商务合作
动脉网APP
可切换为仅中文
AbstractThe cyclic GMP-AMP synthase-stimulator of the interferon gene (cGAS-STING) signaling pathway is considered an essential pattern recognition and effector pathway in the natural immune system and is mainly responsible for recognizing DNA molecules present in the cytoplasm and activating downstream signaling pathways to generate type I interferons (IFN-I) and other inflammatory factors.
摘要干扰素基因的环状GMP-AMP合酶刺激因子(cGAS-STING)信号通路被认为是天然免疫系统中必不可少的模式识别和效应通路,主要负责识别细胞质中存在的DNA分子并激活下游信号通路以产生I型干扰素(IFN-I)和其他炎症因子。
STING, a crucial junction protein in the innate immune system, exerts an essential role in host resistance to external pathogen invasion. The DNA introduced by pathogens or tumors is recognized by the cytoplasmic nucleic acid receptor cGAS, and a second messenger, cGAMP, is generated using intracellular guanosine triphosphate (GTP) and adenosine triphosphate (ATP).
STING是先天免疫系统中的关键连接蛋白,在宿主抵抗外部病原体入侵中发挥重要作用。病原体或肿瘤引入的DNA被细胞质核酸受体cGAS识别,第二信使cGAMP使用细胞内三磷酸鸟苷(GTP)和三磷酸腺苷(ATP)产生。
Furthermore, cellular and extracellular cGAMP concentrations are also controlled by ENPP1, an enzyme that breaks down cGAMP to AMP and GMP. Therefore, the role of the cGAS-STING signaling pathway has generated great interest in inflammatory and cancer research. To advance our understanding of innate immune system and in particular the STING pathway, we have developed a homogeneous, bioluminescent cGAMP detection assay that is very sensitive and highly selective against other nucleotides, cyclic nucleotides, and dicyclic nucleotides.
此外,细胞和细胞外cGAMP浓度也受ENPP1控制,ENPP1是一种将cGAMP分解为AMP和GMP的酶。因此,cGAS-STING信号通路的作用引起了炎症和癌症研究的极大兴趣。为了增进我们对先天免疫系统,特别是STING途径的理解,我们开发了一种均质的生物发光cGAMP检测方法,该方法对其他核苷酸,环核苷酸和双环核苷酸非常敏感且具有高度选择性。
The assay can be also used to monitor the activity of cGAS and ENPP1 to enable the development of inhibitors of both enzymes which might be used for therapeutic applications..
该测定法还可用于监测cGAS和ENPP1的活性,以开发可能用于治疗应用的两种酶的抑制剂。。
IntroductionThe discovery of the cGAS-STING pathway and its key messenger 2′,3′-cyclic GMP-AMP (cGAMP) has revolutionized our understanding of cellular defense mechanisms. cGAMP acts as a critical link between the detection of DNA in the cytoplasm and the activation of the STING (STimulator of INterferon Genes) pathway, leading to the production of type I interferons and other inflammatory cytokines1,2,3,4,5,6.
引言cGAS-STING途径及其关键信使2',3'-环GMP-AMP(cGAMP)的发现彻底改变了我们对细胞防御机制的理解。cGAMP是细胞质中DNA检测与STING(干扰素基因刺激因子)途径激活之间的关键环节,导致产生I型干扰素和其他炎性细胞因子1,2,3,4,5,6。
This pathway is vital not only for antiviral defense but also has implications in autoinflammatory diseases, cancer biology, and vaccine development7,8,9,10,11,12,13,14.Recent studies have expanded our knowledge of cGAMP’s synthesis, structure, and mechanism of action. The elucidation of cGAMP’s structure has provided insights into its unique cyclic dinucleotide (CDN) scaffold, which is crucial for its binding and activation of STING.
该途径不仅对抗病毒防御至关重要,而且对自身炎症性疾病,癌症生物学和疫苗开发也有影响7,8,9,10,11,12,13,14。最近的研究扩展了我们对cGAMP合成,结构和作用机制的了解。cGAMP结构的阐明为其独特的环状二核苷酸(CDN)支架提供了见解,这对于其结合和激活STING至关重要。
Additionally, research has delved into the intricacies of how cGAMP is transported between cells, influencing immune signaling in a paracrine and autocrine manner15,16,17,18.A newly recognized function of STING is that it acts as an ion channel, where upon its activation and translocation to the Golgi apparatus, STING serves as a direct mediator for proton release into the cytosol.
此外,研究已经深入研究了cGAMP如何在细胞之间运输的复杂性,以旁分泌和自分泌的方式影响免疫信号传导[15,16,17,18]。STING的一个新发现的功能是它作为离子通道,在激活和易位到高尔基体时,STING作为质子释放到细胞质中的直接介质。
This unique function allows STING to translate danger signals into ion flow within the cell. STING is the first human immune sensor known to have this ion channel activity19. The proton leakage from the Golgi body is associated with non-canonical LC3B lipidation and NLRP3 inflammasome activation. Hence, it has generated interest in exploring how this ion channel activity affects immune responses and cellular processes.
这种独特的功能允许STING将危险信号转化为细胞内的离子流。。高尔基体的质子泄漏与非经典LC3B脂化和NLRP3炎性体激活有关。因此,人们对探索这种离子通道活性如何影响免疫反应和细胞过程产生了兴趣。
Thus, STING’s dual role as an immune sensor and ion channel adds complexity to our understanding of innate immunity. This finding warrants.
因此,STING作为免疫传感器和离子通道的双重作用增加了我们对先天免疫的理解的复杂性。这一发现值得肯定。
Data availability
数据可用性
The authors will make data available upon reasonable request and my contact information is “said.goueli@promega.com”.
作者将在合理要求下提供数据,我的联系信息是“said.goueli@promega.com“。
ReferencesWu, J. et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830. https://doi.org/10.1126/science.1229963 (2013).Article
参考文献Wu,J。等人。环状GMP-AMP是胞质DNA先天免疫信号传导中的内源性第二信使。。https://doi.org/10.1126/science.1229963(2013年)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Li, X. et al. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity 39, 1019–1031. https://doi.org/10.1016/j.immuni.2013.10.019 (2013).Article
Li,X。等人。环状GMP-AMP合酶被双链DNA诱导的寡聚化激活。豁免391019-1031。https://doi.org/10.1016/j.immuni.2013.10.019(2013年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ablasser, A. et al. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature 503, 530–534. https://doi.org/10.1038/nature12640 (2013).Article
Ablasser,A。等人。细胞内在免疫通过cGAMP的细胞间转移扩散到旁观者细胞。自然503530-534。https://doi.org/10.1038/nature12640(2013年)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中央
Google Scholar
谷歌学者
Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791. https://doi.org/10.1126/science.1232458 (2013).Article
Sun,L.,Wu,J.,Du,F.,Chen,X。&Chen,Z.J。环状GMP-AMP合酶是一种激活I型干扰素途径的胞质DNA传感器。。https://doi.org/10.1126/science.1232458(2013年)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ablasser, A. et al. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 498, 380–384. https://doi.org/10.1038/nature12306 (2013).Article
Ablasser,A。等人,cGAS产生2'-5'连接的环状二核苷酸第二信使,激活STING。自然498380-384。https://doi.org/10.1038/nature12306(2013年)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ablasser, A. & Hornung, V. DNA sensing unchained. Cell Res. 23, 585–587. https://doi.org/10.1038/cr.2013.28 (2013).Article
Ablasser,A。&Hornung,V。DNA感应未染色。Cell Res.23585-587。https://doi.org/10.1038/cr.2013.28(2013年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hopfner, K. P. & Hornung, V. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat. Rev. Mol. Cell Biol. 21, 501–521. https://doi.org/10.1038/s41580-020-0244-x (2020).Article
Hopfner,K.P。&Hornung,V。cGAS-STING信号传导的分子机制和细胞功能。Nat。Rev。Mol。Cell Biol。21501-521。https://doi.org/10.1038/s41580-020-0244-x(2020年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tani, T. et al. TREX1 inactivation unleashes cancer cell STING-interferon signaling and promotes antitumor immunity. Cancer Discov. 14, 752–765. https://doi.org/10.1158/2159-8290.CD-23-0700 (2024).Article
Tani,T。等人。TREX1失活释放癌细胞STING干扰素信号传导并促进抗肿瘤免疫。癌症发现。14752-765。https://doi.org/10.1158/2159-8290.CD-23-0700(2024年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中央
Google Scholar
谷歌学者
Chauvin, S. D., Stinson, W. A., Platt, D. J., Poddar, S. & Miner, J. J. Regulation of cGAS and STING signaling during inflammation and infection. J. Biol. Chem. 299, 104866. https://doi.org/10.1016/j.jbc.2023.104866 (2023).Article
Chauvin,S.D.,Stinson,W.A.,Platt,D.J.,Poddar,S。&Miner,J.J。在炎症和感染期间调节cGAS和STING信号传导。J、 生物。。299104866。https://doi.org/10.1016/j.jbc.2023.104866(2023年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中央
Google Scholar
谷歌学者
Li, Q. et al. Therapeutic development by targeting the cGAS-STING pathway in autoimmune disease and cancer. Front. Pharmacol. 12, 779425. https://doi.org/10.3389/fphar.2021.779425 (2021).Article
。。药理学。12779425页。https://doi.org/10.3389/fphar.2021.779425(2021年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kuttruff, C. A. et al. Discovery of BI 7446: A potent cyclic dinucleotide STING agonist with broad-spectrum variant activity for the treatment of cancer. J. Med. Chem. 66, 9376–9400. https://doi.org/10.1021/acs.jmedchem.3c00510 (2023).Article
Kuttruff,C.A.等人发现BI 7446:一种具有广谱变异活性的有效环状二核苷酸STING激动剂,用于治疗癌症。J、 医学化学。669376–9400。https://doi.org/10.1021/acs.jmedchem.3c00510(2023年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Le Naour, J., Zitvogel, L., Galluzzi, L., Vacchelli, E. & Kroemer, G. Trial watch: STING agonists in cancer therapy. Oncoimmunology 9, 1777624. https://doi.org/10.1080/2162402X.2020.1777624 (2020).Article
Le Naour,J.,Zitvogel,L.,Galluzzi,L.,Vacchelli,E。&Kroemer,G。试验观察:癌症治疗中的STING激动剂。肿瘤免疫学91777624。https://doi.org/10.1080/2162402X.2020.1777624(2020年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Colangelo, N. W., Gerber, N. K., Vatner, R. E. & Cooper, B. T. Harnessing the cGAS-STING pathway to potentiate radiation therapy: current approaches and future directions. Front. Pharmacol. 15, 1383000. https://doi.org/10.3389/fphar.2024.1383000 (2024).Article
Colangelo,N.W.,Gerber,N.K.,Vatner,R.E。&Cooper,B.T。利用cGAS-STING途径增强放射治疗:当前方法和未来方向。。药理学。151383000。https://doi.org/10.3389/fphar.2024.1383000(2024年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中央
Google Scholar
谷歌学者
Decout, A., Katz, J. D., Venkatraman, S. & Ablasser, A. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat. Rev. Immunol. 21, 548–569. https://doi.org/10.1038/s41577-021-00524-z (2021).Article
Decout,A.,Katz,J.D.,Venkatraman,S。和Ablasser,A。cGAS-STING途径作为炎症性疾病的治疗靶标。国家免疫修订版。21548-569。https://doi.org/10.1038/s41577-021-00524-z(2021年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xie, W. & Patel, D. J. Structure-based mechanisms of 2′3′-cGAMP intercellular transport in the cGAS-STING immune pathway. Trends Immunol. 44, 450–467. https://doi.org/10.1016/j.it.2023.04.006 (2023).Article
Xie,W。&Patel,D。J。cGAS-STING免疫途径中2'3'-cGAMP细胞间转运的基于结构的机制。趋势免疫。44450-467。https://doi.org/10.1016/j.it.2023.04.006(2023年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Guey, B. & Ablasser, A. A carrier for cyclic dinucleotides. Nat. Immunol. 20, 1418–1420. https://doi.org/10.1038/s41590-019-0521-z (2019).Article
Guey,B。&Ablasser,A。环状二核苷酸的载体。自然免疫。201418-1420年。https://doi.org/10.1038/s41590-019-0521-z(2019年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Khan, F., Jeong, G. J., Tabassum, N. & Kim, Y. M. Functional diversity of c-di-GMP receptors in prokaryotic and eukaryotic systems. Cell Commun. Signal 21, 259. https://doi.org/10.1186/s12964-023-01263-5 (2023).Article
Khan,F.,Jeong,G.J.,Tabassum,N。&Kim,Y.M。原核和真核系统中c-di-GMP受体的功能多样性。细胞通讯。信号21259。https://doi.org/10.1186/s12964-023-01263-5(2023年)。文章
PubMed
PubMed
PubMed Central
PubMed 中央
Google Scholar
谷歌学者
O’Connor, R. S. Checkmate: Metabolic flexibility with a STING in its tail. Sci. Adv. 9, eadm6816. https://doi.org/10.1126/sciadv.adm6816 (2023).Article
奥康纳(O'Connor,R.S.Checkmate):尾部有刺的代谢灵活性。科学。广告9,eadm6816。https://doi.org/10.1126/sciadv.adm6816(2023年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, B. et al. Human STING is a proton channel. Science 381, 508–514. https://doi.org/10.1126/science.adf8974 (2023).Article
Liu,B。等人。人类STING是质子通道。科学381508-514。https://doi.org/10.1126/science.adf8974(2023年)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中央
Google Scholar
谷歌学者
Ritchie, C., Carozza, J. A. & Li, L. Biochemistry, cell biology, and pathophysiology of the innate immune cGAS-cGAMP-STING pathway. Annu. Rev. Biochem. 91, 599–628. https://doi.org/10.1146/annurev-biochem-040320-101629 (2022).Article
Ritchie,C.,Carozza,J.A。&Li,L。先天免疫cGAS-cGAMP-STING途径的生物化学,细胞生物学和病理生理学。年。生物化学评论。91599-628。https://doi.org/10.1146/annurev-biochem-040320-101629(2022年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dvorkin, S., Cambier, S., Volkman, H. E. & Stetson, D. B. New frontiers in the cGAS-STING intracellular DNA-sensing pathway. Immunity 57, 718–730. https://doi.org/10.1016/j.immuni.2024.02.019 (2024).Article
Dvorkin,S.,Cambier,S.,Volkman,H.E。和Stetson,D.B。cGAS-STING细胞内DNA传感途径的新前沿。免疫力57718-730。https://doi.org/10.1016/j.immuni.2024.02.019(2024年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Su, M. et al. Second messenger 2′3′-cyclic GMP-AMP (2′3′-cGAMP): Synthesis, transmission, and degradation. Biochem. Pharmacol. 198, 114934. https://doi.org/10.1016/j.bcp.2022.114934 (2022).Article
Su,M.等人。第二信使2'3'-环GMP-AMP(2'3'-cGAMP):合成、传递和降解。。药理学。198114934年。https://doi.org/10.1016/j.bcp.2022.114934(2022年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yu, X., Cai, L., Yao, J., Li, C. & Wang, X. Agonists and inhibitors of the cGAS-STING pathway. Molecules https://doi.org/10.3390/molecules29133121 (2024).Article
Yu,X.,Cai,L.,Yao,J.,Li,C。&Wang,X。cGAS-STING途径的激动剂和抑制剂。分子https://doi.org/10.3390/molecules29133121(2024年)。文章
PubMed
PubMed
PubMed Central
PubMed 中央
Google Scholar
谷歌学者
Wang, S. et al. ENPP1 is an innate immune checkpoint of the anticancer cGAMP-STING pathway in breast cancer. Proc. Natl. Acad. Sci. U. S. A. 120, e2313693120. https://doi.org/10.1073/pnas.2313693120 (2023).Article
ENPP1是乳腺癌中抗癌cGAMP-STING途径的先天免疫检查点。程序。纳特尔。阿卡德。科学。U、 美国120,e2313693120。https://doi.org/10.1073/pnas.2313693120(2023年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Carozza, J. A. et al. Extracellular cGAMP is a cancer cell-produced immunotransmitter involved in radiation-induced anti-cancer immunity. Nat. Cancer 1, 184–196. https://doi.org/10.1038/s43018-020-0028-4 (2020).Article
Carozza,J.A。等人。细胞外cGAMP是癌细胞产生的免疫递质,参与辐射诱导的抗癌免疫。《自然癌症》1184-196。https://doi.org/10.1038/s43018-020-0028-4(2020年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中央
Google Scholar
谷歌学者
Zhang, J. H., Chung, T. D. & Oldenburg, K. R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4, 67–73. https://doi.org/10.1177/108705719900400206 (1999).Article
Zhang,J.H.,Chung,T.D。和Oldenburg,K.R。一个用于高通量筛选测定的评估和验证的简单统计参数。J、 生物摩尔。屏幕。4,67-73。https://doi.org/10.1177/108705719900400206(1999年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mikheil, D. et al. A bioluminescent and homogeneous assay for monitoring GPCR-mediated cAMP modulation and PDE activity. Sci. Rep. 14, 4440. https://doi.org/10.1038/s41598-024-55038-0 (2024).Article
Mikheil,D。等人。用于监测GPCR介导的cAMP调节和PDE活性的生物发光和均相测定。科学。代表14440。https://doi.org/10.1038/s41598-024-55038-0(2024年)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dixon, A. S. et al. NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chem. Biol. 11, 400–408. https://doi.org/10.1021/acschembio.5b00753 (2016).Article
Dixon,A.S.等人,《NanoLuc互补报告基因》经过优化,可准确测量细胞中的蛋白质相互作用。ACS化学。生物学11400-408。https://doi.org/10.1021/acschembio.5b00753(2016年)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Padilla-Salinas, R. et al. Discovery of small-molecule cyclic GMP-AMP synthase inhibitors. J. Org. Chem. 85, 1579–1600. https://doi.org/10.1021/acs.joc.9b02666 (2020).Article
Padilla Salinas,R。等人。发现小分子环状GMP-AMP合酶抑制剂。J、 组织化学。851579-1600。https://doi.org/10.1021/acs.joc.9b02666(2020年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wiser, C., Kim, B., Vincent, J. & Ascano, M. Small molecule inhibition of human cGAS reduces total cGAMP output and cytokine expression in cells. Sci. Rep. 10, 7604. https://doi.org/10.1038/s41598-020-64348-y (2020).Article
Wiser,C.,Kim,B.,Vincent,J。&Ascano,M。人cGAS的小分子抑制降低了细胞中总cGAMP输出和细胞因子表达。科学。代表107604。https://doi.org/10.1038/s41598-020-64348-y(2020年)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, K. et al. Development of small molecule inhibitors/agonists targeting STING for disease. Biomed. Pharmacother. 132, 110945. https://doi.org/10.1016/j.biopha.2020.110945 (2020).Article
Liu,K.等人。针对疾病的STING的小分子抑制剂/激动剂的开发。生物医学。药剂师。132110945年。https://doi.org/10.1016/j.biopha.2020.110945(2020年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ramanjulu, J. M. et al. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature 564, 439–443. https://doi.org/10.1038/s41586-018-0705-y (2018).Article
Ramanjulu,J.M.等人。具有全身活性的酰胺基苯并咪唑STING受体激动剂的设计。自然564439-443。https://doi.org/10.1038/s41586-018-0705-y(2018年)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Novotna, B. et al. Enzymatic preparation of 2′-5′,3′-5′-Cyclic dinucleotides, their binding properties to stimulator of interferon genes adaptor protein, and structure/activity correlations. J. Med. Chem. 62, 10676–10690. https://doi.org/10.1021/acs.jmedchem.9b01062 (2019).Article
Novotna,B.等人。酶法制备2'-5',3'-5'-环状二核苷酸,它们与干扰素基因衔接蛋白刺激物的结合特性以及结构/活性相关性。J、 医学化学。6210676–10690。https://doi.org/10.1021/acs.jmedchem.9b01062(2019年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Download referencesAcknowledgementsThe authors acknowledge the financial support by Promega Corp. The authors acknowledge the generous gift of cGAMP antibodies provided by Takeda Pharmaceuticals to develop cGAMP Lumit assay.Author informationAuthors and AffiliationsPromega Corporation, 2800 Woods Hollow Road, Madison, WI, 53711, USAKevin Hsiao, Nathan H.
下载参考文献致谢作者感谢Promega Corp.的财务支持。作者感谢武田制药提供的cGAMP抗体的慷慨礼物,用于开发cGAMP-Lumit分析。作者信息作者和附属机构罗米加公司,美国威斯康星州麦迪逊伍兹空心路2800号,53711 Kevin Hsiao,Nathan H。
Murray, Dareen Mikheil & Said A. GoueliPromega Corporation, 277 Granada Drive, San Luis Obispo, CA, 93401, USAMatthew A. Larsen, Hui Wang & Tim UgoAuthorsKevin HsiaoView author publicationsYou can also search for this author in.
Murray,Dareen Mikheil&Said A.GoueliPromega Corporation,277 Granada Drive,San Luis Obispo,CA,93401,USAMATHEW A.Larsen,Hui Wang&Tim UgoAuthorsKevin HsiaoView作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarNathan H. MurrayView author publicationsYou can also search for this author in
PubMed Google ScholarNathan H.MurrayView作者出版物您也可以在
PubMed Google ScholarDareen MikheilView author publicationsYou can also search for this author in
PubMed Google ScholarDareen MikheilView作者出版物您也可以在
PubMed Google ScholarMatthew A. LarsenView author publicationsYou can also search for this author in
PubMed Google ScholarMatthew A.LarsenView作者出版物您也可以在
PubMed Google ScholarHui WangView author publicationsYou can also search for this author in
PubMed Google ScholarHui WangView作者出版物您也可以在
PubMed Google ScholarTim UgoView author publicationsYou can also search for this author in
PubMed Google ScholarTim UgoView作者出版物您也可以在
PubMed Google ScholarSaid A. GoueliView author publicationsYou can also search for this author in
PubMed谷歌学术援助A.GoueliView作者出版物您也可以在
PubMed Google ScholarContributionsKH performed experiments and prepared the figures, ML, HW, and TU developed the tracers and verified their chemical sytucture. NM and DM also verified the validity of the recombinant antibodies used in these studies. SG initiated this project and provided guidance for implementation of the experiments proposed in this project.
。NM和DM还验证了这些研究中使用的重组抗体的有效性。SG启动了该项目,并为该项目中提出的实验的实施提供了指导。
All authors were involved in editing and proofreading the manuscript before submission.Corresponding authorCorrespondence to.
所有作者在提交之前都参与了手稿的编辑和校对。。
Said A. Goueli.Ethics declarations
A.Goueli说。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary InformationSupplementary Information.Rights and permissions
Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息。权限和权限
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.
开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。
You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..
Reprints and permissionsAbout this articleCite this articleHsiao, K., Murray, N.H., Mikheil, D. et al. Homogeneous and bioluminescent biochemical and cellular assay for monitoring cGAMP and enzymes that generate and degrade cGAMP.
转载和许可本文引用本文Hsiao,K.,Murray,N.H.,Mikheil,D。等人。用于监测cGAMP和产生和降解cGAMP的酶的均相和生物发光生化和细胞测定。
Sci Rep 14, 31165 (2024). https://doi.org/10.1038/s41598-024-82525-1Download citationReceived: 11 October 2024Accepted: 05 December 2024Published: 28 December 2024DOI: https://doi.org/10.1038/s41598-024-82525-1Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Sci Rep 1431165(2024)。https://doi.org/10.1038/s41598-024-82525-1Download引文收到日期:2024年10月11日接受日期:2024年12月5日发布日期:2024年12月28日OI:https://doi.org/10.1038/s41598-024-82525-1Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
KeywordscGAMPSTINGcGASENPP1HomogeneousBioluminescence
关键词cgampstingcgasenpp1均质或生物发光