EN
登录

通过常见的心血管代谢危险因素识别心脑血管疾病的共同遗传病因

Identification of shared genetic etiology of cardiovascular and cerebrovascular diseases through common cardiometabolic risk factors

Nature 等信源发布 2024-12-27 20:42

可切换为仅中文


AbstractCardiovascular diseases (CVDs) and cerebrovascular diseases (CeVDs) are closely related vascular diseases, sharing common cardiometabolic risk factors (RFs). Although pleiotropic genetic variants of these two diseases have been reported, their underlying pathological mechanisms are still unclear.

摘要心血管疾病(CVD)和脑血管疾病(CeVDs)是密切相关的血管疾病,具有共同的心脏代谢危险因素(RFs)。尽管已经报道了这两种疾病的多效性遗传变异,但其潜在的病理机制仍不清楚。

Leveraging GWAS summary data and using genetic correlation, pleiotropic variants identification, and colocalization analyses, we identified 11 colocalized loci for CVDs-CeVDs-BP (blood pressure), CVDs-CeVDs-LIP (lipid traits), and CVDs-CeVDs-cIMT (carotid intima-media thickness) triplets. No shared causal loci were found for CVDs-CeVDs-T2D (type 2 diabetes) or CVDs-CeVDs-BMI (body mass index) triplets.

利用GWAS汇总数据,并使用遗传相关性,多效性变异鉴定和共定位分析,我们确定了11个共定位基因座,用于CVDs CeVDs BP(血压),CVDs CeVDs LIP(脂质性状)和CVDs CeVDs cIMT(颈动脉内膜中层厚度)三联体。没有发现CVDs-CeVDs-T2D(2型糖尿病)或CVDs-CeVDs-BMI(体重指数)三胞胎的共有因果基因座。

The 11 loci were mapped to 12 genes, namely CASZ1, CDKN1A, TWIST1, CDKN2B, ABO, SWAP70, SH2B3, LRCH1, FES, GOSR2, RPRML, and LDLR, where both GOSR2 and RPRML were mapped to one locus. They were enriched in pathways related to cellular response to external stimulus and regulation of the phosphate metabolic process and were highly expressed in endothelial cells, epithelial cells, and smooth muscle cells.

这11个基因座被定位到12个基因,即CASZ1,CDKN1A,TWIST1,CDKN2B,ABO,SWAP70,SH2B3,LRCH1,FES,GOSR2,RPRML和LDLR,其中GOSR2和RPRML都被定位到一个基因座。它们富含与细胞对外部刺激的反应和磷酸盐代谢过程的调节有关的途径,并在内皮细胞,上皮细胞和平滑肌细胞中高度表达。

Multi-omics analysis revealed methylation of two genes (CASZ1 and LRCH1) may play a causal role in the genetic pleiotropy. Notably, these pleiotropic loci are highly enriched in the targets of antihypertensive drugs, which further emphasizes the role of the blood pressure regulation pathway in the shared etiology of CVDs and CeVDs..

多组学分析显示,两个基因(CASZ1和LRCH1)的甲基化可能在遗传多效性中起因果作用。值得注意的是,这些多效性基因座在抗高血压药物的靶标中高度富集,这进一步强调了血压调节途径在CVD和CEVD共同病因中的作用。。

IntroductionVascular diseases encompass a broad range of disorders of the heart and circulation in other organs. Among them, cardiovascular diseases (CVDs) and cerebrovascular diseases (CeVDs) are the two main types that occur in the heart and brain, respectively, and account for more than 80% of total deaths1.

引言血管疾病包括广泛的心脏疾病和其他器官的循环障碍。其中,心血管疾病(CVD)和脑血管疾病(CeVDs)分别是心脏和大脑中发生的两种主要类型,占总死亡人数的80%以上1。

CVDs mainly include coronary artery disease (CAD), myocardial infarction (MI), heart failure (HF), and atrial fibrillation (AF), while CeVDs mainly indicate stroke2. CVDs and CeVDs are closely related, caused by many shared cardiometabolic risk factors (RFs) and frequent coexistence3,4. Inherited DNA sequence variants play a role in conferring risk for CVDs and CeVDs5,6.Previous studies, including family history studies, genome-wide association studies (GWAS), and cross-trait analyses, reveal that CVDs and CeVDs may share genetic architectures.

心血管疾病主要包括冠状动脉疾病(CAD),心肌梗塞(MI),心力衰竭(HF)和心房颤动(AF),而CeVDs主要表示中风2。心血管疾病和CeVDs密切相关,由许多共同的心脏代谢危险因素(RFs)和频繁共存引起3,4。遗传的DNA序列变异在赋予CVD和CeVDs风险中起作用[6]。以前的研究,包括家族史研究,全基因组关联研究(GWAS)和交叉性状分析,表明CVD和CeVDs可能共享遗传结构。

For example, coronary heart disease (CHD) and ischemic stroke exhibit shared familial susceptibility, with a linkage between the family history of stroke to increased risks of CHD7,8,9. GWAS studies have shown three of the 42 genome-wide significant loci for CAD were related to ischemic stroke10. Chromosome 9p21, the most robust genetic marker of CHD, was also associated with stroke11.

。GWAS研究表明,CAD的42个全基因组重要基因座中有3个与缺血性中风有关10。染色体9p21是冠心病最强大的遗传标记,也与中风有关11。

Other loci associated with both diseases include SH2B3, ABO, DDAH1, etc.10,12. In recent decades, the emergence of GWAS data with large sample sizes, along with advanced analysis technologies, has positioned research on genetic sharing across traits as a key area of focus. Consequently, numerous studies have examined the genetic links among cardiovascular diseases.

与这两种疾病相关的其他基因座包括SH2B3,ABO,DDAH1等10,12。近几十年来,大样本量GWAS数据的出现以及先进的分析技术,使跨性状遗传共享的研究成为一个关键的重点领域。因此,许多研究已经检查了心血管疾病之间的遗传联系。

For instance, several studies have uncovered shared genes between CVDs and CeVDs through methods such as meta-analysis13, network module analysis14, and across-trait association a.

例如,一些研究通过荟萃分析13,网络模块分析14和跨性状关联a等方法发现了CVD和CEVD之间的共享基因。

Data availability

数据可用性

The datasets analyzed during the current study are freely available for download from the following URLs: GWAS summary data for CAD (https://www.ebi.ac.uk/gwas/studies/GCST90132314); GWAS summary data for MI (https://www.ebi.ac.uk/gwas/publications/33532862); GWAS summary data for HF (https://www.ebi.ac.uk/gwas/publications/31919418); GWAS summary data for AF (https://www.ebi.ac.uk/gwas/publications/29892015); GWAS summary data for AS and AIS (https://cd.hugeamp.org/dinspector.html?dataset=GWAS_MEGASTROKE_eu); GWAS summary data for SBP (https://www.ebi.ac.uk/gwas/publications/30224653); GWAS summary data for TG, LDL-C, HDL-C (https://csg.sph.umich.edu/willer/public/glgc-lipids2021/); GWAS summary data for T2D (https://diagram-consortium.org/); GWAS summary data for BMI (https://www.ebi.ac.uk/gwas/publications/30239722); GWAS summary data for c-IMT (https://www.ebi.ac.uk/gwas/publications/34852643).

当前研究期间分析的数据集可从以下URL免费下载:GWAS CAD摘要数据(https://www.ebi.ac.uk/gwas/studies/GCST90132314);MI的GWAS摘要数据(https://www.ebi.ac.uk/gwas/publications/33532862);HF的GWAS摘要数据(https://www.ebi.ac.uk/gwas/publications/31919418)(https://www.ebi.ac.uk/gwas/publications/29892015);AS和AIS的GWAS汇总数据(https://cd.hugeamp.org/dinspector.html?dataset=GWAS_MEGASTROKE_eu);GWAS SBP汇总数据(https://www.ebi.ac.uk/gwas/publications/30224653);TG,LDL-C,HDL-C的GWAS汇总数据(https://csg.sph.umich.edu/willer/public/glgc-lipids2021/);GWAS T2D汇总数据(https://diagram-consortium.org/);GWAS BMI汇总数据(https://www.ebi.ac.uk/gwas/publications/30239722);c-IMT的GWAS摘要数据(https://www.ebi.ac.uk/gwas/publications/34852643)。

LD scores and reference panel derived from 1000 Genomes phase 3, https://data.broadinstitute.org/alkesgroup/LDSCORE/; LD scores and reference panel derived from 1,029,876 QCed UK Biobank imputed HapMap3 SNPs (https://github.com/zhenin/HDL/wiki/Reference)..

LD分数和参考面板来自1000个基因组第3阶段,https://data.broadinstitute.org/alkesgroup/LDSCORE/;LD分数和参考面板来自1029876个QCed英国生物库估算的HapMap3 SNP(https://github.com/zhenin/HDL/wiki/Reference)。。

Code availability

代码可用性

All code used in this project is available at https://doi.org/10.5281/zenodo.1427997292.

本项目中使用的所有代码均可在https://doi.org/10.5281/zenodo.1427997292.

ReferencesOrganization, W. H. Cardiovascular Diseases (CVDs) Fact Sheet https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1.Heart Research Institute, N. Cardiovascular Disease: Impacts and Risks https://www.hri.org.nz/health/learn/cardiovascular-disease/cardiovascular-disease-impacts-and-risks.Gallacher, K.

参考组织,W.H.心血管疾病(CVDs)概况https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1.Heart研究所,N.心血管疾病:影响和风险https://www.hri.org.nz/health/learn/cardiovascular-disease/cardiovascular-disease-impacts-and-risks.Gallacher,K。

I., Jani, B. D., Hanlon, P., Nicholl, B. I. & Mair, F. S. Multimorbidity in stroke. Stroke 50, 1919–1926 (2019).Article .

一、 ,Jani,B.D.,Hanlon,P.,Nicholl,B.I。&Mair,F.S。中风多发病。中风501919-1926(2019)。文章。

PubMed

PubMed

Google Scholar

谷歌学者

Buddeke, J. et al. Comorbidity in patients with cardiovascular disease in primary care: a cohort study with routine healthcare data. Br. J. Gen. Pract. 69, e398–e406 (2019).Article

。Br.J.Gen.Pract.公司。69,e398–e406(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Aragam, K. G. et al. Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants. Nat. Genet. 54, 1803–1815 (2022).Article

Aragam,K.G.等人在100多万参与者中发现和系统表征冠状动脉疾病的风险变异和基因。纳特·吉内特。541803-1815(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

PubMed 中央

Google Scholar

谷歌学者

Mishra, A. et al. Stroke genetics informs drug discovery and risk prediction across ancestries. Nature 611, 115–123 (2022).Article

Mishra,A。等人。中风遗传学为跨祖先的药物发现和风险预测提供了信息。自然611115-123(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

PubMed 中央

Google Scholar

谷歌学者

Calling, S., Ji, J., Sundquist, J., Sundquist, K. & Zöller, B. Shared and non-shared familial susceptibility of coronary heart disease, ischemic stroke, peripheral artery disease and aortic disease. Int. J. Cardiol. 168, 2844–2850 (2013).Article

Calling,S.,Ji,J.,Sundquist,J.,Sundquist,K。&Zöller,B。冠心病,缺血性中风,外周动脉疾病和主动脉疾病的共有和非共有家族易感性。国际心脏病杂志。1682844-2850(2013)。文章

PubMed

PubMed

Google Scholar

谷歌学者

KHAW, K.-T. & BARRETT-CONNOR, E. Family history of stroke as an independent predictor of ischiemtc heart disease in men and stroke in women. Am. J. Epidemiol. 123, 59–66 (1986).Article

KHAW,K.-T.&BARRETT-CONNOR,E。中风家族史是男性缺血性心脏病和女性中风的独立预测因子。美国流行病学杂志。123,59-66(1986)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Banerjee, A. et al. Familial history of stroke is associated with acute coronary syndromes in women. Circulation: Cardiovasc. Genet. 4, 9–15 (2011).

Banerjee,A。等人。中风家族史与女性急性冠状动脉综合征有关。循环:心血管。基因。4,9-15(2011)。

Google Scholar

谷歌学者

Dichgans, M. et al. Shared genetic susceptibility to ischemic stroke and coronary artery disease: a genome-wide analysis of common variants. Stroke 45, 24–36 (2014).Article

Dichgans,M.等人对缺血性中风和冠状动脉疾病具有共同的遗传易感性:对常见变异的全基因组分析。中风45,24-36(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Holdt, L. M. & Teupser, D. Recent studies of the human chromosome 9p21 locus, which is associated with atherosclerosis in human populations. Arterioscler. Thromb. Vasc. Biol. 32, 196–206 (2012).Article

Holdt,L.M。&Teupser,D。最近对人类染色体9p21基因座的研究,该基因座与人类动脉粥样硬化有关。动脉硬化。血栓。Vasc。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ding, H. et al. A novel loss-of-function DDAH1 promoter polymorphism is associated with increased susceptibility to thrombosis stroke and coronary heart disease. Circ. Res. 106, 1145–1152 (2010).Article

Ding,H。等人。一种新的功能丧失DDAH1启动子多态性与血栓形成中风和冠心病的易感性增加有关。保监会。第1061145-1152号决议(2010年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bentley, P., Peck, G., Smeeth, L., Whittaker, J. & Sharma, P. Causal relationship of susceptibility genes to ischemic stroke: comparison to ischemic heart disease and biochemical determinants. PLoS ONE 5, e9136 (2010).Article

Bentley,P.,Peck,G.,Smeeth,L.,Whittaker,J。&Sharma,P。易感基因与缺血性中风的因果关系:与缺血性心脏病和生化决定因素的比较。PLoS ONE 5,e9136(2010)。文章

PubMed

PubMed

PubMed Central

PubMed 中央

Google Scholar

谷歌学者

Zhang, Y. et al. Significant overlapping modules and biological processes between stroke and coronary heart disease. CNS Neurol. Disord. Drug Targets 13, 652–660 (2014).Article

Zhang,Y.等人。中风和冠心病之间的重要重叠模块和生物学过程。。混乱。药物目标13652-660(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Frerich, S. et al. Cardiac risk factors for stroke: a comprehensive Mendelian randomization study. Stroke 53, e130–e135 (2022).Article

Frerich,S.等人。中风的心脏危险因素:一项全面的孟德尔随机研究。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Cai, H. et al. Genetic correlations and causal inferences in ischemic stroke. J. Neurol. 267, 1980–1990 (2020).Article

Cai,H。等人。缺血性中风的遗传相关性和因果推断。J、 神经病学。2671980-1990(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Zhao, B. et al. Heart-brain connections: phenotypic and genetic insights from magnetic resonance images. Science 380, abn6598 (2023).Article

赵,B。等。心脑连接:来自磁共振图像的表型和遗传见解。科学380,abn6598(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Georgakis, M. K. et al. Genetic architecture of stroke of undetermined source: overlap with known stroke etiologies and associations with modifiable risk factors. Ann. Neurol. 91, 640–651 (2022).Article

Georgakis,M.K.等人。来源不明的中风的遗传结构:与已知的中风病因重叠以及与可改变的危险因素的关联。安。神经病学。91640-651(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, K. et al. Mendelian randomization analysis of 37 clinical factors and coronary artery disease in East Asian and European populations. Genome Med. 14, 63 (2022).Article

Wang,K.等人。东亚和欧洲人群37个临床因素和冠状动脉疾病的孟德尔随机分析。基因组医学14,63(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

PubMed 中央

Google Scholar

谷歌学者

Hindy, G. et al. Role of blood lipids in the development of ischemic stroke and its subtypes: a Mendelian Randomization Study. Stroke 49, 820–827 (2018).Article

Hindy,G.等人。血脂在缺血性卒中及其亚型发展中的作用:孟德尔随机研究。中风49820-827(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

PubMed 中央

Google Scholar

谷歌学者

Ibanez, L. et al. Overlap in the genetic architecture of stroke risk, early neurological changes, and cardiovascular risk factors. Stroke 50, 1339–1345 (2019).Article

Ibanez,L.等人在中风风险的遗传结构,早期神经系统改变和心血管危险因素方面存在重叠。中风501339-1345(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xu, K. et al. The combined effects of cardiovascular disease related SNPs on ischemic stroke. J. Neurol. Sci. 388, 141–145 (2018).Article

Xu,K.等人。心血管疾病相关SNP对缺血性中风的综合影响。J、 神经病学。科学。388141-145(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Malik, R. et al. Multilocus genetic risk score associates with ischemic stroke in case-control and prospective cohort studies. Stroke 45, 394–402 (2014).Article

在病例对照和前瞻性队列研究中,多位点遗传风险评分与缺血性卒中相关。中风45394-402(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Franceschini, N. et al. GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes. Nat. Commun. 9, 5141 (2018).Article

Franceschini,N。等人GWAS和共定位分析暗示颈动脉内膜中层厚度和颈动脉斑块位点在心血管结局中的作用。国家公社。。文章

PubMed

PubMed

PubMed Central

PubMed 中央

Google Scholar

谷歌学者

Kochunov, P. et al. Whole brain and regional hyperintense white matter volume and blood pressure: overlap of genetic loci produced by bivariate, whole-genome linkage analyses. Stroke 41, 2137–2142 (2010).Article

Kochunov,P。等。全脑和局部高信号白质体积和血压:由双变量全基因组连锁分析产生的基因位点重叠。中风412137-2142(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

LeBlanc, M. et al. Identifying novel gene variants in coronary artery disease and shared genes with several cardiovascular risk factors. Circ. Res. 118, 83–94 (2016).Article

LeBlanc,M.等人。鉴定冠状动脉疾病中的新基因变异,并与几种心血管危险因素共享基因。保监会。第118、83-94号决议(2016年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Andreassen, O. A. et al. Identifying common genetic variants in blood pressure due to polygenic pleiotropy with associated phenotypes. Hypertension 63, 819–826 (2014).Article

Andreassen,O.A.等人,鉴定由于具有相关表型的多基因多效性而导致的血压常见遗传变异。高血压63819-826(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Smeland, O. B. et al. Discovery of shared genomic loci using the conditional false discovery rate approach. Hum. Genet. 139, 85–94 (2020).Article

Smeland,O.B.等人。使用条件错误发现率方法发现共享基因组位点。嗯,Genet。139,85-94(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).Article

Giambartolomei,C。等人。使用汇总统计数据对遗传关联研究对之间的共定位进行贝叶斯检验。PLoS Genet。10,e1004383(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wallace, C. Eliciting priors and relaxing the single causal variant assumption in colocalisation analyses. PLoS Genet. 16, e1008720 (2020).Article

Wallace,C。在共定位分析中引发先验并放松单一因果变异假设。PLoS Genet。16,e1008720(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

PubMed 中央

Google Scholar

谷歌学者

Giambartolomei, C. et al. A Bayesian framework for multiple trait colocalization from summary association statistics. Bioinformatics 34, 2538–2545 (2018).Article

。生物信息学342538-2545(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wu, Y. et al. Joint analysis of GWAS and multi-omics QTL summary statistics reveals a large fraction of GWAS signals shared with molecular phenotypes. Cell Genom. 3, 100344 (2023).Article

Wu,Y。等人。GWAS和多组学QTL汇总统计的联合分析揭示了与分子表型共享的大部分GWAS信号。细胞基因组。3100344(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

PubMed 中央

Google Scholar

谷歌学者

Bao, C. et al. A cross-disease, pleiotropy-driven approach for therapeutic target prioritization and evaluation. Cell Rep. Methods 4, 100757 (2024).Article

。细胞代表方法4100757(2024)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

PubMed 中央

Google Scholar

谷歌学者

Hartiala, J. A. et al. Genome-wide analysis identifies novel susceptibility loci for myocardial infarction. Eur. hHeart J. 42, 919–933 (2021).Article

Hartiala,J.A。等人。全基因组分析确定了心肌梗死的新易感基因座。《欧洲心脏病杂志》42919-933(2021)。文章

CAS

中科院

Google Scholar

谷歌学者

Shah, S. et al. Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nat. Commun. 11, 163 (2020).Article

Shah,S.等人。全基因组关联和孟德尔随机分析为心力衰竭的发病机制提供了见解。国家公社。11163(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Roselli, C. et al. Multi-ethnic genome-wide association study for atrial fibrillation. Nat. Genet 50, 1225–1233 (2018).Article

Roselli,C.等人。心房颤动的多种族全基因组关联研究。《自然遗传学》501225-1233(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Malik, R. et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat. Genet 50, 524–537 (2018).Article

Malik,R。等人。520000名受试者的多血统全基因组关联研究确定了32个与中风和中风亚型相关的基因座。《自然遗传学》50524-537(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Andreassen, O. A. et al. Improved detection of common variants associated with schizophrenia by leveraging pleiotropy with cardiovascular-disease risk factors. Am. J. Hum. Genet. 92, 197–209 (2013).Article

Andreassen,O.A。等人通过利用心血管疾病危险因素的多效性,改进了与精神分裂症相关的常见变异的检测。。92197-209(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

PubMed 中央

Google Scholar

谷歌学者

Evangelou, E. et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat. Genet. 50, 1412–1425 (2018).Article

Evangelou,E.等人对100多万人的遗传分析确定了535个与血压性状相关的新基因座。纳特·吉内特。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

PubMed 中央

Google Scholar

谷歌学者

Mahajan, A. et al. Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nat. Genet 54, 560–572 (2022).Article

Mahajan,A。等人。2型糖尿病的多血统遗传学研究强调了不同人群在发现和翻译方面的力量。《国家遗传学》54560-572(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

PubMed 中央

Google Scholar

谷歌学者

Pulit, S. L. et al. Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum. Mol. Genet. 28, 166–174 (2019).Article

Pulit,S.L.等人。694649名欧洲血统个体体脂分布全基因组关联研究的荟萃分析。嗯,摩尔·吉内特。28166-174(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Graham, S. E. et al. The power of genetic diversity in genome-wide association studies of lipids. Nature 600, 675–679 (2021).Article

Graham,S.E.等人,《遗传多样性在脂质全基因组关联研究中的作用》。自然600675-679(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

PubMed 中央

Google Scholar

谷歌学者

Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).Article

Zhou,Y。et al。Metascape为系统级数据集的分析提供了面向生物学家的资源。国家公社。101523(2019)。文章

PubMed

PubMed

PubMed Central

PubMed 中央

Google Scholar

谷歌学者

Frei, O. et al. Bivariate causal mixture model quantifies polygenic overlap between complex traits beyond genetic correlation. Nat. Commun. 10, 2417 (2019).Article

双变量因果混合模型量化了遗传相关性之外的复杂性状之间的多基因重叠。国家公社。102417(2019)。文章

PubMed

PubMed

PubMed Central

PubMed 中央

Google Scholar

谷歌学者

Yeung, M. W. et al. Twenty-five novel loci for carotid intima-media thickness: a Genome-Wide Association Study in >45 000 individuals and meta-analysis of >100 000 individuals. Arterioscler. Thromb. Vasc. Biol. 42, 484–501 (2022).Article

Yeung,M.W.等人。颈动脉内膜中层厚度的25个新基因座:对>45000个个体的全基因组关联研究和>100000个个体的荟萃分析。动脉硬化。血栓。Vasc。生物学42484-501(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gabriel, S. B. et al. The structure of haplotype blocks in the human genome. Science 296, 2225–2229 (2002).Article

Gabriel,S.B.等人。人类基因组中单倍型模块的结构。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yang, J. et al. Integrative analysis of transcriptome-wide association study and gene expression profiling identifies candidate genes associated with stroke. PeerJ 7, e7435 (2019).Article

Yang,J。等人。转录组关联研究和基因表达谱的综合分析确定了与中风相关的候选基因。PeerJ 7,e7435(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Torgersen, K. et al. Shared genetic architecture between neuroticism, coronary artery disease and cardiovascular risk factors. Transl. Psychiatry 11, 368 (2021).Article

Torgersen,K.等人在神经质、冠状动脉疾病和心血管危险因素之间共享遗传结构。翻译。精神病学11368(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Morris, A. P. et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet. 44, 981–990 (2012).Article

Morris,A.P.等人的大规模关联分析提供了对2型糖尿病遗传结构和病理生理学的见解。纳特·吉内特。44981-990(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).Article

Teslovich,T.M.等人。95个基因座与血脂的生物学,临床和人群相关性。《自然》466707–713(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

PubMed 中央

Google Scholar

谷歌学者

Speliotes, E. K. et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet. 42, 937–948 (2010).Article

Speliotes,E.K.等人对249796个个体的关联分析揭示了18个与体重指数相关的新基因座。纳特·吉内特。42937-948(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

PubMed 中央

Google Scholar

谷歌学者

Goodarzi, M. O. & Rotter, J. I. Genetics insights in the relationship between type 2 diabetes and coronary heart disease. Circ. Res. 126, 1526–1548 (2020).Article

。保监会。第1261526-1548号决议(2020年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

PubMed 中央

Google Scholar

谷歌学者

Meschia, J. F. Effects of genetic variants on stroke risk. Stroke 51, 736–741 (2020).Article

Meschia,J.F。遗传变异对中风风险的影响。中风51736-741(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

de Klein, N. et al. Brain expression quantitative trait locus and network analyses reveal downstream effects and putative drivers for brain-related diseases. Nat. Genet. 55, 377–388 (2023).Article

。纳特·吉内特。55377-388(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yen, F. S., Wei, J. C., Chiu, L. T., Hsu, C. C. & Hwu, C. M. Diabetes, hypertension, and cardiovascular disease development. J. Transl. Med 20, 9 (2022).Article

Yen,F.S.,Wei,J.C.,Chiu,L.T.,Hsu,C.C.&Hwu,C.M。糖尿病,高血压和心血管疾病的发展。J、 翻译。医学杂志20,9(2022)。文章

PubMed

PubMed

PubMed Central

PubMed 中央

Google Scholar

谷歌学者

Van Gaal, L. F. & Maggioni, A. P. Overweight, obesity, and outcomes: fat mass and beyond. Lancet (Lond., Engl.) 383, 935–936 (2014).Article

Van Gaal,L.F。&Maggioni,A.P。超重,肥胖和结果:脂肪量及以上。柳叶刀(Lond。,Engl。)383935-936(2014)。文章

Google Scholar

谷歌学者

Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration (BMI Mediated Effects) et al. Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: a pooled analysis of 97 prospective cohorts with 1.8 million participants.

慢性病代谢危险因素的全球负担协作(BMI介导的效应)等。体重指数,超重和肥胖对冠心病和中风影响的代谢介质:对97个前瞻性队列的汇总分析,180万参与者。

The Lancet 383, 970–983 (2014).Ojalehto, E. et al. Genetically and environmentally predicted obesity in relation to cardiovascular disease: a nationwide cohort study. EClinicalMedicine 58, 101943 (2023).Article .

《柳叶刀》383970-983(2014)。Ojalehto,E.等人。遗传和环境预测肥胖与心血管疾病的关系:一项全国性队列研究。EClinicalMedicine 58101943(2023)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Charpentier, M. S. et al. CASZ1 promotes vascular assembly and morphogenesis through the direct regulation of an EGFL7/RhoA-mediated pathway. Dev. Cell 25, 132–143 (2013).Article

Charpentier,M.S.等人CASZ1通过直接调节EGFL7/RhoA介导的途径促进血管组装和形态发生。Dev.Cell 25132-143(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mo, X. B., Zhang, H., Wang, A. L., Xu, T. & Zhang, Y. H. Integrative analysis identifies the association between CASZ1 methylation and ischemic stroke. Neurol. Genet. 6, e509 (2020).Article

Mo,X.B.,Zhang,H.,Wang,A.L.,Xu,T。&Zhang,Y.H。综合分析确定了CASZ1甲基化与缺血性中风之间的关联。。基因。6,e509(2020年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

PubMed 中央

Google Scholar

谷歌学者

Kichaev, G. et al. Leveraging polygenic functional enrichment to improve GWAS power. Am. J. Hum. Genet. 104, 65–75 (2019).Article

Kichaev,G。等人。利用多基因功能富集来提高GWAS能力。。104,65-75(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tan, Q. et al. Epigenetic drift in the aging genome: a ten-year follow-up in an elderly twin cohort. Int. J. Epidemiol. 45, 1146–1158 (2016).PubMed

Tan,Q.等人,《衰老基因组中的表观遗传漂移:老年双胞胎队列的十年随访》。国际流行病学杂志。451146-1158(2016)。PubMed出版社

Google Scholar

谷歌学者

Walker, V. M., Davey Smith, G., Davies, N. M. & Martin, R. M. Mendelian randomization: a novel approach for the prediction of adverse drug events and drug repurposing opportunities. Int J. Epidemiol. 46, 2078–2089 (2017).Article

Walker,V.M.,Davey Smith,G.,Davies,N.M。&Martin,R.M。孟德尔随机化:一种预测药物不良事件和药物再利用机会的新方法。国际流行病学杂志。462078-2089(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mountjoy, E. et al. An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci. Nat. Genet. 53, 1527–1533 (2021).Article

Mountjoy,E。等人。一种开放的方法,可以在所有已发表的人类GWAS性状相关基因座上系统地优先考虑因果变异和基因。纳特·吉内特。531527-1533(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sakaue, S. & Okada, Y. GREP: genome for REPositioning drugs. Bioinformatics 35, 3821–3823 (2019).Article

Sakaue,S。和Okada,Y。GREP:用于重新定位药物的基因组。生物信息学353821-3823(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, Y. et al. Association of genetic variants related to combined lipid-lowering and antihypertensive therapies with risk of cardiovascular disease: 2 × 2 factorial Mendelian randomization analyses. BMC Med. 22, 201 (2024).Article

Li,Y.等人。与降脂和抗高血压联合治疗相关的遗传变异与心血管疾病风险的关联:2×2因子孟德尔随机化分析。BMC Med.22201(2024)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Georgakis, M. K. & Gill, D. Mendelian randomization studies in stroke: exploration of risk factors and drug targets with human genetic data. Stroke 52, 2992–3003 (2021).Article

Georgakis,M.K。&Gill,D。孟德尔卒中随机研究:利用人类遗传数据探索危险因素和药物靶点。中风522992-3003(2021)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Gill, D., Walker, V. M., Martin, R. M., Davies, N. M. & Tzoulaki, I. Comparison with randomized controlled trials as a strategy for evaluating instruments in Mendelian randomization. Int. J. Epidemiol. 49, 1404–1406 (2020).Article

Gill,D.,Walker,V.M.,Martin,R.M.,Davies,N.M。&Tzoulaki,I。与随机对照试验的比较,作为评估孟德尔随机化工具的策略。国际流行病学杂志。491404-1406(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Kennedy, R. E. et al. Association between family risk of stroke and myocardial infarction with prevalent risk factors and coexisting diseases. Stroke 43, 974–979 (2012).Article

Kennedy,R.E.等人。中风和心肌梗塞的家庭风险与流行危险因素和共存疾病之间的关联。中风43974-979(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tcheandjieu, C. et al. Large-scale genome-wide association study of coronary artery disease in genetically diverse populations. Nat. Med. 28, 1679–1692 (2022).Article

Tcheandjieu,C.等人。遗传多样性人群中冠状动脉疾病的大规模全基因组关联研究。《自然医学》281679-1692(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).Article

Auton,A.等人,《人类遗传变异的全球参考文献》。《自然》526,68-74(2015)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).Article

Bulik-Sullivan,B.K.等人的LD评分回归在全基因组关联研究中区分了混杂和多基因。纳特·吉内特。47291-295(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).Article

Bulik Sullivan,B.等人,《人类疾病和性状遗传相关性图谱》。纳特·吉内特。471236-1241(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ning, Z., Pawitan, Y. & Shen, X. High-definition likelihood inference of genetic correlations across human complex traits. Nat. Genet. 52, 859–864 (2020).Article

Ning,Z.,Pawitan,Y。&Shen,X。人类复杂性状遗传相关性的高清似然推断。纳特·吉内特。52859-864(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).Article

Finucane,H.K.等人。使用全基因组关联摘要统计通过功能注释划分遗传力。纳特·吉内特。471228-1235(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).Article

Watanabe,K.,Taskesen,E.,van Bochoven,A。&Posthuma,D。与FUMA遗传关联的功能定位和注释。国家公社。81826(2017)。文章

PubMed

PubMed

PubMed Central

PubMed 中央

Google Scholar

谷歌学者

Myers, T. A., Chanock, S. J. & Machiela, M. J. LDlinkR: an R package for rapidly calculating linkage disequilibrium statistics in diverse populations. Front. Genet. 11, 157 (2020).Article

Myers,T.A.,Chanock,S.J。&Machiela,M.J。LDlinkR:用于快速计算不同人群中连锁不平衡统计数据的R包。正面。基因。。文章

PubMed

PubMed

PubMed Central

PubMed 中央

Google Scholar

谷歌学者

Pickrell, J. K. et al. Detection and interpretation of shared genetic influences on 42 human traits. Nat. Genet. 48, 709–717 (2016).Article

Pickrell,J.K.等人。检测和解释42种人类性状的共同遗传影响。纳特·吉内特。48709-717(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ghoussaini, M. et al. Open Targets Genetics: systematic identification of trait-associated genes using large-scale genetics and functional genomics. Nucleic acids Res. 49, D1311–d1320 (2021).Article

Ghoussaini,M.等人,《开放目标遗传学:使用大规模遗传学和功能基因组学对性状相关基因进行系统鉴定》。核酸研究49,D1311–d1320(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

McLaren, W. et al. The ensembl variant effect predictor. Genome Biol. 17, 122 (2016).Article

McLaren,W。等人。ensembl变异效应预测因子。基因组生物学。17122(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic acids Res. 38, e164 (2010).Article

Wang,K.,Li,M。&Hakonarson,H。ANNOVAR:高通量测序数据中遗传变异的功能注释。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huang, D. et al. Ultrafast and scalable variant annotation and prioritization with big functional genomics data. Genome Res. 30, 1789–1801 (2020).Article

Huang,D.等人。使用大型功能基因组学数据进行超快且可扩展的变体注释和优先级排序。基因组研究301789-1801(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

PubMed 中央

Google Scholar

谷歌学者

The, G. C. et al. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).Article

G.C.等人,《GTEx联盟人体组织遗传调控效应图谱》。科学3691318-1330(2020)。文章

Google Scholar

谷歌学者

Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).Article

Ashburner,M.等人,《基因本体论:生物学统一的工具》。基因本体论联盟。纳特·吉内特。25,25-29(2000)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

PubMed 中央

Google Scholar

谷歌学者

Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids Res. 28, 27–30 (2000).Article

。核酸研究28,27-30(2000)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dai, Y. et al. WebCSEA: web-based cell-type-specific enrichment analysis of genes. Nucleic Acids Res. 50, W782–W790 (2022).Article

Dai,Y。等人。WebCSEA:基于网络的基因细胞类型特异性富集分析。核酸研究50,W782–W790(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

PubMed 中央

Google Scholar

谷歌学者

Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46, D1074–d1082 (2018).Article

Wishart,D.S.等人,《DrugBank 5.0:2018年DrugBank数据库的重大更新》。核酸研究46,D1074–d1082(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yildirim, M. A., Goh, K. I., Cusick, M. E., Barabási, A. L. & Vidal, M. Drug-target network. Nat. Biotechnol. 25, 1119–1126 (2007).Article

Yildirim,M.A.,Goh,K.I.,Cusick,M.E.,Barabási,A.L。&Vidal,M。Drug target network。Nat。Biotechnol。251119-1126(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

McRae, A. F. et al. Identification of 55,000 replicated DNA methylation QTL. Sci. Rep. 8, 17605 (2018).Article

McRae,A.F.等人鉴定了55000个复制的DNA甲基化QTL。科学。代表817605(2018)。文章

PubMed

PubMed

PubMed Central

PubMed 中央

Google Scholar

谷歌学者

Wu, Y. et al. Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits. Nat. Commun. 9, 918 (2018).Article

Wu,Y。等人。组学总结数据的综合分析揭示了复杂性状的潜在机制。国家公社。9918(2018)。文章

PubMed

PubMed

PubMed Central

PubMed 中央

Google Scholar

谷歌学者

Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).Article

Zhu,Z.等人。GWAS和eQTL研究总结数据的整合预测了复杂的性状基因靶标。纳特·吉内特。48481-487(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ding, K. Shared Genetic Etiology of CVDs and CeVDs through RFs https://doi.org/10.5281/zenodo.14279972 (2024).Download referencesAcknowledgementsThis work was supported by the High-performance Computing Platform of Peking University. This research was funded by the National Natural Science Foundation of China (No.

丁,K。通过RFs共享CVD和CEVD的遗传病因https://doi.org/10.5281/zenodo.14279972(2024年)。下载参考文献致谢这项工作得到了北京大学高性能计算平台的支持。本研究由国家自然科学基金资助(No。

82073642).Author informationAuthor notesThese authors jointly supervised this work: Xueying Qin, Yiqun Wu.Authors and AffiliationsDepartment of Epidemiology and Biostatistics, School of Public Health, Peking University; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, ChinaKexin Ding, Xueying Qin, Huairong Wang, Kun Wang, Yang Liu, Tao Wu, Dafang Chen, Yonghua Hu & Yiqun WuDepartment of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, SwedenXiaoying KangDepartment of Neurology, Brigham and Women’s Hospital & Harvard Medical School, Boston, MA, USAXiaoying KangDepartment of Neurology, Peking University People’s Hospital, Beijing, ChinaYao YuFangshan District Center for Disease Control and Prevention, Beijing, ChinaHaiying GongDepartment of Epidemiology and Population Health, Yeshiva University Albert Einstein College of Medicine, Bronx, NY, USATao WangAuthorsKexin DingView author publicationsYou can also search for this author in.

82073642)。作者信息作者注意到这些作者共同监督了这项工作:秦雪英,吴益群。作者和附属机构北京大学公共卫生学院流行病学和生物统计学系;教育部重大疾病流行病学重点实验室(北京大学),北京,丁克欣,秦雪英,王怀荣,王坤,刘洋,吴涛,陈大芳,胡永华,吴益群医学流行病学和生物统计学系,卡罗琳斯卡研究所,斯德哥尔摩,瑞典,康小英,布莱根妇女医院和哈佛医学院神经内科,波士顿,马萨诸塞州,美国康小英北京大学人民医院神经内科,北京,北京,中国姚玉房山区疾病预防控制中心,北京,中国海英爱因斯坦医学院,纽约州布朗克斯,USATao Wang作者Kexin DingView作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarXueying QinView author publicationsYou can also search for this author in

PubMed Google ScholarXueying QinView作者出版物您也可以在

PubMed Google ScholarHuairong WangView author publicationsYou can also search for this author in

PubMed Google ScholarHuairong WangView作者出版物您也可以在

PubMed Google ScholarKun WangView author publicationsYou can also search for this author in

PubMed Google ScholarKun WangView作者出版物您也可以在

PubMed Google ScholarXiaoying KangView author publicationsYou can also search for this author in

PubMed Google ScholarXiaoying KangView作者出版物您也可以在

PubMed Google ScholarYao YuView author publicationsYou can also search for this author in

PubMed Google ScholarYao YuView作者出版物您也可以在

PubMed Google ScholarYang LiuView author publicationsYou can also search for this author in

PubMed Google ScholarYang LiuView作者出版物您也可以在

PubMed Google ScholarHaiying GongView author publicationsYou can also search for this author in

PubMed Google ScholarHaiying GongView作者出版物您也可以在

PubMed Google ScholarTao WuView author publicationsYou can also search for this author in

PubMed Google ScholarTao WuView作者出版物您也可以在

PubMed Google ScholarDafang ChenView author publicationsYou can also search for this author in

PubMed Google ScholarDafang ChenView作者出版物您也可以在

PubMed Google ScholarYonghua HuView author publicationsYou can also search for this author in

PubMed Google ScholaryYonghua HuView作者出版物您也可以在

PubMed Google ScholarTao WangView author publicationsYou can also search for this author in

PubMed Google ScholarTao WangView作者出版物您也可以在

PubMed Google ScholarYiqun WuView author publicationsYou can also search for this author in

PubMed谷歌学术期刊WuView作者出版物您也可以在

PubMed Google ScholarContributionsYiqun Wu and Xueying Qin designed the study. Kexin Ding undertook data processing and conducted data analysis. Yiqun Wu, Xueying Qin, and Kexin Ding drafted the manuscript. Tao Wang, Huairong Wang, and Kun Wang contributed to the manuscript writing.

PubMed谷歌学术贡献吴一群和秦雪莹设计了这项研究。丁可欣进行了数据处理并进行了数据分析。吴益群,秦雪英和丁克欣起草了手稿。王涛,王怀荣和王坤为稿件撰写做出了贡献。

Xiaoying Kang and Tao Wang provided support for the data analysis. Yao Yu, Yang Liu, Haiying Gong, Tao Wang, Xiaoying Kang, Tao Wu, Dafang Chen, and Yonghua Hu revised the manuscript. Yiqun Wu, Xueying Qin, and Kexin Ding were responsible for interpreting the data that the manuscript is based on. All authors have read and approved the final manuscript.Corresponding authorsCorrespondence to.

康晓颖和王涛为数据分析提供了支持。姚宇,杨柳,龚海英,王涛,康晓英,吴涛,陈大方和胡永华修订了手稿。吴益群,秦雪英和丁可欣负责解释稿件所依据的数据。所有作者都阅读并批准了最终稿件。通讯作者通讯。

Xueying Qin or Yiqun Wu.Ethics declarations

秦雪英或吴益群。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Communications Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Kaoru Ito and Dario Ummarino.

通信生物学感谢匿名审稿人对这项工作的同行评审所做的贡献。主要处理编辑:Kaoru Ito和Dario Ummarino。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationDescription of Additional Supplementary MaterialsSupplementary Data 1-21Reporting SummaryTransparent Peer Review fileRights and permissions.

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息补充材料描述补充数据1-21报告摘要透明同行评审文件权限。

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleDing, K., Qin, X., Wang, H. et al. Identification of shared genetic etiology of cardiovascular and cerebrovascular diseases through common cardiometabolic risk factors.

转载和许可本文引用本文Ding,K.,Qin,X.,Wang,H。等人。通过常见的心脏代谢危险因素鉴定心脑血管疾病的共同遗传病因。

Commun Biol 7, 1703 (2024). https://doi.org/10.1038/s42003-024-07417-6Download citationReceived: 14 June 2024Accepted: 18 December 2024Published: 27 December 2024DOI: https://doi.org/10.1038/s42003-024-07417-6Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Commun Biol 71703(2024)。https://doi.org/10.1038/s42003-024-07417-6Download引文接收日期:2024年6月14日接受日期:2024年12月18日发布日期:2024年12月27日OI:https://doi.org/10.1038/s42003-024-07417-6Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

Subjects

主题

Cardiovascular diseasesRisk factorsStroke

心血管疾病危险因素中风