触域”。尽管人们早已认识到接触域的大小和功能各不相同,但用于描述不同接触域的术语随着时间的推移而发生了变化。

To reduce ambiguity, in our study we follow the definitions proposed by Beagan and Phillips-Cremins5. Here, ‘chromatin domains’ are defined as any triangle of enhanced contact frequency tiling the diagonal of a DNA-DNA contact matrix.At the largest scale, eukaryotic DNA is typically organized into active and inactive regions that segregate into A and B compartments6.

为了减少歧义,在我们的研究中,我们遵循Beagan和Phillips-Cremins5提出的定义。在这里,“染色质结构域”被定义为增强接触频率的任何三角形,平铺DNA-DNA接触基质的对角线。在最大规模上,真核DNA通常被组织成活性和非活性区域,分离成a和B区室6。

‘Compartment domains’ are thus defined as chromatin domains whose boundaries coincide with inflection points in the A/B compartmentalization signals, and compartment boundaries are identified by computing the eigenvectors of the interaction matrices7,8.At the intermediate scale, genomes can be organized into ‘topologically associating domains’ (TADs).

因此,“区室结构域”被定义为染色质结构域,其边界与A/B区室化信号中的拐点重合,并且通过计算相互作用矩阵的特征向量来识别区室边界7,8。在中间尺度上,基因组可以被组织成“拓扑关联域”(TAD)。

Beagan and Phillips-Cremins define TADs as contact domains whose formation is driven by cohesin-mediated loop extrusion5,9,10. These domains are flanked by CCCTC-binding factor (CTCF), a protein that restricts the movement of cohesin and thereby defines the boundaries of TADs11,12,13. TAD boundaries can be identified b.

Beagan和Phillips-Cremins将TAD定义为接触域,其形成由粘着蛋白介导的环挤出驱动5,9,10。这些结构域的两侧是CCCTC结合因子(CTCF),这是一种限制粘着蛋白运动的蛋白质,从而定义了TADs11,12,13的边界。TAD边界可以识别b。

Trypanosoma brucei cell culture and growthIn this study, two cell lines were used: T. brucei wildtype (WT) Lister 427 bloodstream form; and a double-selection T. brucei cell lines derived from the Lister 427 bloodstream-form MITat 1.2 isolate92. Both cell lines were grown in HMI-11 medium at 37 °C and 5% CO2.

布氏锥虫细胞培养和生长在这项研究中,使用了两种细胞系:布氏锥虫野生型(WT)Lister 427血流形式;。两种细胞系均在37℃和5%CO 2的HMI-11培养基中生长。

In the latter cell line, a neomycin resistance gene in bloodstream-form expression site (BES) 17 and a puromycin resistance gene in BES 1 allowed the selection for a homogenous cell population that expressed either VSG-2 from BES 1 or VSG-13 from BES 17. This cell line was grown in HMI-11 supplemented with either 20 μg/mL neomycin (also referred to as N50 cells) or 1 μg/mL puromycin (referred to as P10 cells).gDNA extraction for ONT sequencingFor nanopore sequencing, six sequencing libraries were obtained from P10 cells or T.

在后一种细胞系中,血流中的新霉素抗性基因形成表达位点(BES)17和BES 1中的嘌呤霉素抗性基因允许选择表达来自BES 1的VSG-2或来自BES 17的VSG-13的同质细胞群。该细胞系在补充有20g/mL新霉素(也称为N50细胞)或1的HMI-11中生长 μg/mL嘌呤霉素(称为P10细胞)。gDNA提取用于ONT测序对于纳米孔测序,从P10细胞或T获得六个测序文库。

brucei wildtype Lister 427 cells. For each library, gDNA extraction was performed using High Molecular Weight DNA Extraction Kit from Cells and Blood (NEB #T3050). The samples were sequenced using a GridION X5 or PromethION 24 platform on a FLO-PRO114M flowcell using MINKNOW software. Sequencing reports and details of each sequencing libraries are shown in Supplementary Table 1.Closing gaps and expanding repeats in the assemblyFirst, an assembly error in BES 2 of the previously fully phased version 10 of the T.

布鲁氏菌野生型Lister 427细胞。对于每个文库,使用来自细胞和血液的高分子量DNA提取试剂盒(NEB#T3050)进行gDNA提取。使用MINKNOW软件在FLO-PRO114M流通池上使用GridION X5或PromethION 24平台对样品进行测序。测序报告和每个测序文库的详细信息显示在补充表1中。在assemblyFirst中关闭缺口和扩展重复序列,这是先前完全分阶段的T版本10的BES 2中的组装错误。

brucei Lister 427 strain genome assembly51 was corrected and the contigs names were shortened to generate the version 11 of the assembly (Tb427v11). In order to close gaps and expand collapsed repeats in the Tb427v11 assembly, SAMBA93 was run with the ONT reads generated in this study (Supplementary Table 1) and the ONT reads from Girasol et al.94.

校正了布鲁氏菌Lister 427菌株基因组装配51,并缩短了重叠群名称以生成装配的版本11(Tb427v11)。为了缩小差距并扩大Tb427v11组件中折叠的重复序列,使用本研究中产生的ONT读数(补充表1)和Girasol等人94的ONT读数运行了SAMBA93。

It was confirmed that small contigs are not oriented the wrong way around, an error commo.

已经证实,小重叠群并没有方向错误,这是一个常见的错误。

Data availability

数据可用性

High-throughput sequencing Micro-C data and ultra-long ONT reads generated in this study have been deposited in the European Nucleotide Archive under primary accession number PRJEB76933 [https://www.ebi.ac.uk/ena/browser/view/PRJEB76933]. The resulting genome assembly is available at https://zenodo.org/doi/10.5281/zenodo.12683395.

本研究中产生的高通量测序Micro-C数据和超长ONT读数已保存在欧洲核苷酸档案馆,主要登录号为PRJEB76933[https://www.ebi.ac.uk/ena/browser/view/PRJEB76933]。由此产生的基因组组装可在https://zenodo.org/doi/10.5281/zenodo.12683395.

Previously published ChIP-seq and Hi-C data that were used in this study are publicly available at the European Nucleotide Archive or through GEO Series under accession numbers GSE98061 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE98061] (H2A.Z MNase-ChIP-seq55), GSE100896 [http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100896] (SCC1 ChIP-seq48, samples GSM3357444 and GSM3357445), GSE150253 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE150253] (RNAPII ChIP-seq66, samples GSM5381488 and GSM5381492), PRJEB35632 [https://www.ebi.ac.uk/ena/data/view/PRJEB35632] and GSE100896 [http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100896] (Hi-C datasets30,48, merged in this study)..

本研究中使用的先前发布的ChIP-seq和Hi-C数据可在欧洲核苷酸档案馆或通过GEO系列公开获得,登录号为GSE98061[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE98061](H2A.Z MNase-ChIP-seq55),GSE100896[http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100896](SCC1 ChIP-seq48,样品GSM3357444和GSM3357445),GSE150253[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE150253](RNAPII ChIP-seq66,样品GSM5381488和GSM5381492),PRJEB35632[https://www.ebi.ac.uk/ena/data/view/PRJEB35632]和GSE100896[http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100896](Hi-C数据集30,48,合并在本研究中)。。

Code availability

代码可用性

The code for the generation and quality control of the genome assembly has been deposited at Zenodo https://zenodo.org/doi/10.5281/zenodo.12683395. The code for the analysis of Micro-C and Hi-C data is available at https://zenodo.org/doi/10.5281/zenodo.12683439.

基因组组装的生成和质量控制代码已保存在Zenodohttps://zenodo.org/doi/10.5281/zenodo.12683395.Micro-C和Hi-C数据分析代码可在https://zenodo.org/doi/10.5281/zenodo.12683439.

ReferencesMisteli, T. Beyond the Sequence: Cellular Organization of Genome Function. Cell 128, 787–800 (2007).Article

参考文献Misteli,T。超越序列:基因组功能的细胞组织。细胞128787-800(2007)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Fraser, P. & Bickmore, W. Nuclear organization of the genome and the potential for gene regulation. Nature 447, 413–417 (2007).Article

Fraser,P。&Bickmore,W。基因组的核组织和基因调控的潜力。《自然》447413-417(2007)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

De Wit, E. & De Laat, W. A decade of 3C technologies: insights into nuclear organization. Genes Dev. 26, 11–24 (2012).Article

De Wit,E。&De Laat,W。十年的3C技术:对核组织的见解。基因发展26,11-24(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cavalli, G. & Misteli, T. Functional implications of genome topology. Nat. Struct. Mol. Biol. 20, 290–299 (2013).Article

Cavalli,G。&Misteli,T。基因组拓扑的功能意义。自然结构。分子生物学。20290-299(2013)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Beagan, J. A. & Phillips-Cremins, J. E. On the existence and functionality of topologically associating domains. Nat. Genet. 52, 8–16 (2020).Article

Beagan,J.A。&Phillips-Cremins,J.E。关于拓扑关联域的存在和功能。纳特·吉内特。52,8-16(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lieberman-Aiden, E. et al. Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome. Science 326, 289–293 (2009).Article

Lieberman-Aiden,E。等人。远程相互作用的综合图谱揭示了人类基因组的折叠原理。。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lajoie, B. R., Dekker, J. & Kaplan, N. The Hitchhiker’s guide to Hi-C analysis: Practical guidelines. Methods 72, 65–75 (2015).Article

Lajoie,B.R.,Dekker,J。&Kaplan,N。《Hi-C分析搭便车指南:实用指南》。方法72,65-75(2015)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Kruse, K., Hug, C. B. & Vaquerizas, J. M. FAN-C: a feature-rich framework for the analysis and visualisation of chromosome conformation capture data. Genome Biol. 21, 303 (2020).Article

Kruse,K.,Hug,C。B。&Vaquerizas,J。M。FAN-C:用于分析和可视化染色体构象捕获数据的功能丰富的框架。基因组生物学。21303(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).Article

Dixon,J.R.等人。通过染色质相互作用分析鉴定哺乳动物基因组中的拓扑结构域。《自然》485,376–380(2012)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Davidson, I. F. et al. DNA loop extrusion by human cohesin. Science 366, 1338–1345 (2019).Article

Davidson,I.F.等人。人类粘着蛋白的DNA环挤出。科学3661338-1345(2019)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Rao, S. S. P. et al. A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping. Cell 159, 1665–1680 (2014).Article

Rao,S.S.P.等人。千碱基分辨率的人类基因组3D图谱揭示了染色质循环的原理。细胞1591665-1680(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hanssen, L. L. P. et al. Tissue-specific CTCF–cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo. Nat. Cell Biol. 19, 952–961 (2017).Article

Hanssen,L。L。P。等人。组织特异性CTCF-粘着蛋白介导的染色质结构界定了增强子相互作用和体内功能。自然细胞生物学。1952-961(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Harmston, N. et al. Topologically associating domains are ancient features that coincide with Metazoan clusters of extreme noncoding conservation. Nat. Commun. 8, 441 (2017).Article

Harmston,N。等人。拓扑关联域是与极端非编码保守的后生动物簇相吻合的古老特征。国家公社。8441(2017)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jin, F. et al. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 503, 290–294 (2013).Article

Jin,F。等人。人类细胞中三维染色质相互作用组的高分辨率图谱。《自然》503290–294(2013)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mifsud, B. et al. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat. Genet. 47, 598–606 (2015).Article

Mifsud,B。等人。用高分辨率捕获Hi-C绘制人类细胞中的远程启动子接触。Nat。Genet。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Schoenfelder, S. & Fraser, P. Long-range enhancer–promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437–455 (2019).Article

。Genet自然Rev。20437-455(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Uyehara, C. M. & Apostolou, E. 3D enhancer-promoter interactions and multi-connected hubs: Organizational principles and functional roles. Cell Rep. 42, 112068 (2023).Article

Uyehara,C.M。和Apostolou,E。3D增强子-启动子相互作用和多连接枢纽:组织原则和功能角色。细胞代表42112068(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wansink, D. et al. Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. J. Cell Biol. 122, 283–293 (1993).Article

Wansink,D。等人。新生RNA的荧光标记揭示了RNA聚合酶II在散布在整个细胞核中的结构域中的转录。J、 细胞生物学。122283-293(1993)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Šmigová, J., Juda, P., Cmarko, D. & Raška, I. Fine structure of the ‘PcG body’ in human U-2 OS cells established by correlative light-electron microscopy. Nucleus 2, 219–228 (2011).Article

Šmigová,J.,Juda,P.,Cmarko,D。&Raška,I。通过相关光电子显微镜建立的人U-2 OS细胞中“PcG体”的精细结构。Nucleus 2219–228(2011)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Quinodoz, S. A. et al. Higher-Order Inter-chromosomal Hubs Shape 3D Genome Organization in the Nucleus. Cell 174, 744–757.e24 (2018).Article

Quinodoz,S.A。等人。高阶染色体间中心形成细胞核中的3D基因组组织。细胞174744-757.e24(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Boisvert, F.-M., Van Koningsbruggen, S., Navascués, J. & Lamond, A. I. The multifunctional nucleolus. Nat. Rev. Mol. Cell Biol. 8, 574–585 (2007).Article

Boisvert,F.-M.,Van Koningsbruggen,S.,NavascuéS,J.&Lamond,A.I。多功能核仁。Nat。Rev。Mol。Cell Biol。8574-585(2007)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Thompson, M., Haeusler, R. A., Good, P. D. & Engelke, D. R. Nucleolar Clustering of Dispersed tRNA Genes. Science 302, 1399–1401 (2003).Article

Thompson,M.,Haeusler,R.A.,Good,P.D。&Engelke,D.R。分散tRNA基因的核仁聚类。科学3021399-1401(2003)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Raab, J. R. et al. Human tRNA genes function as chromatin insulators: Human tRNA genes function as chromatin insulators. EMBO J. 31, 330–350 (2012).Article

Raab,J.R.等人。人类tRNA基因起染色质绝缘体的作用:人类tRNA基因起染色质绝缘体的作用。EMBO J.31330–350(2012)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Van Bortle, K., Phanstiel, D. H. & Snyder, M. P. Topological organization and dynamic regulation of human tRNA genes during macrophage differentiation. Genome Biol. 18, 180 (2017).Article

Van Bortle,K.,Phanstiel,D.H。&Snyder,M.P。巨噬细胞分化过程中人类tRNA基因的拓扑组织和动态调控。基因组生物学。18180(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jackson, D. A., Iborra, F. J., Manders, E. M. M. & Cook, P. R. Numbers and Organization of RNA Polymerases, Nascent Transcripts, and Transcription Units in HeLa Nuclei. Mol. Biol. Cell 9, 1523–1536 (1998).Article

Jackson,D.A.,Iborra,F.J.,Manders,E.M.M。&Cook,P.R。HeLa细胞核中RNA聚合酶,新生转录本和转录单位的数量和组织。分子生物学。细胞91523-1536(1998)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Osborne, C. S. et al. Active genes dynamically colocalize to shared sites of ongoing transcription. Nat. Genet. 36, 1065–1071 (2004).Article

Osborne,C.S。等人。活性基因动态共定位到正在进行的转录的共享位点。纳特·吉内特。361065-1071(2004)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Cho, W.-K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415 (2018).Article

Cho,W.-K.等人,Mediator和RNA聚合酶II簇在转录依赖性缩合物中缔合。科学361412-415(2018)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hilbert, L. et al. Transcription organizes euchromatin via microphase separation. Nat. Commun. 12, 1360 (2021).Article

Hilbert,L。等人。转录通过微相分离组织常染色质。国家公社。121360(2021)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mora, A., Huang, X., Jauhari, S., Jiang, Q. & Li, X. Chromatin Hubs: A biological and computational outlook. Comput. Struct. Biotechnol. J. 20, 3796–3813 (2022).Article

Mora,A.,Huang,X.,Jauhari,S.,Jiang,Q。&Li,X。染色质中心:生物学和计算前景。计算机。结构。生物技术。J、 203796-3813(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Faria, J. et al. Spatial integration of transcription and splicing in a dedicated compartment sustains monogenic antigen expression in African trypanosomes. Nat. Microbiol. 6, 289–300 (2021).Article

Faria,J。等人。转录和剪接在专用区室中的空间整合维持了非洲锥虫中的单基因抗原表达。自然微生物。6289-300(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Budzak, J., Jones, R., Tschudi, C., Kolev, N. G. & Rudenko, G. An assembly of nuclear bodies associates with the active VSG expression site in African trypanosomes. Nat. Commun. 13, 101 (2022).Article

Budzak,J.,Jones,R.,Tschudi,C.,Kolev,N.G。&Rudenko,G。核体的组装与非洲锥虫中的活性VSG表达位点相关。国家公社。13101(2022)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Barcons-Simon, A., Carrington, M. & Siegel, T. N. Decoding the impact of nuclear organization on antigenic variation in parasites. Nat. Microbiol. 8, 1408–1418 (2023).Article

Barcons Simon,A.,Carrington,M。&Siegel,T.N。解码核组织对寄生虫抗原变异的影响。自然微生物。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Michaeli, S. Trans-Splicing in Trypanosomes: Machinery and Its Impact on the Parasite Transcriptome. Future Microbiol 6, 459–474 (2011).Article

。未来微生物6459-474(2011)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Bhat, P. et al. Genome organization around nuclear speckles drives mRNA splicing efficiency. Nature 629, 1165–1173 (2024).Article

Bhat,P。等人。核斑点周围的基因组组织驱动mRNA剪接效率。自然6291165-1173(2024)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Krietenstein, N. et al. Ultrastructural Details of Mammalian Chromosome Architecture. Mol. Cell 78, 554–565.e7 (2020).Article

Krietenstein,N。等人。哺乳动物染色体结构的超微结构细节。分子细胞78554-565.e7(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hsieh, T.-H. S. et al. Resolving the 3D Landscape of Transcription-Linked Mammalian Chromatin Folding. Mol. Cell 78, 539–553.e8 (2020).Article

Hsieh,T.-H.S.等人。解决转录相关哺乳动物染色质折叠的3D景观。分子细胞78539-553.e8(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Szabo, Q. et al. TADs are 3D structural units of higher-order chromosome organization in Drosophila. Sci. Adv. 4, eaar8082 (2018).Article

Szabo,Q。等人。TAD是果蝇中高阶染色体组织的3D结构单元。科学。Adv.4,eaar8082(2018)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hsieh, T.-H. S. et al. Mapping Nucleosome Resolution Chromosome Folding in Yeast by Micro-C. Cell 162, 108–119 (2015).Article

Hsieh,T.-H.S.等人。通过Micro-C.Cell 162108-119绘制酵母中核小体分辨率染色体折叠图(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hsieh, T.-H. S., Fudenberg, G., Goloborodko, A. & Rando, O. J. Micro-C XL: assaying chromosome conformation from the nucleosome to the entire genome. Nat. Methods 13, 1009–1011 (2016).Article

Hsieh,T.-H.S.,Fudenberg,G.,Goloborodko,A。&Rando,O.J。Micro-C XL:测定从核小体到整个基因组的染色体构象。自然方法131009-1011(2016)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Mizuguchi, T. et al. Cohesin-dependent globules and heterochromatin shape 3D genome architecture in S. pombe. Nature 516, 432–435 (2014).Article

Mizuguchi,T。等人。粟酒裂殖酵母中黏附素依赖性小球和异染色质形成3D基因组结构。自然516432-435(2014)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59–64 (2013).Article

Nagano,T。等人。单细胞Hi-C揭示了染色体结构中细胞间的变异性。《自然》502,59-64(2013)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Flyamer, I. M. et al. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544, 110–114 (2017).Article

Flyamer,I.M.等人,单核Hi-C揭示了卵母细胞向合子转变时独特的染色质重组。自然544110-114(2017)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nagano, T. et al. Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547, 61–67 (2017).Article

Nagano,T。等人。单细胞分辨率下染色体组织的细胞周期动力学。自然547,61-67(2017)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Friman, E. T., Flyamer, I. M., Marenduzzo, D., Boyle, S. & Bickmore, W. A. Ultra-long-range interactions between active regulatory elements. Genome Res. 33, 1269–1283 (2023).Article

Friman,E.T.,Flyamer,I.M.,Marenduzzo,D.,Boyle,S。&Bickmore,W.A。活性调节元件之间的超长程相互作用。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hamley, J. C., Li, H., Denny, N., Downes, D. & Davies, J. O. J. Determining chromatin architecture with Micro Capture-C. Nat. Protoc. 18, 1687–1711 (2023).Article

Hamley,J.C.,Li,H.,Denny,N.,Downes,D。&Davies,J.O.J。用微捕获-C.Nat.Protoc确定染色质结构。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Goel, V. Y., Huseyin, M. K. & Hansen, A. S. Region Capture Micro-C reveals coalescence of enhancers and promoters into nested microcompartments. Nat. Genet. 55, 1048–1056 (2023).Article

Goel,V.Y.,Huseyin,M.K。&Hansen,A.S。区域捕获Micro-C揭示了增强子和启动子聚集成嵌套的微区。纳特·吉内特。551048-1056(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Heger, P., Marin, B., Bartkuhn, M., Schierenberg, E. & Wiehe, T. The chromatin insulator CTCF and the emergence of metazoan diversity. Proc. Natl Acad. Sci. 109, 17507–17512 (2012).Article

Heger,P.,Marin,B.,Bartkuhn,M.,Schierenberg,E。&Wiehe,T。染色质绝缘体CTCF和后生动物多样性的出现。程序。国家科学院。科学。10917507-17512(2012)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Müller, L. S. M. et al. Genome organization and DNA accessibility control antigenic variation in trypanosomes. Nature 563, 121–125 (2018).Article

Müller,L.S.M.等人。基因组组织和DNA可及性控制锥虫中的抗原变异。自然563121-125(2018)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Clayton, C. E. Life without transcriptional control? From fly to man and back again. EMBO J. 21, 1881–1888 (2002).Article

?从苍蝇飞到人,再飞回来。EMBO J.211881–1888(2002)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Luzak, V. et al. SLAM-seq reveals independent contributions of RNA processing and stability to gene expression in African trypanosomes. Nucleic Acids Res. https://doi.org/10.1093/nar/gkae1203 (2024).Cosentino, R. O., Brink, B. G. & Siegel, T. N. Allele-specific assembly of a eukaryotic genome corrects apparent frameshifts and reveals a lack of nonsense-mediated mRNA decay.

Luzak,V。等人SLAM-seq揭示了RNA加工和稳定性对非洲锥虫基因表达的独立贡献。核酸研究。https://doi.org/10.1093/nar/gkae1203(2024年)。Cosentino,R.O.,Brink,B.G。&Siegel,T.N。真核基因组的等位基因特异性组装纠正了明显的移码,并揭示了缺乏无义介导的mRNA衰变。

NAR Genomics Bioinforma. 3, lqab082 (2021).Article .

NAR基因组学生物信息学。3,lqab082(2021)。文章。

Google Scholar

谷歌学者

Krasiļņikova, M. et al. Nanopore sequencing reveals that DNA replication compartmentalisation dictates genome stability and instability in Trypanosoma brucei. Preprint at https://doi.org/10.1101/2024.05.07.592375 (2024).Schmidt, M. R., Barcons-Simon, A., Rabuffo, C. & Siegel, T. N. Smoother: on-the-fly processing of interactome data using prefix sums.

Krasiļņikova,M。等人。纳米孔测序揭示了DNA复制区室化决定了布氏锥虫基因组的稳定性和不稳定性。预印于https://doi.org/10.1101/2024.05.07.592375(2024年)。Schmidt,M.R.,Barcons-Simon,A.,Rabuffo,C.&Siegel,T.N.Smoother:使用前缀和动态处理交互组数据。

Nucleic Acids Res. 52, e23–e23 (2024).Article .

。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Roayaei Ardakany, A., Gezer, H. T., Lonardi, S. & Ay, F. Mustache: multi-scale detection of chromatin loops from Hi-C and Micro-C maps using scale-space representation. Genome Biol. 21, 256 (2020).Article

Roayaei-Ardakany,A.,Gezer,H.T.,Lonardi,S.&Ay,F.Mustache:使用尺度空间表示从Hi-C和Micro-C图中多尺度检测染色质环。基因组生物学。21256(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wedel, C., Förstner, K. U., Derr, R. & Siegel, T. N. GT‐rich promoters can drive RNA pol II transcription and deposition of H2A.Z in African trypanosomes. EMBO J. 36, 2581–2594 (2017).Article

Wedel,C.,Förstner,K.U.,Derr,R。&Siegel,T.N。富含GT的启动子可以驱动RNA pol II转录和H2A沉积。Z在非洲锥虫中。EMBO J.362581–2594(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Imakaev, M. et al. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat. Methods 9, 999–1003 (2012).Article

Hi-C数据的迭代校正揭示了染色体组织的标志。《自然方法》9999-1003(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Díaz-Viraqué, F., Chiribao, M. L., Libisch, M. G. & Robello, C. Genome-wide chromatin interaction map for Trypanosoma cruzi. Nat. Microbiol. 8, 2103–2114 (2023).Article

Díaz Viraqueé,F.,Chiribao,M.L.,Libisch,M.G。&Robello,C。克氏锥虫的全基因组染色质相互作用图。自然微生物。82103-2114(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bellini, N. K., De Lima, P. L. C., Pires, D. D. S. & Da Cunha, J. P. C. Hidden origami in Trypanosoma cruzi nuclei highlights its nonrandom 3D genomic organization. Preprint at https://doi.org/10.1101/2024.07.01.601582 (2024).Banigan, E. J. et al. Transcription shapes 3D chromatin organization by interacting with loop extrusion.

Bellini,N.K.,De Lima,P.L.C.,Pires,D.D.S。和Da Cunha,J.P.C。克氏锥虫核中隐藏的折纸突出了其非随机3D基因组组织。预印于https://doi.org/10.1101/2024.07.01.601582(2024年)。Banigan,E.J.等人。转录通过与环挤出相互作用来塑造3D染色质组织。

Proc. Natl Acad. Sci. 120, e2210480120 (2023).Article .

Proc。国家科学院。滑雪。120,e2210480120(2023)。第条。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gluenz, E., Sharma, R., Carrington, M. & Gull, K. Functional characterization of cohesin subunit SCC1 in Trypanosoma brucei and dissection of mutant phenotypes in two life cycle stages. Mol. Microbiol. 69, 666–680 (2008).Article

Gluenz,E.,Sharma,R.,Carrington,M。&Gull,K。布鲁氏锥虫中粘着蛋白亚基SCC1的功能表征以及两个生命周期阶段突变表型的解剖。分子微生物。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Landeira, D., Bart, J.-M., Van Tyne, D. & Navarro, M. Cohesin regulates VSG monoallelic expression in trypanosomes. J. Cell Biol. 186, 243–254 (2009).Article

Landeira,D.,Bart,J.-M.,Van Tyne,D。&Navarro,M。粘着蛋白调节锥虫中VSG单等位基因的表达。J、 细胞生物学。186243-254(2009)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Siegel, T. N. et al. Four histone variants mark the boundaries of polycistronic transcription units in Trypanosoma brucei. Genes Dev. 23, 1063–1076 (2009).Article

Siegel,T.N.等人。四种组蛋白变体标记了布氏锥虫中多顺反子转录单元的边界。Genes Dev.231063–1076(2009)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wright, J. R., Siegel, T. N. & Cross, G. A. M. Histone H3 trimethylated at lysine 4 is enriched at probable transcription start sites in Trypanosoma brucei. Mol. Biochem. Parasitol. 172, 141–144 (2010).Article

Wright,J.R.,Siegel,T.N。&Cross,G.A.M。赖氨酸4三甲基化的组蛋白H3在布氏锥虫的可能转录起始位点富集。分子生物化学。寄生虫醇。172141-144(2010)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Maree, J. P. & Patterton, H.-G. The epigenome of Trypanosoma brucei: A regulatory interface to an unconventional transcriptional machine. Biochim. Biophys. Acta BBA - Gene Regul. Mech. 1839, 743–750 (2014).Article

Maree,J.P。&Patterton,H.-G。布氏锥虫的表观基因组:与非常规转录机器的调控界面。生物化学。生物物理。Acta BBA-基因调控。机械。1839743-750(2014)。文章

Google Scholar

谷歌学者

Kraus, A. J. et al. Distinct roles for H4 and H2A.Z acetylation in RNA transcription in African trypanosomes. Nat. Commun. 11, 1498 (2020).Article

Kraus,A.J.等人。H4和H2A的不同作用。Z非洲锥虫RNA转录中的乙酰化。国家公社。111498(2020)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Staneva, D. P. et al. A systematic analysis of Trypanosoma brucei chromatin factors identifies novel protein interaction networks associated with sites of transcription initiation and termination. Genome Res. 31, 2138–2154 (2021).Article

对布氏锥虫染色质因子的系统分析确定了与转录起始和终止位点相关的新型蛋白质相互作用网络。基因组研究312138-2154(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Müller-Hübner, L. The role of nuclear architecture in the context of antigenic variation in Trypanosoma brucei. 23534 KB (Universität Würzburg, 2020). https://doi.org/10.25972/OPUS-18707.Cheutin, T. et al. Three-dimensional organization of active rRNA genes within the nucleolus. J. Cell Sci.

Müller-Hübner,L。核结构在布氏锥虫抗原变异背景下的作用。23534 KB(维尔茨堡大学,2020年)。https://doi.org/10.25972/OPUS-18707.Cheutin,T。等人。核仁内活性rRNA基因的三维组织。J、 细胞科学。

115, 3297–3307 (2002).Article .

1153297-3307(2002)。文章。

PubMed

PubMed

Google Scholar

谷歌学者

Moss, T., Langlois, F., Gagnon-Kugler, T. & Stefanovsky, V. A housekeeper with power of attorney: the rRNA genes in ribosome biogenesis. Cell. Mol. Life Sci. 64, 29–49 (2007).Article

Moss,T.,Langlois,F.,Gagnon-Kugler,T。&Stefanovsky,V。具有授权书的管家:核糖体生物发生中的rRNA基因。细胞。分子生命科学。64,29-49(2007)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Sanij, E. et al. UBF levels determine the number of active ribosomal RNA genes in mammals. J. Cell Biol. 183, 1259–1274 (2008).Article

Sanij,E。等人。UBF水平决定哺乳动物中活性核糖体RNA基因的数量。J、 细胞生物学。1831259-1274(2008)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gupta, S. & Santoro, R. Regulation and Roles of the Nucleolus in Embryonic Stem Cells: From Ribosome Biogenesis to Genome Organization. Stem Cell Rep. 15, 1206–1219 (2020).Article

Gupta,S。&Santoro,R。核仁在胚胎干细胞中的调节和作用:从核糖体生物发生到基因组组织。干细胞代表151206-1219(2020)。文章

Google Scholar

谷歌学者

Alsford, S., Kawahara, T., Glover, L. & Horn, D. Tagging a T. brucei RRNA locus improves stable transfection efficiency and circumvents inducible expression position effects. Mol. Biochem. Parasitol. 144, 142–148 (2005).Article

Alsford,S.,Kawahara,T.,Glover,L。&Horn,D。标记布鲁氏菌RRNA基因座可提高稳定的转染效率并规避诱导型表达位置效应。分子生物化学。寄生虫醇。144142-148(2005)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Ridewood, S. et al. The role of genomic location and flanking 3′UTR in the generation of functional levels of variant surface glycoprotein in Trypanosoma brucei. Mol. Microbiol. 106, 614–634 (2017).Article

Ridewood,S。等人。基因组位置和侧翼3'UTR在布氏锥虫变异表面糖蛋白功能水平产生中的作用。分子微生物。106614-634(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mottram, J. C., Bell, S. D., Nelson, R. G. & Barry, J. D. tRNAs of Trypanosoma brucei. Unusual gene organization and mitochondrial importation. J. Biol. Chem. 266, 18313–18317 (1991).Article

Mottram,J.C.,Bell,S.D.,Nelson,R.G。和Barry,J.D。布鲁氏锥虫的tRNA。异常的基因组织和线粒体输入。J、 生物。化学。26618313-18317(1991)。文章

PubMed

PubMed

Google Scholar

谷歌学者

International Human Genome Sequencing Consortium. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).Article

国际人类基因组测序协会。等人。人类基因组的初步测序和分析。自然409860-921(2001)。文章

ADS

广告

Google Scholar

谷歌学者

Berriman, M. et al. The Genome of the African Trypanosome. 309, (2005).Pan, T. Modifications and functional genomics of human transfer RNA. Cell Res. 28, 395–404 (2018).Article

Berriman,M。等人。非洲锥虫的基因组。309,(2005年)。Pan,T。人类转移RNA的修饰和功能基因组学。Cell Res.28395-404(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cordingley, J. S. Nucleotide sequence of the 5S ribosomal RNA gene repeat of Trypanosoma brucei. Mol. Biochem. Parasitol. 17, 321–330 (1985).Article

Cordingley,J.S。布氏锥虫5S核糖体RNA基因重复序列的核苷酸序列。分子生物化学。寄生虫醇。17321-330(1985)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Fantoni, A. RNA Polymerase III-Mediated Transcription of the Trypanosome U2 Small Nuclear RNA Gene Is Controlled by both Intragenic and Extragenic Regulatory Elements. MOL CELL BIOL 14, 2021–8 (1994).PubMed

Fantoni,A。RNA聚合酶III介导的锥虫U2小核RNA基因的转录受基因内和基因外调控元件的控制。摩尔细胞生物学142021-8(1994)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nakaar, V., Hong, D., Ullu, E. & Tschudil, C. Upstream tRNA Genes Are Essential for Expression of Small Nuclear and Cytoplasmic RNA Genes in Trypanosomes. MOL CELL BIOL 14, 6736–6742 (1994).PubMed

Nakaar,V.,Hong,D.,Ullu,E。&Tschudil,C。上游tRNA基因对于锥虫中小核和细胞质RNA基因的表达至关重要。摩尔细胞生物学146736-6742(1994)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Padilla-Mejía, N. E. et al. Gene organization and sequence analyses of transfer RNA genes in Trypanosomatid parasites. BMC Genomics 10, 232 (2009).Article

Padilla Mejía,N.E.等人。锥虫类寄生虫转移RNA基因的基因组织和序列分析。BMC基因组学10232(2009)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Akiyoshi, B. & Gull, K. Discovery of Unconventional Kinetochores in Kinetoplastids. Cell 156, 1247–1258 (2014).Article

Akiyoshi,B。&Gull,K。在动粒体中发现非常规动粒。细胞1561247-1258(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Obado, S. O., Taylor, M. C., Wilkinson, S. R., Bromley, E. V. & Kelly, J. M. Functional mapping of a trypanosome centromere by chromosome fragmentation identifies a 16-kb GC-rich transcriptional “strand-switch” domain as a major feature. Genome Res. 15, 36–43 (2005).Article

Obado,S.O.,Taylor,M.C.,Wilkinson,S.R.,Bromley,E.V。&Kelly,J.M。通过染色体片段化对锥虫着丝粒进行功能定位,确定了富含16 kb GC的转录“链开关”结构域是一个主要特征。基因组研究15,36-43(2005)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Patrick, K. L. et al. Distinct and overlapping roles for two Dicer-like proteins in the RNA interference pathways of the ancient eukaryote Trypanosoma brucei. Proc. Natl Acad. Sci. 106, 17933–17938 (2009).Article

Patrick,K.L.等人。两种Dicer样蛋白在古代真核生物布氏锥虫RNA干扰途径中的独特和重叠作用。程序。国家科学院。科学。10617933-17938(2009)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Obado, S. O., Bot, C., Nilsson, D., Andersson, B. & Kelly, J. M. Repetitive DNA is associated with centromeric domains in Trypanosoma brucei but not Trypanosoma cruzi. Genome Biol. 8, R37 (2007).Article

Obado,S.O.,Bot,C.,Nilsson,D.,Andersson,B。&Kelly,J.M。重复DNA与布氏锥虫的着丝粒结构域相关,但与克氏锥虫无关。基因组生物学。8,R37(2007)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dekker, J. & Misteli, T. Long-Range Chromatin Interactions. Cold Spring Harb. Perspect. Biol. 7, a019356 (2015).Article

Dekker,J。&Misteli,T。远程染色质相互作用。冷泉兔。透视图。生物学杂志7,a019356(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Deshpande, A. S. et al. Identifying synergistic high-order 3D chromatin conformations from genome-scale nanopore concatemer sequencing. Nat. Biotechnol. 40, 1488–1499 (2022).Article

。美国国家生物技术公司。401488-1499(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Cordon-Obras, C. et al. Identification of sequence-specific promoters driving polycistronic transcription initiation by RNA polymerase II in trypanosomes. Cell Rep. 38, 110221 (2022).Article

Cordon Obras,C。等人。锥虫中RNA聚合酶II驱动多顺反子转录起始的序列特异性启动子的鉴定。Cell Rep.38110221(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Khanna, N., Hu, Y. & Belmont, A. S. HSP70 Transgene Directed Motion to Nuclear Speckles Facilitates Heat Shock Activation. Curr. Biol. 24, 1138–1144 (2014).Article

Khanna,N.,Hu,Y。&Belmont,A.S。HSP70转基因定向运动到核斑点有助于热休克激活。货币。生物学241138-1144(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Staneva, D. P. et al. The SPARC complex defines RNAPII promoters in Trypanosoma brucei. eLife 11, e83135 (2022).Article

SPARC复合物定义了布氏锥虫中的RNAPII启动子。eLife 11,e83135(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Solovei, I. & Mirny, L. Spandrels of the cell nucleus. Curr. Opin. Cell Biol. 90, 102421 (2024).Article

Solovei,I。&Mirny,L。细胞核的拱肩。货币。奥平。细胞生物学。90102421(2024)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Figueiredo, L. M., Janzen, C. J. & Cross, G. A. M. A Histone Methyltransferase Modulates Antigenic Variation in African Trypanosomes. PLoS Biol. 6, e161 (2008).Article

Figueiredo,L.M.,Janzen,C.J。和Cross,G.A.M。组蛋白甲基转移酶调节非洲锥虫的抗原变异。《公共科学图书馆·生物学》。6,e161(2008)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zimin, A. V. & Salzberg, S. L. The SAMBA tool uses long reads to improve the contiguity of genome assemblies. PLOS Comput. Biol. 18, e1009860 (2022).Article

SAMBA工具使用长读取来改善基因组组装的连续性。PLOS计算机。生物学18,e1009860(2022)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Girasol, M. J. et al. RAD51-mediated R-loop formation acts to repair transcription-associated DNA breaks driving antigenic variation in Trypanosoma brucei. Proc. Natl Acad. Sci. 120, e2309306120 (2023).Article

Girasol,M.J.等人,RAD51介导的R环形成可修复转录相关的DNA断裂,从而驱动布鲁氏锥虫的抗原变异。程序。国家科学院。科学。120,e2309306120(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Steinbiss, S. et al. Companion: a web server for annotation and analysis of parasite genomes. Nucleic Acids Res. 44, W29–W34 (2016).Article

Steinbiss,S.等人,《伴侣:用于注释和分析寄生虫基因组的网络服务器》。核酸研究44,W29–W34(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).Article

Langmead,B。&Salzberg,S.L。与Bowtie 2快速间隙读取对齐。《自然方法》9357-359(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).Article

Li,H。等人。序列比对/图谱格式和SAMtools。生物信息学252078-2079(2009)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Feng, J., Liu, T., Qin, B., Zhang, Y. & Liu, X. S. Identifying ChIP-seq enrichment using MACS. Nat. Protoc. 7, 1728–1740 (2012).Article

Feng,J.,Liu,T.,Qin,B.,Zhang,Y。&Liu,X.S。使用MACS识别ChIP-seq富集。自然协议。71728-1740(2012)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).Article

Benson,G。Tandem repeats finder:一个分析DNA序列的程序。核酸研究27573-580(1999)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Open2C. et al. Pairtools: From sequencing data to chromosome contacts. PLOS Comput. Biol. 20, e1012164 (2024).Article

。等人。配对工具:从测序数据到染色体接触。PLOS计算机。生物学20,e1012164(2024)。文章

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Abdennur, N. & Mirny, L. A. Cooler: scalable storage for Hi-C data and other genomically labeled arrays. Bioinformatics 36, 311–316 (2020).Article

Abdennur,N。&Mirny,L.A。Cooler:用于Hi-C数据和其他基因组标记阵列的可扩展存储。生物信息学36311-316(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Zheng, Y., Ay, F. & Keles, S. Generative modeling of multi-mapping reads with mHi-C advances analysis of Hi-C studies. eLife 8, e38070 (2019).Article

Zheng,Y.,Ay,F。&Keles,S。使用mHi-C对多映射读取进行生成建模,从而推进了Hi-C研究的分析。eLife 8,e38070(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://doi.org/10.48550/ARXIV.1303.3997 (2013).Kerpedjiev, P. et al. HiGlass: web-based visual exploration and analysis of genome interaction maps. Genome Biol. 19, 125 (2018).Article

Li,H。用BWA-MEM比对序列读数,克隆序列和组装重叠群。预印于https://doi.org/10.48550/ARXIV.1303.3997(2013年)。Kerpedjiev,P。et al。HiGlass:基于网络的基因组相互作用图的视觉探索和分析。基因组生物学。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yang, T. et al. HiCRep: assessing the reproducibility of Hi-C data using a stratum-adjusted correlation coefficient. Genome Res. 27, 1939–1949 (2017).Article

Yang,T。et al。HiCRep:使用地层调整相关系数评估Hi-C数据的可重复性。Genome Res.271939–1949(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wolff, J. et al. Galaxy HiCExplorer 3: a web server for reproducible Hi-C, capture Hi-C and single-cell Hi-C data analysis, quality control and visualization. Nucleic Acids Res. 48, W177–W184 (2020).Article

Galaxy HiCExplorer 3:用于可重复Hi-C,捕获Hi-C和单细胞Hi-C数据分析,质量控制和可视化的web服务器。核酸研究48,W177–W184(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).Article

Ramírez,F。等人。deepTools2:用于深度测序数据分析的下一代web服务器。核酸研究44,W160–W165(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

van der Weide, R. H. et al. Hi-C analyses with GENOVA: a case study with cohesin variants. NAR Genomics Bioinforma. 3, lqab040 (2021).Article

van der Weide,R.H.等人。GENOVA的Hi-C分析:粘着蛋白变体的案例研究。NAR基因组学生物信息学。3,lqab040(2021)。文章

Google Scholar

谷歌学者

Open2C et al. Cooltools: enabling high-resolution Hi-C analysis in Python. bioRxiv 2022.10.31.514564 https://doi.org/10.1101/2022.10.31.514564 (2022).Lopez-Delisle, L. et al. pyGenomeTracks: reproducible plots for multivariate genomic datasets. Bioinformatics 37, 422–423 (2021).Article .

Open2C等人。Cooltools:在Python中启用高分辨率Hi-C分析。bioRxiv 2022.10.31.514564https://doi.org/10.1101/2022.10.31.514564(2022年)。Lopez-Delisle,L。等人,《pyGenomeTracks:多变量基因组数据集的可重复图》。生物信息学37422-423(2021)。文章。

PubMed

PubMed

Google Scholar

谷歌学者

Wernersson, E. et al. Deconwolf enables high-performance deconvolution of widefield fluorescence microscopy images. Nat. Methods https://doi.org/10.1038/s41592-024-02294-7 (2024).Download referencesAcknowledgementsWe thank N. Krietenstein for advice on the Micro-C protocol. We thank M.

Wernersson,E。et al。Deconwolf实现了宽场荧光显微镜图像的高性能反卷积。自然方法https://doi.org/10.1038/s41592-024-02294-7(2024年)。下载参考文献致谢我们感谢N.Krietenstein提供有关Micro-C协议的建议。我们感谢M。

Oudelaar, I. Solovei and all members of the Siegel, Allshire, Ladurner, Meissner and Boshart laboratories for valuable discussions, T. Straub (Bioinformatics Core Facility, BMC) for providing server space, the Core Unit LAFUGA at the Gene Center Munich for next-generation sequencing and A. Thomae and S.

Oudelaar,I。Solovei和Siegel,Allshire,Ladurner,Meissner和Boshart实验室的所有成员进行了有价值的讨论,T.Straub(生物信息学核心设施,BMC)提供了服务器空间,慕尼黑基因中心的核心单元LAFUGA用于下一代测序,以及A.Thomae和S。

Dietzel (Bioimaging Core Facility, BMC) for providing microscopes. This work was funded by the German Research Foundation (SI 1610 / 2-2 and 213249687—SFB 1064 to T.N.S.), an ERC Starting Grant (3D_Tryps 715466) and an ERC Consolidator Grant (SwitchDecoding 101044320) awarded to T.N.S. P.Y. was supported by an MSCA ITN Cell2Cell (86067) fellowship.

Dietzel(生物成像核心设施,BMC)提供显微镜。这项工作由德国研究基金会(SI 1610/2-2和213249687-SFB 1064授予T.N.S.)资助,ERC启动补助金(3D\U Tryps 715466)和ERC整合者补助金(SwitchDecoding 101044320)授予T.N.S.P.Y。并得到了MSCA ITN Cell2Cell(86067)奖学金的支持。

The Medical Research Council (UK) supported this research through funding to R.C.A. and K.R.M. (MR/T04702X/1), along with Wellcome Trust funding to R.C.A. (106144 and 225237) and K.R.M. (221717) and to the Discovery Research Platform for Hidden Cell Biology (226791, Bioinformatics core).FundingOpen Access funding enabled and organized by Projekt DEAL.Author informationAuthors and AffiliationsDivision of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, GermanyClaudia Rabuffo, Markus R.

医学研究委员会(英国)通过资助R.C.A.和K.R.M.(MR/T04702X/1),以及惠康信托基金资助R.C.A.(106144和225237)和K.R.M.(221717)以及发现隐藏细胞生物学研究平台(226791,生物信息学核心)来支持这项研究。资金开放获取资金由Projekt交易启用和组织。作者信息作者和附属机构慕尼黑路德维希·马克西米利安大学兽医学院实验寄生虫学系,82152,Planegg Martinsried,GermanyClaudia Rabuffo,Markus R。

Schmidt, Prateek Yadav, Anna Barcons-Simon, Raúl O. Cosentino & T. Nicolai SiegelBiomedical Center Munich, Division of Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, GermanyClaudia Rabuffo, Markus R. Schmidt, Prateek Yadav, Ann.

施密特(Schmidt),普拉提克·亚达夫(Prateek Yadav),安娜·巴康斯·西蒙(Anna Barcons Simon),劳尔·科森蒂诺(RaúO.Cosentino&T)。慕尼黑路德维希·马克西米利安大学生理化学系Nicolai SiegelBiomedical Center慕尼黑,82152,Planegg Martinsried,GermanyClaudia Rabuffo,Markus R.Schmidt,Pratek Yadav,Ann。

PubMed Google ScholarMarkus R. SchmidtView author publicationsYou can also search for this author in

PubMed Google ScholarMarkus R.SchmidtView作者出版物您也可以在

PubMed Google ScholarPrateek YadavView author publicationsYou can also search for this author in

PubMed Google ScholarPrateek YadavView作者出版物您也可以在

PubMed Google ScholarPin TongView author publicationsYou can also search for this author in

PubMed Google ScholarPin TongView作者出版物您也可以在

PubMed Google ScholarRoberta CarloniView author publicationsYou can also search for this author in

PubMed Google ScholarRoberta CarloniView作者出版物您也可以在

PubMed Google ScholarAnna Barcons-SimonView author publicationsYou can also search for this author in

PubMed Google ScholarAnna Barcons SimonView作者出版物您也可以在

PubMed Google ScholarRaúl O. CosentinoView author publicationsYou can also search for this author in

PubMed Google ScholarRaúl O.CosentinoView作者出版物您也可以在

PubMed Google ScholarStefan KrebsView author publicationsYou can also search for this author in

PubMed Google ScholarStefan KrebsView作者出版物您也可以在

PubMed Google ScholarKeith R. MatthewsView author publicationsYou can also search for this author in

PubMed Google ScholarKeith R.MatthewsView作者出版物您也可以在

PubMed Google ScholarRobin C. AllshireView author publicationsYou can also search for this author in

PubMed Google ScholarRobin C.AllshireView作者出版物您也可以在

PubMed Google ScholarT. Nicolai SiegelView author publicationsYou can also search for this author in

PubMed谷歌ScholarT。Nicolai SiegelView作者出版物您也可以在

PubMed Google ScholarContributionsThe experiments were designed by C.R. and T.N.S. and carried out by C.R. unless otherwise indicated. Genomic DNA extraction for ONT sequencing was carried out by A.B.S., R.C. and S.K. Assembly of the new genome reference and quality controls were performed by M.R.S.

PubMed谷歌学术贡献除非另有说明,否则实验由C.R.和T.N.S.设计并由C.R.进行。用于ONT测序的基因组DNA提取由A.B.S.,R.C.和S.K.进行。新基因组参考的组装和质量控制由M.R.S.进行。

with the contribution of R.O.C. Annotation of the new reference genome was performed by M.R.S. and P.T. under the supervision of R.C.A. and K.R.M. Micro-C data were analyzed by C.R. and M.R.S. ChIP-seq data analysis was performed by C.R. and P.T. FISH experiments were performed and analyzed by P.Y. The work was supervised by T.N.S.

在R.O.C.的贡献下,新参考基因组的注释由M.R.S.和P.T.在R.C.A.和K.R.M.的监督下进行。Micro-C数据由C.R.和M.R.S.ChIP-seq数据分析由C.R.和P.T.进行。FISH实验由P.Y.进行和分析。工作由T.N.S.监督。

The manuscript was written by C.R. and T.N.S. and edited by all co-authors. All authors contributed to the data interpretation and development of a model. Figures were generated by M.R.S. and C.R.Corresponding authorCorrespondence to.

手稿由C.R.和T.N.S.撰写,并由所有合著者编辑。。数字由M.R.S.和C.R.相应的作者产生。

T. Nicolai Siegel.Ethics declarations

T、 尼科莱·西格尔。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Communications thanks Peter Myler, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

《自然通讯》感谢彼得·迈勒(PeterMyler)和另一位匿名审稿人对这项工作的同行评审所做的贡献。同行评审文件可用。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationTransparent Peer Review fileReporting summaryRights and permissions

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息透明的同行评审文件报告摘要权限

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleRabuffo, C., Schmidt, M.R., Yadav, P. et al. Inter-chromosomal transcription hubs shape the 3D genome architecture of African trypanosomes.

转载和许可本文引用本文Rabuffo,C.,Schmidt,M.R.,Yadav,P。等人。染色体间转录中心塑造了非洲锥虫的3D基因组结构。

Nat Commun 15, 10716 (2024). https://doi.org/10.1038/s41467-024-55285-9Download citationReceived: 10 July 2024Accepted: 06 December 2024Published: 23 December 2024DOI: https://doi.org/10.1038/s41467-024-55285-9Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Nat Commun 1510716(2024)。https://doi.org/10.1038/s41467-024-55285-9Download引文收到日期:2024年7月10日接受日期:2024年12月6日发布日期:2024年12月23日OI:https://doi.org/10.1038/s41467-024-55285-9Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

Subjects

主题

GenomeGenomic analysisNuclear organizationParasite genomics

基因组学分析核组织寄生虫基因组学