EN
登录

链霉菌分泌一种铁载体,使竞争对手细菌对噬菌体感染敏感

Streptomyces secretes a siderophore that sensitizes competitor bacteria to phage infection

Nature 等信源发布 2025-01-08 21:36

可切换为仅中文


Abstract

摘要

To overtake competitors, microbes produce and secrete secondary metabolites that kill neighbouring cells and sequester nutrients. This metabolite-mediated competition probably evolved in complex microbial communities in the presence of viral pathogens. We therefore hypothesized that microbes secrete natural products that make competitors sensitive to phage infection.

为了超越竞争对手,微生物产生并分泌次级代谢产物,杀死邻近细胞并隔离营养物质。这种代谢物介导的竞争可能在病毒病原体存在下在复杂的微生物群落中进化。因此,我们假设微生物分泌天然产物,使竞争对手对噬菌体感染敏感。

We used a binary-interaction screen and chemical characterization to identify a secondary metabolite (coelichelin) produced by .

我们使用二元相互作用筛选和化学表征来鉴定由产生的次级代谢物(coelichelin)。

Streptomyces

链霉菌

sp. that sensitizes its soil competitor

使其土壤竞争对手敏感

Bacillus subtilis

枯草芽孢杆菌

to phage infection in vitro. The siderophore coelichelin sensitized

体外噬菌体感染。铁载体coelichelin致敏

B. subtilis

B、 枯草杆菌

to a panel of lytic phages (SPO1, SP10, SP50, Goe2) via iron sequestration, which prevented the activation of

通过铁螯合作用将一组裂解噬菌体(SPO1,SP10,SP50,Goe2)转化为一组裂解噬菌体,从而阻止了

B. subtilis

B、 枯草杆菌

Spo0A, the master regulator of the stationary phase and sporulation. Metabolomics analysis revealed that other bacterial natural products may also provide phage-mediated competitive advantages to their producers. Overall, this work reveals that synergy between natural products and phages can shape the outcomes of competition between microbes..

Spo0A是固定相和孢子形成的主要调节剂。代谢组学分析表明,其他细菌天然产物也可能为其生产者提供噬菌体介导的竞争优势。总的来说,这项工作表明,天然产物和噬菌体之间的协同作用可以塑造微生物之间竞争的结果。。

Access through your institution

通过您的机构访问

Buy or subscribe

购买或订阅

This is a preview of subscription content,

这是订阅内容的预览,

access via your institution

通过您的机构访问

Access options

访问选项

Access through your institution

通过您的机构访问

Access through your institution

通过您的机构访问

Change institution

变革机构

Buy or subscribe

购买或订阅

Access Nature and 54 other Nature Portfolio journals

Access Nature和54种其他Nature投资组合期刊

Get Nature+, our best-value online-access subscription

获取Nature+,我们最具价值的在线访问订阅

24,99 €

24,99 €

/ 30 days

/30天

cancel any time

随时取消

Learn more

了解更多信息

Subscribe to this journal

订阅此日记

Receive 12 digital issues and online access to articles

接收12期数字期刊并在线访问文章

111,21 € per year

每年111,21欧元

only 9,27 € per issue

每期仅9.27欧元

Learn more

了解更多信息

Buy this article

购买这篇文章

Purchase on SpringerLink

在SpringerLink上购买

Instant access to full article PDF

即时访问全文PDF

Buy now

立即购买

Prices may be subject to local taxes which are calculated during checkout

价格可能需要缴纳结帐时计算的地方税

Additional access options:

其他访问选项:

Log in

登录

Learn about institutional subscriptions

了解机构订阅

Read our FAQs

阅读我们的常见问题

Contact customer support

联系客户支持

Fig. 1:

图1:

Streptomyces

链霉菌

sp. produces metabolite that promotes SPO1 phage predation of

sp.产生促进SPO1噬菌体捕食的代谢物

B. subtilis.

B、 枯草杆菌。

Fig. 2: Coelichelin promotes phage predation by sequestering iron.

图2:Coelichelin通过螯合铁促进噬菌体捕食。

Fig. 3: Iron sequestration inhibits Spo0A activation in

图3:铁螯合抑制Spo0A活化

B. subtilis.

B、 枯草杆菌。

Fig. 4: Phage-promoting metabolites help producers to outcompete

图4:噬菌体促进代谢物帮助生产者超越竞争

B. subtilis.

B、 枯草杆菌。

Data availability

数据可用性

The genome sequence of strain I8-5 is available on NCBI (accession number

菌株I8-5的基因组序列可在NCBI(登录号)上获得

JAYMFC000000000

JAYMFC000000

). The 16S sequences of the other plaque-enlarging bacteria are available on NCBI (I8-5: GenBank

)。其他斑块扩大细菌的16S序列可在NCBI(I8-5:GenBank)上获得

OR902106

OR902106

; Am9: GenBank

;Am9:GenBank

PQ178887

PQ178887

; Am23: GenBank

;Am23:GenBank

PQ178944

PQ178944

; Am62: GenBank

;Am62:GenBank

PQ178965

PQ178965

; R1B3: GenBank

;R1B3:GenBank

PQ178995

PQ178995

; I8-24: GenBank

;I8-24:GenBank

PQ179041

PQ179041

). Source data for plaque measurements are available on figshare at

)。斑块测量的源数据可在figshare上获得

https://doi.org/10.6084/m9.figshare.27269481

https://doi.org/10.6084/m9.figshare.27269481

(ref.

(参考。

68

68

). Any further requests for data should be addressed to the corresponding author (jpgerdt@iu.edu).

)。任何进一步的数据请求都应联系通讯作者(jpgerdt@iu.edu)。

References

参考文献

Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle.

Hibbing,M.E.,Fuqua,C.,Parsek,M.R。和Peterson,S.B。细菌竞争:在微生物丛林中生存和繁荣。

Nat. Rev. Microbiol.

自然修订版微生物学。

8

8

, 15–25 (2010).

, 15–25 (2010).

Article

文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ghoul, M. & Mitri, S. The ecology and evolution of microbial competition.

Ghoul,M。&Mitri,S。微生物竞争的生态学和进化。

Trends Microbiol.

趋势微生物。

24

24

, 833–845 (2016).

, 833–845 (2016).

Article

文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Westhoff, S., Kloosterman, A. M., Hoesel, S. F. A. V., Wezel, G. P. V. & Rozen, D. E. Competition sensing changes antibiotic production in

Westhoff,S.,Kloosterman,A.M.,Hoesel,S.F.A.V.,Wezel,G.P.V。和Rozen,D.E。竞争感应改变了抗生素的生产

Streptomyces

链霉菌

.

.

mBio

mBio

12

12

, e02729-20 (2021).

,e02729-20(2021)。

Article

文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Valle, J. et al. Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide.

Valle,J.等人。分泌型细菌多糖对广谱生物膜的抑制作用。

Proc. Natl Acad. Sci. USA

Proc。国家科学院。滑雪。美国

103

103

, 12558–12563 (2006).

, 12558–12563 (2006).

Article

文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kramer, J., Özkaya, Ö. & Kümmerli, R. Bacterial siderophores in community and host interactions.

克莱默,J.,Özkaya,Ö和Kümmerli,R。社区和宿主相互作用中的细菌铁载体。

Nat. Rev. Microbiol.

自然修订版微生物学。

18

18

, 152–163 (2020).

, 152–163 (2020).

Article

文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Suttle, C. A. The significance of viruses to mortality in aquatic microbial communities.

Suttle,C.A。病毒对水生微生物群落死亡率的重要性。

Microb. Ecol.

微生物。生态。

28

28

, 237–243 (1994).

, 237–243 (1994).

Article

文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Koskella, B. & Meaden, S. Understanding bacteriophage specificity in natural microbial communities.

Koskella,B。&Meaden,S。了解天然微生物群落中噬菌体的特异性。

Viruses

病毒

5

5

, 806–823 (2013).

, 806–823 (2013).

Article

文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hampton, H. G., Watson, B. N. J. & Fineran, P. C. The arms race between bacteria and their phage foes.

汉普顿(Hampton,H.G.),沃森(Watson,B.N.J.)和菲兰(Fineran,P.C.)。细菌与其噬菌体敌人之间的军备竞赛。

Nature

自然

577

577

, 327–336 (2020).

, 327–336 (2020).

Article

文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Otsuji, N., Sekiguchi, M., Iijima, T. & Takagi, Y. Induction of phage formation in the lysogenic

Otsuji,N.,Sekiguchi,M.,Iijima,T。和Takagi,Y。诱导溶原性噬菌体形成

Escherichia coli

大肠杆菌

K-12 by mitomycin C.

丝裂霉素C的K-12。

Nature

自然

184

184

, 1079–1080 (1959).

, 1079–1080 (1959).

Article

文章

CAS

中科院

Google Scholar

谷歌学者

Jancheva, M. & Böttcher, T. A metabolite of

Jancheva,M。和Böttcher,T。的代谢产物

Pseudomonas

假单胞菌

triggers prophage-selective lysogenic to lytic conversion in

触发前噬菌体选择性溶原性转化为裂解性转化

Staphylococcus aureus

金黄色葡萄球菌

.

.

J. Am. Chem. Soc.

美国化学杂志。震惊。

143

143

, 8344–8351 (2021).

, 8344–8351 (2021).

Article

文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Silpe, J. E., Wong, J. W. H., Owen, S. V., Baym, M. & Balskus, E. P. The bacterial toxin colibactin triggers prophage induction.

Silpe,J.E.,Wong,J.W.H.,Owen,S.V.,Baym,M。&Balskus,E.P。细菌毒素colibactin触发前噬菌体诱导。

Nature

自然

603

603

, 315–320 (2022).

, 315–320 (2022).

Article

文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hardy, A., Kever, L. & Frunzke, J. Antiphage small molecules produced by bacteria – beyond protein-mediated defenses.

Hardy,A.,Kever,L。&Frunzke,J。细菌产生的抗噬菌体小分子-超越蛋白质介导的防御。

Trends Microbiol.

趋势微生物。

31

31

, 92–106 (2023).

, 92–106 (2023).

Article

文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lautru, S., Deeth, R. J., Bailey, L. M. & Challis, G. L. Discovery of a new peptide natural product by

Lautru,S.,Deeth,R.J.,Bailey,L.M。和Challis,G.L。发现一种新的肽天然产物

Streptomyces coelicolor

天蓝色链霉菌

genome mining.

基因组挖掘。

Nat. Chem. Biol.

Nat,化学。生物。

1

1

, 265–269 (2005).

, 265–269 (2005).

Article

文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Williams, J. C. et al. Synthesis of the siderophore coelichelin and its utility as a probe in the study of bacterial metal sensing and response.

Williams,J.C.等人。铁载体coelichelin的合成及其作为探针在细菌金属传感和响应研究中的应用。

Org. Lett.

组织,简单。

21

21

, 679–682 (2019).

, 679–682 (2019).

Article

文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Challis, G. L. & Ravel, J. Coelichelin, a new peptide siderophore encoded by the

Challis,G.L。和Ravel,J.Coelichelin,一种由

Streptomyces coelicolor

天蓝色链霉菌

genome: structure prediction from the sequence of its non-ribosomal peptide synthetase.

基因组:从其非核糖体肽合成酶的序列预测结构。

FEMS Microbiol. Lett.

FEMS微生物学。容易的。

187

187

, 111–114 (2000).

, 111–114 (2000).

Article

文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hider, R. C. & Kong, X. Chemistry and biology of siderophores.

Hider,R.C。和Kong,X。铁载体的化学和生物学。

Nat. Prod. Rep.

国家生产代表。

27

27

, 637–657 (2010).

, 637–657 (2010).

Article

文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

May, J. J., Wendrich, T. M. & Marahiel, M. A. The dhb operon of

May,J.J.,Wendrich,T.M。和Marahiel,M.A。的dhb操纵子

Bacillus subtilis

枯草芽孢杆菌

encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin.

编码儿茶酚铁载体2,3-二羟基苯甲酸-甘氨酸-苏氨酸三聚酯杆菌素的生物合成模板。

J. Biol. Chem.

J.生物学。化学。

276

276

, 7209–7217 (2001).

, 7209–7217 (2001).

Article

文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Schneider, R. & Hantke, K. Iron-hydroxamate uptake systems in

Schneider,R。和Hantke,K。异羟肟酸铁吸收系统

Bacillus subtilis

枯草芽孢杆菌

: identification of a lipoprotein as part of a binding protein-dependent transport system.

:鉴定脂蛋白作为结合蛋白依赖性转运系统的一部分。

Mol. Microbiol.

分子微生物。

8

8

, 111–121 (1993).

, 111–121 (1993).

Article

文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Abergel, R. J., Zawadzka, A. M., Hoette, T. M. & Raymond, K. N. Enzymatic hydrolysis of trilactone siderophores: where chiral recognition occurs in enterobactin and bacillibactin iron transport.

Abergel,R.J.,Zawadzka,A.M.,Hoette,T.M。&Raymond,K.N。三内酯铁载体的酶水解:在肠杆菌素和杆菌素铁转运中发生手性识别。

J. Am. Chem. Soc.

美国化学杂志。震惊。

131

131

, 12682–12692 (2009).

, 12682–12692 (2009).

Article

文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dertz, E. A., Xu, J., Stintzi, A. & Raymond, K. N. Bacillibactin-mediated iron transport in

Dertz,E.A.,Xu,J.,Stintzi,A。和Raymond,K.N。杆菌素介导的铁转运

Bacillus subtilis

枯草芽孢杆菌

.

.

J. Am. Chem. Soc.

美国化学杂志。震惊。

128

128

, 22–23 (2006).

, 22–23 (2006).

Article

文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ollinger, J., Song, K.-B., Antelmann, H., Hecker, M. & Helmann, J. D. Role of the fur regulon in iron transport in

Ollinger,J.,Song,K.-B.,Antelmann,H.,Hecker,M。&Helmann,J.D。毛皮调节子在铁运输中的作用

Bacillus subtilis

枯草芽孢杆菌

.

.

J. Bacteriol.

J.细菌醇。

188

188

, 3664–3673 (2006).

, 3664–3673 (2006).

Article

文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gallet, R., Kannoly, S. & Wang, I.-N. Effects of bacteriophage traits on plaque formation.

Gallet,R.,Kannoly,S。&Wang,I.-N。噬菌体性状对斑块形成的影响。

BMC Microbiol.

BMC微生物。

11

11

, 181 (2011).

, 181 (2011).

Article

文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zang, Z., Park, K. J. & Gerdt, J. P. A metabolite produced by gut microbes represses phage infections in

Zang,Z.,Park,K.J。和Gerdt,J.P。肠道微生物产生的代谢物抑制噬菌体感染

Vibrio cholerae

霍乱弧菌

.

.

ACS Chem. Biol.

ACS化学。生物。

17

17

, 2396–2403 (2022).

, 2396–2403 (2022).

Article

文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bokinsky, G. et al. HipA-triggered growth arrest and beta-lactam tolerance in

Bokinsky,G。等人。HipA引发生长停滞和β-内酰胺耐受

Escherichia coli

大肠杆菌

are mediated by RelA-dependent ppGpp synthesis.

由RelA依赖性ppGpp合成介导。

J. Bacteriol.

J.细菌醇。

195

195

, 3173–3182 (2013).

, 3173–3182 (2013).

Article

文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Woody, M. A. & Cliver, D. O. Effects of temperature and host cell growth phase on replication of F-specific RNA coliphage Q beta.

Woody,M.A。&Cliver,D.O。温度和宿主细胞生长阶段对F特异性RNA噬菌体Qβ复制的影响。

Appl. Environ. Microbiol.

苹果。大约。微生物。

61

61

, 1520–1526 (1995).

, 1520–1526 (1995).

Article

文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bryan, D., El-Shibiny, A., Hobbs, Z., Porter, J. & Kutter, E. M. Bacteriophage T4 infection of stationary phase

Bryan,D.,El Shibiny,A.,Hobbs,Z.,Porter,J。&Kutter,E.M。固定相噬菌体T4感染

E. coli

E、 大肠杆菌

: life after log from a phage perspective.

:从噬菌体的角度来看,日志后的生活。

Front. Microbiol.

正面。微生物。

7

7

, 1391 (2016).

, 1391 (2016).

Article

文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Los, M. et al. Effective inhibition of lytic development of bacteriophages lambda, P1 and T4 by starvation of their host,

Los,M.等人,通过饥饿宿主有效抑制噬菌体λ,P1和T4的裂解发育,

Escherichia coli

大肠杆菌

.

.

BMC Biotechnol.

BMC生物技术公司。

7

7

, 13 (2007).

, 13 (2007).

Article

文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rittershaus, E. S. C., Baek, S.-H. & Sassetti, C. M. The normalcy of dormancy: common themes in microbial quiescence.

Rittershaus,E.S.C.,Baek,S.-H。和Sassetti,C.M。休眠的正常性:微生物静止的共同主题。

Cell Host Microbe

宿主与微生物

13

13

, 643–651 (2013).

, 643–651 (2013).

Article

文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Phillips, Z. E. & Strauch, M. A.

菲利普斯,Z.E.和斯特劳奇,M.A。

Bacillus subtilis

枯草芽孢杆菌

sporulation and stationary phase gene expression.

孢子形成和固定相基因表达。

Cell. Mol. Life Sci.

细胞。分子生命科学。

59

59

, 392–402 (2002).

, 392–402 (2002).

Article

文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ireton, K., Rudner, D. Z., Siranosian, K. J. & Grossman, A. D. Integration of multiple developmental signals in

Ireton,K.,Rudner,D.Z.,Siranosian,K.J。和Grossman,A.D。整合多种发育信号

Bacillus subtilis

枯草芽孢杆菌

through the Spo0A transcription factor.

通过Spo0A转录因子。

Genes Dev.

基因开发。

7

7

, 283–294 (1993).

, 283–294 (1993).

Article

文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Grandchamp, G. M., Caro, L. & Shank, E. A. Pirated siderophores promote sporulation in

Grandchamp,G.M.,Caro,L。和Shank,E.A。盗版铁载体促进孢子形成

Bacillus subtilis

枯草芽孢杆菌

.

.

Appl. Environ. Microbiol.

苹果。大约。微生物。

83

83

, e03293–03216 (2017).

,e03293–03216(2017)。

Article

文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Qin, Y. et al. Heterogeneity in respiratory electron transfer and adaptive iron utilization in a bacterial biofilm.

秦,Y。等。细菌生物膜中呼吸电子转移和适应性铁利用的异质性。

Nat. Commun.

Nat.普通。

10

10

, 3702 (2019).

, 3702 (2019).

Article

文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Molle, V. et al. The Spo0A regulon of

Molle,V.等人

Bacillus subtilis

枯草芽孢杆菌

.

.

Mol. Microbiol.

分子微生物。

50

50

, 1683–1701 (2003).

, 1683–1701 (2003).

Article

文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhu, M. et al. A fitness trade-off between growth and survival governed by Spo0A-mediated proteome allocation constraints in

Zhu,M.等人。由Spo0A介导的蛋白质组分配约束控制的生长和存活之间的适应性权衡

Bacillus subtilis

枯草芽孢杆菌

.

.

Sci. Adv.

科学。高级。

9

9

, eadg9733 (2023).

或9733(2023)。

Article

文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hoch, J. A. Regulation of the phosphorelay and the initiation of sporulation in

Hoch,J.A。调节磷酸化和孢子形成的起始

Bacillus subtilis

枯草芽孢杆菌

.

.

Annu. Rev. Microbiol.

年。微生物学评论。

47

47

, 441–465 (1993).

, 441–465 (1993).

Article

文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Măgălie, A. et al. Phage infection fronts trigger early sporulation and collective defense in bacterial populations. Preprint at

Măgălie,A。等人。噬菌体感染前沿触发细菌群体的早期孢子形成和集体防御。预印于

bioRxiv

bioRxiv

https://doi.org/10.1101/2024.05.22.595388

https://doi.org/10.1101/2024.05.22.595388

(2024).

(2024).

Schwartz, D. A., Lehmkuhl, B. K. & Lennon, J. T. Phage-encoded sigma factors alter bacterial dormancy.

Schwartz,D.A.,Lehmkuhl,B.K。&Lennon,J.T。噬菌体编码的σ因子改变细菌休眠。

mSphere

mSphere

7

7

, e00297-22 (2022).

,e00297-22(2022)。

Article

文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tan, I. S. & Ramamurthi, K. S. Spore formation in

Tan,I.S。和Ramamurthi,K.S。孢子形成

Bacillus subtilis

枯草芽孢杆菌

.

.

Environ. Microbiol. Rep.

大约。微生物。代表。

6

6

, 212–225 (2014).

, 212–225 (2014).

Article

文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pires, D. P., Melo, L. D. R. & Azeredo, J. Understanding the complex phage–host interactions in biofilm communities.

Pires,D.P.,Melo,L.D.R。&Azeredo,J。了解生物膜群落中复杂的噬菌体-宿主相互作用。

Annu. Rev. Virol.

年。维拉尔牧师。

8

8

, 73–94 (2021).

, 73–94 (2021).

Article

文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Banse, A. V., Chastanet, A., Rahn-Lee, L., Hobbs, E. C. & Losick, R. Parallel pathways of repression and antirepression governing the transition to stationary phase in

Banse,A.V.,Chastanet,A.,Rahn Lee,L.,Hobbs,E.C。和Losick,R。抑制和抗抑制的平行途径控制着向稳定期的过渡

Bacillus subtilis

枯草芽孢杆菌

.

.

Proc. Natl Acad. Sci. USA

Proc。国家科学院。滑雪。美国

105

105

, 15547–15552 (2008).

, 15547–15552 (2008).

Article

文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

McLoon, A. L., Guttenplan, S. B., Kearns, D. B., Kolter, R. & Losick, R. Tracing the domestication of a biofilm-forming bacterium.

McLoon,A.L.,Guttenplan,S.B.,Kearns,D.B.,Kolter,R。&Losick,R。追踪生物膜形成细菌的驯化。

J. Bacteriol.

J.细菌醇。

193

193

, 2027–2034 (2011).

, 2027–2034 (2011).

Article

文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

van Sinderen, D. et al. comK encodes the competence transcription factor, the key regulatory protein for competence development in

van Sinderen,D。等人,comK编码能力转录因子,这是能力发展的关键调节蛋白

Bacillus subtilis

枯草芽孢杆菌

.

.

Mol. Microbiol.

分子微生物。

15

15

, 455–462 (1995).

, 455–462 (1995).

Article

文章

PubMed

PubMed

Google Scholar

谷歌学者

González-Pastor, J. E., Hobbs, E. C. & Losick, R. Cannibalism by sporulating bacteria.

González Pastor,J.E.,Hobbs,E.C。和Losick,R。通过孢子形成细菌进行食人。

Science

科学

301

301

, 510–513 (2003).

, 510–513 (2003).

Article

文章

PubMed

PubMed

Google Scholar

谷歌学者

Ellermeier, C. D., Hobbs, E. C., Gonzalez-Pastor, J. E. & Losick, R. A three-protein signaling pathway governing immunity to a bacterial cannibalism toxin.

Ellermeier,C.D.,Hobbs,E.C.,Gonzalez-Pastor,J.E。&Losick,R。一种控制细菌自相残杀毒素免疫力的三蛋白信号通路。

Cell

细胞

124

124

, 549–559 (2006).

, 549–559 (2006).

Article

文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Straight, P. D., Willey, J. M. & Kolter, R. Interactions between

Straight,P.D.,Willey,J.M。和Kolter,R。之间的相互作用

Streptomyces coelicolor

天蓝色链霉菌

and

Bacillus subtilis

枯草芽孢杆菌

: role of surfactants in raising aerial structures.

:表面活性剂在提高空中结构中的作用。

J. Bacteriol.

J.细菌醇。

188

188

, 4918–4925 (2006).

, 4918–4925 (2006).

Article

文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hemphill, H. E. & Whiteley, H. R. Bacteriophages of

Hemphill,H.E。和Whiteley,H.R。噬菌体

Bacillus subtilis

枯草芽孢杆菌

.

.

Bacteriol. Rev.

细菌醇。Rev。

39

39

, 257–315 (1975).

, 257–315 (1975).

Article

文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Willms, I. M., Hoppert, M. & Hertel, R. Characterization of

Willms,I.M.,Hoppert,M。和Hertel,R。角色塑造

Bacillus subtilis

枯草芽孢杆菌

viruses vB_BsuM-Goe2 and vB_BsuM-Goe3.

病毒vB\u BsuM-Goe2和vB\u BsuM-Goe3。

Viruses

病毒

9

9

, 146 (2017).

, 146 (2017).

Article

文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, C. G. et al. Phage–antibiotic synergy is driven by a unique combination of antibacterial mechanism of action and stoichiometry.

Liu,C.G.等人。噬菌体-抗生素协同作用是由抗菌作用机制和化学计量的独特组合驱动的。

mBio

mBio

11

11

, e01462-20 (2020).

,e01462-20(2020)。

CAS

中科院

Google Scholar

谷歌学者

Niehus, R., Picot, A., Oliveira, N. M., Mitri, S. & Foster, K. R. The evolution of siderophore production as a competitive trait.

Niehus,R.,Picot,A.,Oliveira,N.M.,Mitri,S。&Foster,K.R。铁载体生产作为竞争特征的演变。

Evolution

进化

71

71

, 1443–1455 (2017).

, 1443–1455 (2017).

Article

文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Henriques, A. O. & Moran, C. P. Jr Structure, assembly, and function of the spore surface layers.

Henriques,A.O.&Moran,C.P.Jr孢子表层的结构,组装和功能。

Annu. Rev. Microbiol.

年。微生物学评论。

61

61

, 555–588 (2007).

, 555–588 (2007).

Article

文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J. & Setlow, P. Resistance of

尼科尔森(Nicholson,W.L.),穆纳卡塔(Munakata),霍内克(Horneck),梅洛什(Melosh),H.J。和塞特洛(Setlow),P。抵抗

Bacillus

芽孢杆菌

endospores to extreme terrestrial and extraterrestrial environments.

内生孢子到极端的地球和地外环境。

Microbiol. Mol. Biol. Rev.

微生物。分子生物学。Rev。

64

64

, 548–572 (2000).

, 548–572 (2000).

Article

文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy.

Lennon,J.T.&Jones,S.E.微生物种子库:休眠的生态和进化意义。

Nat. Rev. Microbiol.

自然修订版微生物学。

9

9

, 119–130 (2011).

, 119–130 (2011).

Article

文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Khanna, K., Lopez-Garrido, J. & Pogliano, K. Shaping an endospore: architectural transformations during

Khanna,K.,Lopez-Garrido,J。和Pogliano,K。塑造内孢子:期间的建筑转变

Bacillus subtilis

枯草芽孢杆菌

sporulation.

孢子形成。

Annu. Rev. Microbiol.

年。微生物学评论。

74

74

, 361–386 (2020).

, 361–386 (2020).

Article

文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schwartz, D. A. et al. Human-gut phages harbor sporulation genes.

Schwartz,D.A。等人。人类肠道噬菌体含有孢子形成基因。

mBio

mBio

14

14

, e0018223 (2023).

,e0018223(2023)。

Article

文章

PubMed

PubMed

Google Scholar

谷歌学者

Xiong, Q. et al. Autoinducer-2 relieves soil stress-induced dormancy of

Xiong,Q。等人。Autoinducer-2缓解土壤胁迫诱导的休眠

Bacillus velezensis

韦氏杆菌病

by modulating sporulation signaling.

通过调节孢子形成信号传导。

npj Biofilms Microbiomes

npj生物膜微生物组

10

10

, 117 (2024).

, 117 (2024).

Article

文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Aldape, M. J. et al. Fidaxomicin reduces early toxin A and B production and sporulation in

Aldape,M.J。等人。非达霉素可减少早期毒素A和B的产生以及孢子形成

Clostridium difficile

艰难梭菌

in vitro.

体外。

J. Med. Microbiol.

医学微生物学杂志。

66

66

, 1393–1399 (2017).

, 1393–1399 (2017).

Article

文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Golonka, R., Yeoh, Beng, S. & Vijay-Kumar, M. The iron tug-of-war between bacterial siderophores and innate immunity.

Golonka,R.,Yeoh,Beng,S。&Vijay Kumar,M。细菌铁载体与先天免疫之间的铁拔河。

J. Innate Immun.

J.先天免疫。

11

11

, 249–262 (2019).

, 249–262 (2019).

Article

文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis.

Schindelin,J。等人。斐济:生物图像分析的开源平台。

Nat. Methods

自然方法

9

9

, 676–682 (2012).

, 676–682 (2012).

Article

文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data.

Bolger,A.M.,Lohse,M。和Usadel,B。Trimmomatic:用于Illumina序列数据的柔性修剪器。

Bioinformatics

生物信息学

30

30

, 2114–2120 (2014).

, 2114–2120 (2014).

Article

文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A. & Korobeynikov, A. Using SPAdes De Novo Assembler.

Prjibelski,A.、Antipov,D.、Meleshko,D.、Lapidus,A.和Korobeynikov,A.使用SPAdes De Novo汇编程序。

Curr. Protoc. Bioinform.

货币。普罗托克。生物信息。

70

70

, e102 (2020).

,e102(2020)。

Article

文章

CAS

中科院

Google Scholar

谷歌学者

Seemann, T. Prokka: rapid prokaryotic genome annotation.

Seemann,T。Prokka:快速原核基因组注释。

Bioinformatics

生物信息学

30

30

, 2068–2069 (2014).

, 2068–2069 (2014).

Article

文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Blin, K. et al. AntiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation.

Blin,K.等人,《AntiSMASH 7.0:检测、调节、化学结构和可视化的新预测和改进预测》。

Nucleic Acids Res.

核酸研究。

51

51

, W46–W50 (2023).

,W46–W50(2023年)。

Article

文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mazzocco, A., Waddell, T. E., Lingohr, E. & Johnson, R. P. in

Mazzocco,A.,Waddell,T.E.,Lingohr,E.&Johnson,R.P

Bacteriophages: Methods and Protocols Volume 1: Isolation, Characterization, and Interactions

噬菌体:方法和方案第1卷:分离,表征和相互作用

(eds Clokie, M. & Kropinski, A.) 81−85 (Humana Press, 2009).

(编辑Clokie,M.和Kropinski,A.)81-85(Humana Press,2009)。

Siala, A., Hill, I. R. & Gray, T. R. G. Populations of spore-forming bacteria in an acid forest soil, with special reference to

Siala,A.,Hill,I.R。&Gray,T.R.G。酸性森林土壤中孢子形成细菌的种群,特别是

Bacillus subtilis

枯草芽孢杆菌

.

.

Microbiology

微生物学

81

81

, 183–190 (1974).

, 183–190 (1974).

Article

文章

Google Scholar

谷歌学者

Yasbin, R. E. & Young, F. E. Transduction in

Yasbin,R.E。和Young,F.E。转导

Bacillus subtilis

枯草芽孢杆菌

by bacteriophage SPP1.

通过噬菌体SPP1。

J. Virol.

J.Virol。

14

14

, 1343–1348 (1974).

, 1343–1348 (1974).

Article

文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Konkol, M. A., Blair, K. M. & Kearns, D. B. Plasmid-encoded ComI inhibits competence in the ancestral 3610 strain of

Konkol,M.A.,Blair,K.M。和Kearns,D.B。质粒编码的ComI抑制祖先3610株的能力

Bacillus subtilis

枯草芽孢杆菌

.

.

J. Bacteriol.

J.细菌醇。

195

195

, 4085–4093 (2013).

, 4085–4093 (2013).

Article

文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Koo, B.-M. et al. Construction and analysis of two genome-scale deletion libraries for

Koo,B.-M.等人。两个基因组规模缺失文库的构建和分析

Bacillus subtilis

枯草芽孢杆菌

.

.

Cell Syst.

细胞系统。

4

4

, 291–305.e297 (2017).

,291–305.e297(2017)。

Article

文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zang, Z. et al.

Zang,Z。等人。

Streptomyces

链霉菌

secretes a siderophore that sensitizes competitor bacteria to phage infection.

分泌铁载体,使竞争细菌对噬菌体感染敏感。

figshare

figshare

https://doi.org/10.6084/m9.figshare.27269481

https://doi.org/10.6084/m9.figshare.27269481

(2024).

(2024).

Download references

下载参考资料

Acknowledgements

致谢

We thank A. Măgălie (Georgia Institute of Technology) and J. Weitz (University of Maryland) for helpful discussions; the Bacillus Genomic Stock Center (Ohio State University), the Félix d’Hérelle Reference Center for Bacterial Viruses (University of Laval), R. Hertel (University of Goettingen) and D.

我们感谢A.Măgălie(乔治亚理工学院)和J.Weitz(马里兰大学)的有益讨论;芽孢杆菌基因组库存中心(俄亥俄州立大学),Félix d'Hérelle细菌病毒参考中心(拉瓦尔大学),R.Hertel(戈廷根大学)和d。

Rudner (Harvard Medical School) for providing bacteria and phages; and E. M. Nolan (Massachusetts Institute of Technology) for providing enterobactin. The research was supported by a research starter grant from the American Society of Pharmacognosy to J.P.G. and a National Science Foundation CAREER award (IOS-2143636) to J.P.G.

Rudner(哈佛医学院)提供细菌和噬菌体;和E.M.Nolan(麻省理工学院)提供肠杆菌素。这项研究得到了美国生药学学会授予J.P.G.的研究启动资金和J.P.G.的国家科学基金会职业奖(IOS-2143636)的支持。

Research support was also provided by the National Science Foundation (DEB-1934554 to J.T.L. and D.A.S.; DBI-2022049 to J.T.L.), the US Army Research Office (W911NF-22-1-0014 and W911NF-22-S-0008 to J.T.L.) and the National Aeronautics and Space Administration (80NSSC20K0618 to J.T.L.). Z.Z. was supported in part by the John R.

美国国家科学基金会(J.T.L.和D.A.S.的DEB-1934554;J.T.L.的DBI-2022049),美国陆军研究办公室(J.T.L.的W911NF-22-1-0014和W911NF-22-S-0008)和美国国家航空航天局(J.T.L.的80NSSC20K0618)也提供了研究支持。Z、 Z.得到了约翰·R的部分支持。

and Wendy L. Kindig Fellowship. K.J.P. and the Laboratory for Biological Mass Spectrometry were supported by the Indiana University Precision Health Initiative. The 500 MHz NMR and 600 MHz spectrometer of the Indiana University NMR facility were supported by NSF grant CHE-1920026, and the Prodigy probe was purchased in part with support from the Indiana Clinical and Translational Sciences Institute, funded in part by NIH Award TL1TR002531..

和Wendy L.Kindig奖学金。K、 J.P.和生物质谱实验室得到了印第安纳大学精准健康计划的支持。印第安纳大学NMR设施的500 MHz NMR和600 MHz光谱仪得到了NSF拨款CHE-1920026的支持,Prodigy探针部分是在印第安纳临床和转化科学研究所的支持下购买的,部分由NIH奖TL1TR002531资助。。

Author information

作者信息

Authors and Affiliations

作者和隶属关系

Department of Chemistry, Indiana University, Bloomington, IN, USA

印第安纳大学化学系,美国印第安纳州布卢明顿

Zhiyu Zang, Chengqian Zhang, Kyoung Jin Park & Joseph P. Gerdt

Zhiyu Zang,Chengqian Zhang,Kyung Jin Park和Joseph P.Gerdt

Department of Biology, Indiana University, Bloomington, IN, USA

印第安纳大学生物系,美国印第安纳州布卢明顿

Daniel A. Schwartz & Jay T. Lennon

Daniel A.Schwartz和Jay T.Lennon

Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA

印第安纳大学基因组学和生物信息学中心,美国印第安纳州布卢明顿

Ram Podicheti

播客框架

Authors

作者

Zhiyu Zang

臧志宇

View author publications

查看作者出版物

You can also search for this author in

您也可以在中搜索此作者

PubMed

PubMed

Google Scholar

谷歌学者

Chengqian Zhang

张承乾(音)

View author publications

查看作者出版物

You can also search for this author in

您也可以在中搜索此作者

PubMed

PubMed

Google Scholar

谷歌学者

Kyoung Jin Park

京津公园

View author publications

查看作者出版物

You can also search for this author in

您也可以在中搜索此作者

PubMed

PubMed

Google Scholar

谷歌学者

Daniel A. Schwartz

丹尼尔·A·施瓦茨

View author publications

查看作者出版物

You can also search for this author in

您也可以在中搜索此作者

PubMed

PubMed

Google Scholar

谷歌学者

Ram Podicheti

播客框架

View author publications

查看作者出版物

You can also search for this author in

您也可以在中搜索此作者

PubMed

PubMed

Google Scholar

谷歌学者

Jay T. Lennon

周·T·列侬

View author publications

查看作者出版物

You can also search for this author in

您也可以在中搜索此作者

PubMed

PubMed

Google Scholar

谷歌学者

Joseph P. Gerdt

约瑟夫·P·格特

View author publications

查看作者出版物

You can also search for this author in

您也可以在中搜索此作者

PubMed

PubMed

Google Scholar

谷歌学者

Contributions

捐款

Z.Z. and J.P.G. conceptualized the project. Z.Z., D.A.S. and J.P.G. developed the methodology. Z.Z., C.Z., K.J.P. and R.P. conducted investigations. Z.Z. and J.P.G. wrote the original draft of the paper. Z.Z., C.Z., D.A.S., J.T.L. and J.P.G. reviewed and edited the paper. Z.Z. and J.P.G. performed visualization.

Z、 Z.和J.P.G.对该项目进行了概念化。Z、 Z.,D.A.S.和J.P.G.开发了该方法。Z、 Z.,C.Z.,K.J.P.和R.P.进行了调查。Z、 Z.和J.P.G.撰写了论文的初稿。Z、 Z.,C.Z.,D.A.S.,J.T.L.和J.P.G.审查并编辑了这篇论文。Z、 Z.和J.P.G.进行了可视化。

J.T.L. and J.P.G. supervised the project. J.T.L. and J.P.G. acquired funding..

J、 T.L.和J.P.G.监督了该项目。J、 T.L.和J.P.G.获得了资金。。

Corresponding author

通讯作者

Correspondence to

通信对象

Joseph P. Gerdt

约瑟夫·P·格特

.

.

Ethics declarations

道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Microbiology

自然微生物学

thanks Anna Dragos, Justin Nodwell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

感谢安娜·德拉戈斯(AnnaDragos)、贾斯汀·诺德威尔(JustinNodwell)和另一位匿名审稿人(s)为这项工作的同行评审做出的贡献。

Peer reviewer reports

同行评审报告

are available.

可用。

Additional information

其他信息

Publisher’s note

出版商注释

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。

Extended data

扩展数据

Extended Data Fig. 1 Coelichelin is the active metabolite that promotes phage predation.

扩展数据图1 Coelichelin是促进噬菌体捕食的活性代谢物。

(

(

a

) Scheme of the binary-interaction screen. (

)二进制交互屏幕的方案。(笑声)(

b

b类

) Negative mode electrospray ionization MS spectra of active fraction 1 (left) and active fraction 2 (right). The shared peaks are highlighted red. (

)活性部分1(左)和活性部分2(右)的负模式电喷雾电离MS光谱。共享的峰值以红色突出显示(

c

c级

) MS/MS spectrum of the

)MS/MS光谱

m/z

米/z

566.2783 species. Key fragments are annotated with their associated peak, and their losses are highlighted in red. (

566.2783种。关键片段用其相关峰注释,其损失用红色突出显示(

d

d

) MS/MS spectrum of the

)MS/MS光谱

m/z

米/z

619.1885 species. Key fragments are annotated with their associated peak, and their losses are highlighted in red. (

619.1885种。关键片段用其相关峰注释,其损失用红色突出显示(

e

e

) Comparison of the

)比较

Streptomyces

链霉菌

sp. I8-5 coelichelin biosynthetic gene cluster with the reported one from

I8-5 coelichelin生物合成基因簇与报道的来自

S. coelicolor

S.黄色

A3(2). The percent identity between each pair of genes is shown with shading (all were >75%). The modules of the coelichelin non-ribosomal peptide synthetase are shown in the lower region of the panel. The three modules are responsible for installation of

A3(2)。每对基因之间的同一性百分比用阴影显示(均>75%)。coelichelin非核糖体肽合成酶的模块显示在面板的下部区域。这三个模块负责安装

d

d

-δ-

d

N

N

-formyl-δ-

-甲酰基-d-

N

N

-hydroxyornithine (

-羟基鸟氨酸

d

d

-hfOrn),

-hfOrn),

d

d

-allo-threonine (

-阿洛苏氨酸(

d

d

-allo-Thr), and

-allo-Thr),以及

l

l

-δ-

d

N

N

-hydroxyornithine (

-羟基鸟氨酸

l

l

-hOrn), respectively. The adenylation domains (A), thiolation and peptide carrier proteins (CP), condensation domains (C), and epimerization domains (E) are shown.

-喇叭),分别。显示了腺苷酸化结构域(A),硫醇化和肽载体蛋白(CP),缩合结构域(C)和差向异构化结构域(E)。

Extended Data Fig. 2 Coelichelin isolation from I8-5 supernatant.

扩展数据图2从I8-5上清液中分离出Coelichelin。

(

(

a

) Isolation scheme. (

)隔离方案。(笑声)(

b

b类

) UV chromatogram at 210 nm. Water was used as the blank. (

)210 nm处的紫外色谱图。水被用作空白。(笑声)(

c

c级

) The averaged MS spectrum at positive mode between retention time 13.5 ~ 14.8 min. (

)在保留时间13.5〜14.8分钟之间的正模式下的平均MS光谱(

d

d

) The averaged MS spectrum at negative mode between retention time 13.5 ~ 14.8 min. M represents coelichelin.

)在保留时间13.5〜14.8 min.M之间的负模式下的平均MS光谱代表coelichelin。

Extended Data Fig. 3 Multiple pathways regulated by Spo0A are important for the plaque enlargement phenotype caused by iron sequestration.

扩展数据图3由Spo0A调节的多种途径对于由铁螯合引起的斑块增大表型很重要。

(

(

a

) Pathways regulated by Spo0A. (

)由Spo0A调节的途径。(笑声)(

b

b类

) The x-axis shows the plaque size ratio between mutant and wild type (WT) under iron-rich conditions ( − EDDHA). The y-axis shows the plaque size ratio between iron-limited (6 mM EDDHA treated [2 µL]) and iron-rich conditions ( − EDDHA) of different mutants. Water was used as the −EDDHA control. Data are represented as the average ratio ± SEM calculated from at least four individual plaques of each condition..

)x轴显示在富铁条件下(EDDHA)突变型和野生型(WT)之间的斑块大小比。y轴显示不同突变体的铁限制(6mM EDDHA处理[2μL])和富铁条件(EDDHA)之间的斑块大小比。水被用作-EDDHA对照。数据表示为从每种情况的至少四个单独斑块计算出的平均比率±SEM。。

Extended Data Fig. 4 Ferrioxamine E alone has no substantial effect on plaque size,

扩展数据图4单独的铁氧胺E对斑块大小没有实质性影响,

B. subtilis

B、 枯草杆菌

growth, and Spo0A activation.

生长和Spo0A激活。

(

(

a

) The average plaque areas of SPO1 on

)SPO1的平均斑块面积

B. subtilis

B、 枯草杆菌

were measured when treated with or without ferrioxamine E (2 µl of 20 mM) as an excess iron source. Data are represented as the average ± SEM from three independent biological replicates. Circles show the values of each biological replicate and at least 21 plaques were selected for each replicate. (.

当用或不用铁胺E(2μl20mM)作为过量铁源处理时测量。数据表示为来自三个独立生物学重复的平均值±SEM。圆圈显示每个生物学重复的值,每个重复选择至少21个斑块。(。

b

b类

) The colony forming units of

)菌落形成单位

B. subtilis

B、 枯草杆菌

were measured when infected by SPO1 phages, treated with or without ferrioxamine E (2 µl of 20 mM) as an excess iron source. Data are represented as the average ± SEM from three independent biological replicates. Circles show the values of each biological replicate. (

当被SPO1噬菌体感染时,用或不用铁胺E(2μl20mM)作为过量铁源处理。数据表示为来自三个独立生物学重复的平均值±SEM。圆圈显示每个生物复制的值。(笑声)(

c

c级

) The impact of ferrioxamine E (2 µl of 20 mM) on

)铁氧胺E(2μl20mM)对

B. subtilis

B、 枯草杆菌

sporulation (an indicator of Spo0A activation). Data are represented as the average ± SEM from three independent biological replicates. Circles show the values of each biological replicate.

孢子形成(Spo0A激活的指标)。数据表示为来自三个独立生物学重复的平均值±SEM。圆圈显示每个生物复制的值。

Extended Data Fig. 5 Coelichelin is not ubiquitously produced by all plaque-enlarging bacteria.

扩展数据图5 Coelichelin不是由所有斑块扩大细菌普遍产生的。

The conditioned media resulting from the fermentation of 4 plaque-enlarging bacteria (collected at different time points) were subjected to LC-MS analysis. The extracted ion chromatogram of coelichelin is shown here. No coelichelin was detected in the conditioned medium of Am23, suggesting that it does not produce coelichelin but instead an unknown phage-promoting siderophore..

对4种噬菌斑扩大细菌(在不同时间点收集)发酵产生的条件培养基进行LC-MS分析。这里显示了提取的coelichelin离子色谱图。在Am23的条件培养基中未检测到coelichelin,表明它不产生coelichelin,而是一种未知的噬菌体促进铁载体。。

Supplementary information

补充信息

Supplementary Information

补充信息

Supplementary Figs. 1–10 and Table 1.

补充图1-10和表1。

Reporting Summary

报告摘要

Peer Review File

同行评审文件

Supplementary Tables 2–5

补充表2-5

Supplementary Tables 2–5.

补充表2-5。

Rights and permissions

权限和权限

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law..

Springer Nature或其许可方(例如协会或其他合作伙伴)根据与作者或其他权利持有人的出版协议对本文拥有独家权利;本文接受稿件版本的作者自行存档仅受此类出版协议和适用法律的条款管辖。。

Reprints and permissions

重印和许可

About this article

关于本文

Cite this article

引用本文

Zang, Z., Zhang, C., Park, K.J.

臧Z.,张C.,朴K.J。

et al.

等人。

Streptomyces

链霉菌

secretes a siderophore that sensitizes competitor bacteria to phage infection.

分泌铁载体,使竞争细菌对噬菌体感染敏感。

Nat Microbiol

Nat微生物

(2025). https://doi.org/10.1038/s41564-024-01910-8

(2025).https://doi.org/10.1038/s41564-024-01910-8

Download citation

下载引文

Received

已接收

:

:

05 February 2024

2024年2月5日

Accepted

已接受

:

:

06 December 2024

2024年12月6日

Published

已发布

:

:

08 January 2025

2025年1月8日

DOI

DOI

:

:

https://doi.org/10.1038/s41564-024-01910-8

https://doi.org/10.1038/s41564-024-01910-8

Share this article

分享这篇文章

Anyone you share the following link with will be able to read this content:

与您共享以下链接的任何人都可以阅读此内容:

Get shareable link

获取可共享链接

Sorry, a shareable link is not currently available for this article.

很抱歉,本文目前没有可共享的链接。

Copy to clipboard

复制到剪贴板

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供