商务合作
动脉网APP
可切换为仅中文
Abstract
摘要
Pathological retinal neovascularization (RNV) is a major cause of vision loss and blindness during ischemic retinopathies. Our investigations in the mouse model of oxygen-induced retinopathy (OIR) demonstrate a novel mechanism of pathological RNV and neurovascular injury. We show that OIR-induced activation of macrophage/microglial cells, retinal inflammation, and pathological RNV are mediated by increases in cholesterol ester (CE) formation due to activation of the acyl-CoA: Cholesterol Acyltransferase 1/Sterol O-Acyltransferase 1 (ACAT1/SOAT1) enzyme..
病理性视网膜新血管形成(RNV)是缺血性视网膜病变期间视力丧失和失明的主要原因。我们在氧诱导视网膜病变(OIR)小鼠模型中的研究证明了病理性RNV和神经血管损伤的新机制。我们表明,OIR诱导的巨噬细胞/小胶质细胞活化,视网膜炎症和病理性RNV是由酰基辅酶A:胆固醇酰基转移酶1/固醇O-酰基转移酶1(ACAT1/SOAT1)酶激活引起的胆固醇酯(CE)形成增加介导的。。
Introduction
简介
Ischemic retinopathies, including diabetic retinopathy, retinopathy of prematurity, and retinal vein occlusion, are common causes of vision loss and blindness in developed countries worldwide
缺血性视网膜病变,包括糖尿病视网膜病变、早产儿视网膜病变和视网膜静脉阻塞,是全世界发达国家视力丧失和失明的常见原因
1
1
,
,
2
2
,
,
3
3
. Conventional therapies include repeated intravitreal injections of anti-VEGF (vascular endothelial growth factor), steroids, vitrectomy, or photocoagulation. All are associated with some risk of damaging side effects, including inflammation, retinal detachment, endophthalmitis, and vitreous hemorrhage.
常规疗法包括反复玻璃体内注射抗VEGF(血管内皮生长因子),类固醇,玻璃体切除术或光凝术。所有这些都与一些破坏性副作用的风险有关,包括炎症,视网膜脱离,眼内炎和玻璃体出血。
Rapid vascular regrowth may occur upon interruption of the VEGF blockade and its effectiveness is limited in some patients.
VEGF阻断中断后可能会发生快速血管再生,其有效性在某些患者中受到限制。
4
4
,
,
5
5
,
,
6
6
,
,
7
7
. Steroid injections can induce increases in intraocular pressure or cataract formation and vitrectomy or photocoagulation can damage healthy cells. These limitations underscore the need for additional effective treatments that reverse RNV and promote physiological repair while avoiding the side effects of current therapeutic options..
类固醇注射可引起眼内压升高或白内障形成,玻璃体切除术或光凝术可损害健康细胞。这些局限性强调了需要额外的有效治疗,以逆转RNV并促进生理修复,同时避免当前治疗选择的副作用。。
In ischemic retinopathies hypoxia, oxidative stress, and inflammation are key factors underlying the retinal damage
8
8
,
,
9
9
. Activation of microglia and macrophages also plays a key role in ischemic retinopathy and both cell types are critically involved in the pathogenesis of pathological RNV
小胶质细胞和巨噬细胞的激活在缺血性视网膜病变中也起着关键作用,这两种细胞类型都与病理性RNV的发病机制密切相关
10
10
,
,
11
11
,
,
12
12
,
,
13
13
,
,
14
14
. Although these factors are all connected, the order of these events and their underlying mechanisms have not been well demonstrated. In this perspective review we will focus on the role of the cholesterol metabolizing enzyme ACAT1/SOAT1 and CE formation in retinal inflammation and pathological RNV in the mouse model of oxygen-induced retinopathy (OIR)..
尽管这些因素都是相互关联的,但这些事件的顺序及其潜在机制尚未得到很好的证明。在这篇综述中,我们将重点关注胆固醇代谢酶ACAT1/SOAT1和CE形成在氧诱导视网膜病变(OIR)小鼠模型中视网膜炎症和病理性RNV中的作用。。
While dyslipidemia and cholesterol accumulation have been strongly implicated in promoting pathological NV in models of subretinal NV
虽然在视网膜下NV模型中,血脂异常和胆固醇积累与促进病理性NV密切相关
15
15
, not much is known about role of cholesterol metabolism, activation of ACAT1/SOAT1, and CE formation in pathological RNV during ischemic retinopathy. More is known about the involvement of the ACAT1/SOAT1 pathway in other diseases. Increased ACAT1/SOAT1 expression/activity in activated macrophages has been implicated in atherosclerosis, Alzheimer’s disease, and cancer.
,关于缺血性视网膜病变期间胆固醇代谢,ACAT1/SOAT1激活和CE形成在病理性RNV中的作用知之甚少。关于ACAT1/SOAT1途径参与其他疾病的了解更多。。
16
16
,
,
17
17
,
,
18
18
. Epidemiological studies and clinical trials have shown a correlation between high levels of plasma cholesterol and diabetic retinopathy
流行病学研究和临床试验表明,高水平的血浆胆固醇与糖尿病视网膜病变之间存在相关性
19
19
,
,
20
20
. Alterations in cholesterol metabolism have also been shown to induce cholesterol accumulation and formation of hyperreflective cholesterol crystals that impair visual function in the diabetic retina
胆固醇代谢的改变也被证明会诱导胆固醇积累和形成高反射性胆固醇晶体,从而损害糖尿病视网膜的视觉功能
21
21
.
.
Oxidative/nitrative stress, macrophage activation, inflammation, and pathological RNV
氧化/硝化应激,巨噬细胞活化,炎症和病理性RNV
The mouse model of OIR has served as a key experimental tool for elucidating the mechanisms of pathological RNV. In this model, neonatal mice are maintained in hyperoxia from postnatal day 7 (P7) to P12, the time when the retinal vessels are forming, and then returned to normoxia. The hyperoxia environment induces obliteration of the immature vessels and prevents further microvascular development.
OIR的小鼠模型已成为阐明病理性RNV机制的关键实验工具。。高氧环境诱导未成熟血管闭塞并阻止进一步的微血管发育。
Because the retinal neurons continue to develop normally during the hyperoxia treatment, the lack of the normal blood supply to the retinal tissue leads to relative hypoxia and promotes pathological vitreoretinal NV when the neonates are returned to normoxia on P12..
由于视网膜神经元在高氧治疗期间继续正常发育,因此当新生儿在P12恢复常氧时,视网膜组织缺乏正常血液供应会导致相对缺氧并促进病理性玻璃体视网膜NV。。
In models of OIR in vivo and hyperoxia-treated endothelial cells in vitro, oxidative/nitrative stress has been shown to play a key role in the hyperoxia-induced endothelial cell death
在体内OIR和体外高氧处理的内皮细胞模型中,氧化/硝化应激已被证明在高氧诱导的内皮细胞死亡中起关键作用
22
22
,
,
23
23
. There are several sources of oxidative/nitrative stress in the OIR model, including superoxide and peroxynitrite
24
24
. Superoxide formation due to activation of the NADPH oxidase NOX2 isoform together with nitric oxide formation due to increased expression of inducible nitric oxide synthase (iNOS) have been strongly implicated in retinal vascular injury during OIR and other models of ischemic retinopathy, including diabetic retinopathy and ischemia-reperfusion injury.
在OIR和其他缺血性视网膜病变模型(包括糖尿病视网膜病变)期间,由于NADPH氧化酶NOX2亚型的激活以及由于诱导型一氧化氮合酶(iNOS)表达增加而形成的一氧化氮,导致的超氧化物形成与视网膜血管损伤密切相关。缺血再灌注损伤。
25
25
,
,
26
26
,
,
27
27
,
,
28
28
. Superoxide and nitric oxide react to form the toxic product peroxynitrite, which damages the retinal cells as well as reducing the availability of nitric oxide needed for normal vascular and neuronal function
.超氧化物和一氧化氮反应形成有毒产物过氧亚硝酸盐,这会损害视网膜细胞,并降低正常血管和神经元功能所需的一氧化氮的可用性
29
29
.
.
Protein synthesis pathways in the endoplasmic reticulum, Golgi apparatus, and nucleus as well as protein turnover pathways are all highly sensitive to ROS-related redox conditions
内质网、高尔基体和细胞核中的蛋白质合成途径以及蛋白质周转途径都对活性氧相关的氧化还原条件高度敏感
30
30
. Long chain unesterified free fatty acids along with some of their derivatives and metabolites can modify intracellular production of ROS
长链未酯化的游离脂肪酸及其一些衍生物和代谢物可以改变细胞内ROS的产生
31
31
. Also, oxidative and nitrative stress mediate the activation of proinflammatory signaling pathways and promote induction of the M1-like proinflammatory macrophages during OIR
此外,氧化和硝化应激介导促炎信号通路的激活,并促进OIR期间M1样促炎巨噬细胞的诱导
32
32
,
,
33
33
.
.
Studies in the OIR model have shown a key role of macrophage activation in this pathology. Depletion of macrophages during the relative hypoxia/RNV phase by intraperitoneal injections of clodronate-liposomes reduced retinal macrophage numbers by approximately 80% and significantly inhibited pathological RNV while improving physiological vascular repair.
OIR模型的研究表明巨噬细胞活化在这种病理中起着关键作用。通过腹膜内注射氯膦酸盐脂质体在相对缺氧/RNV期消耗巨噬细胞使视网膜巨噬细胞数量减少约80%,并显着抑制病理性RNV,同时改善生理性血管修复。
34
34
. In contrast, macrophage depletion during the hyperoxia phase did not affect the vaso-obliteration. These findings demonstrated that macrophage depletion markedly decreased OIR severity as well as reducing levels of angiogenic cytokines and extracellular matrix degradation
相反,高氧期巨噬细胞耗竭不影响血管闭塞。这些发现表明,巨噬细胞耗竭显着降低了OIR的严重程度,并降低了血管生成细胞因子和细胞外基质降解的水平
34
34
,
,
35
35
. Studies in the OIR model also have reported a population of M1-like proinflammatory microglia/macrophages localized to the areas of pathological RNV during the relative hypoxia/RNV phase along with activation of the NFκβ / STAT3 signaling pathway and increased expression of inflammatory cytokines including TNFα, IL6, and IL1β.
OIR模型的研究还报道了在相对缺氧/RNV期,M1样促炎性小胶质细胞/巨噬细胞群体定位于病理性RNV区域,同时激活NFκβ/STAT3信号通路,增加炎性细胞因子的表达,包括TNFα,IL6和IL1β。
35
35
,
,
36
36
.
.
In the OIR model, cells in the ischemic tissue promote pathological RNV by secreting VEGF and other angiogenic factors along with macrophage chemotactic protein 1 (MCP1), and macrophage colony stimulating factor (MCSF1)
在OIR模型中,缺血组织中的细胞通过分泌VEGF和其他血管生成因子以及巨噬细胞趋化蛋白1(MCP1)和巨噬细胞集落刺激因子(MCSF1)来促进病理性RNV
14
14
,
,
34
34
,
,
37
37
. MCP1
.MCP1
/
/
CCL2 is a member of the C-C chemokine family and a potent chemotactic factor that attracts macrophages into the retina where they can release pro-angiogenic factors, promoting the growth of abnormal blood vessels. Once the macrophages are recruited, MCSF1 further activates them, enhancing their ability to produce inflammatory mediators and contribute to pathological angiogenesis.
CCL2是C-C趋化因子家族的成员,是一种有效的趋化因子,可将巨噬细胞吸引到视网膜中,在那里它们可以释放促血管生成因子,促进异常血管的生长。一旦巨噬细胞被募集,MCSF1就会进一步激活它们,增强其产生炎症介质的能力并促进病理性血管生成。
10
10
. It has been shown that inhibition of MCP1 decreases RNV
研究表明,抑制MCP1可降低RNV
38
38
. MCSF1 secreted by macrophages, is required for the differentiation of resident macrophages and microglia during development
巨噬细胞分泌的MCSF1是发育过程中常驻巨噬细胞和小胶质细胞分化所必需的
39
39
. Inhibition of MCSF1 selectively suppresses tumor angiogenesis and in contrast to VEGF blockade, MCSF1 inhibition does not promote rapid vascular regrowth
抑制MCSF1选择性地抑制肿瘤血管生成,与VEGF阻断相反,MCSF1抑制不促进血管快速再生
10
10
,
,
40
40
. Our studies in the OIR model have shown high levels of MCSF1 expression in the areas of pathological RNV
我们在OIR模型中的研究表明,在病理性RNV区域中MCSF1的表达水平很高
41
41
. Because macrophages can secrete MCSF1 as well as respond to it, our results suggest a proangiogenic role of MCSF1 released by activated macrophages as well as an additive effect of macrophage proliferation on pathological RNV.
由于巨噬细胞可以分泌MCSF1并对其产生反应,因此我们的结果表明活化的巨噬细胞释放的MCSF1具有促血管生成作用,以及巨噬细胞增殖对病理性RNV的累加作用。
TREM1 (triggering receptor expressed on myeloid cells 1), inflammation, and pathological RNV
TREM1(在髓样细胞1上表达的触发受体),炎症和病理性RNV
TREM1, a member of the immunoglobulin superfamily, has emerged as an important enhancer of inflammation. It activates neutrophils and monocytes/macrophages through the adapter protein DAP12
TREM1是免疫球蛋白超家族的成员,已成为炎症的重要增强剂。它通过衔接蛋白DAP12激活中性粒细胞和单核细胞/巨噬细胞
42
42
. TREM1 can be induced by several stimuli including hypoxia
TREM1可以由包括缺氧在内的多种刺激诱导
43
43
,
,
44
44
and may act as a stimulating factor for neuroinflammation. When activated in models of ischemic stroke or traumatic brain injury, TREM1 directly activates spleen tyrosine kinase (Syk) and its downstream signaling cascades in microglia
。当在缺血性中风或创伤性脑损伤模型中激活时,TREM1直接激活小胶质细胞中的脾酪氨酸激酶(Syk)及其下游信号级联
45
45
,
,
46
46
. This induces a proinflammatory microglial phenotype that can lead to neurotoxicity. Our studies in the mouse model of OIR have shown that hypoxia robustly increases expression of TREM1 together with MCSF1
。这会诱导可导致神经毒性的促炎性小胶质细胞表型。我们在OIR小鼠模型中的研究表明,缺氧会强烈增加TREM1和MCSF1的表达
41
41
. We also have found that TREM1 is localized to immune cells positive for isolectin B4, Iba1, CD45, and to MCSF1 positive immune cells in areas of pathological RNV. Moreover, specific inhibition of TREM1 blocked the pathological RNV and improved physiological vascular repair. This was the first study to show that TREM1 plays a major role in the progression of RNV in mice with OIR and suggested that activated microglia/macrophages are the main source of TREM1 expression.
我们还发现TREM1定位于病理性RNV区域中异凝集素B4,Iba1,CD45阳性的免疫细胞和MCSF1阳性的免疫细胞。此外,TREM1的特异性抑制阻断了病理性RNV并改善了生理性血管修复。这是第一项显示TREM1在OIR小鼠RNV进展中起主要作用的研究,并表明活化的小胶质细胞/巨噬细胞是TREM1表达的主要来源。
41
41
.
.
Dyslipidemia and TREM1 activation
Lipids are a major building block in all living cells. They are involved in a wide variety of structural and functional cellular processes. More than 50% of the brain’s dry weight is composed of lipids, which are found as phospholipids, sphingolipids, glycerol lipids, fatty acids, and sterols, with phospholipids accounting for ~ 50% of total lipid content.
脂质是所有活细胞的主要组成部分。它们参与多种结构和功能细胞过程。大脑干重的50%以上由脂质组成,这些脂质被发现为磷脂,鞘脂,甘油脂质,脂肪酸和甾醇,磷脂约占总脂质含量的50%。
47
47
. Functionally, lipids are key components of cell membranes including neuronal synapses and myelin sheaths. Within cell membranes they can serve to transduce signals to regulate a range of biological processes and in some circumstances act as bioenergetic fuels
在功能上,脂质是细胞膜的关键成分,包括神经元突触和髓鞘。在细胞膜内,它们可以传递信号以调节一系列生物过程,在某些情况下还可以作为生物能量燃料
48
48
. In these processes cholesterol esterification is a physiological mechanism used to store and transfer cholesterol in order to maintain cellular homeostasis and avoid cellular toxicity due to excess levels of unesterified cholesterol (also called free cholesterol)
在这些过程中,胆固醇酯化是一种生理机制,用于储存和转移胆固醇,以维持细胞稳态,并避免由于未酯化胆固醇(也称为游离胆固醇)水平过高而引起的细胞毒性
49
49
.
.
Studies in models of atherosclerosis have demonstrated a synergistic interaction between dyslipidemia and activation of TREM1 in myeloid cells that leads to increases in production of proinflammatory cytokines
动脉粥样硬化模型的研究表明,血脂异常与髓样细胞中TREM1的激活之间存在协同相互作用,从而导致促炎细胞因子的产生增加
50
50
. Furthermore, hypercholesterolemia was found to induce TREM1 expression in myeloid cells and to subsequently increase myeloid cell differentiation, thereby increasing monocyte development and promoting proatherogenic cytokine production and foam cell formation. Pharmacological blockade of TREM1 in the .
此外,发现高胆固醇血症可诱导髓样细胞中TREM1的表达,并随后增加髓样细胞的分化,从而增加单核细胞的发育并促进促动脉粥样硬化细胞因子的产生和泡沫细胞的形成。TREM1的药理学阻断。
db/db
分贝/分贝
and high fat diet/streptozotocin-induced diabetic mouse models of type 2 diabetes has been shown to inhibit accumulation of lipid droplets, reduce inflammatory damage to hippocampal neurons, and improve cognitive functions
高脂饮食/链脲佐菌素诱导的2型糖尿病小鼠模型已被证明可以抑制脂滴的积累,减少海马神经元的炎症损伤,改善认知功能
51
51
.
.
ACAT1/SOAT1 (Acyl-coenzyme A: Cholesterol Acyltransferase 1/ Sterol O-Acyltransferase 1) and RNV
ACAT1/SOAT1(酰基辅酶A:胆固醇酰基转移酶1/固醇O-酰基转移酶1)和RNV
ACAT/SOAT are microsomal membrane-bound enzymes that are localized to the endoplasmic reticulum. They use cholesterol and long chain fatty acid as substrates to produce cholesterol esters (CE)
ACAT/SOAT是定位于内质网的微粒体膜结合酶。他们使用胆固醇和长链脂肪酸作为底物来生产胆固醇酯(CE)
52
52
. ACAT/SOAT enzymes are expressed in many tissues including brain, retina, liver, and other tissues, where they are involved in formation and accumulation of CE
。ACAT/SOAT酶在许多组织中表达,包括脑,视网膜,肝脏和其他组织,它们参与CE的形成和积累
16
16
,
,
53
53
. In mammals, ACAT/SOAT exists as two isoforms: ACAT1/SOAT1 and ACAT2/SOAT2. Most tissues express ACAT1/SOAT1 as the major isoform and ACAT2/SOAT2 as a minor isoform
在哺乳动物中,ACAT/SOAT以两种同工型存在:ACAT1/SOAT1和ACAT2/SOAT2。大多数组织表达ACAT1/SOAT1为主要亚型,ACAT2/SOAT2为次要亚型
54
54
. Both isoforms are allosterically activated by their substrate (cholesterol or oxysterols). Cholesterol activates ACAT1/SOAT1, induces its expression allosterically, and is more effective than other sterols in this effect.
两种同工型均被其底物(胆固醇或氧固醇)变构激活。胆固醇激活ACAT1/SOAT1,变构诱导其表达,并且在这种作用下比其他固醇更有效。
High levels of ACAT1/SOAT1 activity have been shown in a variety of disease conditions, including cancer, Alzheimer’s disease, and cardiovascular disease
高水平的ACAT1/SOAT1活性已在多种疾病中显示出来,包括癌症,阿尔茨海默氏病和心血管疾病
55
55
,
,
56
56
,
,
57
57
. Studies using macrophages have shown that internalization of low density lipoprotein (LDL) cholesterol by the LDL receptor and the resulting increases in intracellular cholesterol levels increase ACAT1/SOAT1 activity which leads to increases in CE formation
使用巨噬细胞的研究表明,低密度脂蛋白受体对低密度脂蛋白(LDL)胆固醇的内在化以及由此产生的细胞内胆固醇水平的增加会增加ACAT1/SOAT1活性,从而导致CE形成的增加
58
58
. Our studies in the OIR mouse model have shown that increased expression of inflammatory mediators and pathological RNV are associated with increased expression of LDLR, increased accumulation of neutral lipids, and elevated levels of CE in areas of RNV along with high expression of ACAT1/SOAT1
我们在OIR小鼠模型中的研究表明,炎症介质和病理性RNV的表达增加与LDLR表达增加,中性脂质积累增加,RNV区域CE水平升高以及ACAT1/SOAT1高表达有关
59
59
. ACAT2/SOAT2 expression was unchanged during OIR. The ACAT1/SOAT1 protein was colocalized with TREM1, MCSF1, and markers of macrophage and microglial cells in areas of pathological RNV. Consistent with these findings, recent lipidomic analysis showed marked elevation of cholesterol esterification, lipid droplet formation, reversed cholesterol transport, and increased concentration of n-9 fatty acids along with increased expression of ACAT1/SOAT1 in the OIR retinas at P17 as compared with the room air controls.
在OIR期间,ACAT2/SOAT2的表达没有变化。ACAT1/SOAT1蛋白与TREM1,MCSF1以及病理性RNV区域中巨噬细胞和小胶质细胞的标志物共定位。与这些发现一致,最近的脂质组学分析显示,与室内空气对照相比,P17处OIR视网膜中胆固醇酯化,脂滴形成,胆固醇转运逆转,n-9脂肪酸浓度增加以及ACAT1/SOAT1表达增加。
60
60
.
.
Our studies further showed that deletion of the LDL receptor completely blocks pathological RNV which indicates a critical role of LDL cholesterol uptake in the pathology
我们的研究进一步表明,低密度脂蛋白受体的缺失完全阻断了病理性RNV,这表明低密度脂蛋白胆固醇摄取在病理学中起着关键作用
59
59
. Moreover, treatment with the specific inhibitor of ACAT1/SOAT1 K604 during the relative hypoxia phase of OIR significantly inhibited the increases in inflammatory mediators and limited the pathological RNV while reducing the avascular area, indicating involvement of CE formation in the pathology. Also, OIR-induced increases in retinal ACAT1/SOAT1 expression/activity together with high levels of CE formation and accumulation of neutral lipids were associated with increases in the expression of VEGF.
此外,在OIR的相对缺氧阶段,用ACAT1/SOAT1 K604特异性抑制剂治疗可显着抑制炎症介质的增加,并限制病理性RNV,同时减少无血管面积,表明CE形成参与病理。此外,OIR诱导的视网膜ACAT1/SOAT1表达/活性的增加以及高水平的CE形成和中性脂质的积累与VEGF表达的增加有关。
In contrast with the effects of K604 treatment in reducing signs of inflammation and limiting the pathological RNV, VEGF expression was not affected.
与K604治疗在减少炎症迹象和限制病理性RNV方面的作用相反,VEGF表达不受影响。
59
59
. Our studies using microglial cells exposed to oxygen-glucose deprivation (OGD) under in vitro conditions further showed marked increases in expression of ACAT1/SOAT1, TREM1, and MCSF along with significant increases in expression of VEGF
我们在体外条件下使用暴露于氧糖剥夺(OGD)的小胶质细胞进行的研究进一步表明,ACAT1/SOAT1,TREM1和MCSF的表达显着增加,而VEGF的表达显着增加
59
59
. Treatment with the K604 ACAT1/SOAT1 inhibitor blocked each of these effects except for the increase in VEGF expression.
用K604 ACAT1/SOAT1抑制剂治疗可阻断除VEGF表达增加外的每种作用。
These data suggest that the increase in VEGF expression in the models of OIR or OGD is independent of ACAT1/SOAT1 activity. Although intravitreal injections of anti-VEGF are often used to treat RNV, potential side effects can limit its use
这些数据表明,OIR或OGD模型中VEGF表达的增加与ACAT1/SOAT1活性无关。尽管玻璃体内注射抗VEGF通常用于治疗RNV,但潜在的副作用可能会限制其使用
4
4
. VEGF is a critical survival factor required for physiological vascular growth and repair
VEGF是生理血管生长和修复所需的关键生存因子
61
61
,
,
62
62
. In our OIR study we also observed increased numbers of tip cells sprouting into the avascular area of retinas of OIR mice treated with K604 and a reduction in the avascular area as compared with the vehicle treated ischemic retinas. This suggests that inhibition of ACAT1/SOAT1 can limit pathological RNV while preserving normal VEGF expression and thereby promoting physiological vascular repair.
在我们的OIR研究中,我们还观察到,与媒介物处理的缺血性视网膜相比,用K604处理的OIR小鼠的视网膜无血管区域发芽的尖端细胞数量增加,无血管区域减少。这表明抑制ACAT1/SOAT1可以限制病理性RNV,同时保持正常的VEGF表达,从而促进生理性血管修复。
This strategy may offer an effective therapy for pathological neovascularization. Figure .
该策略可能为病理性新血管形成提供有效的治疗方法。图。
1
1
illustrates a suggested signaling pathway involved in ACAT1/SOAT1-induced RNV.
说明了涉及ACAT1/SOAT1诱导的RNV的建议信号传导途径。
Fig. 1: A simplified schematic representation of steps linking dyslipidemia with macrophage/microglia induced RNV.
图1:将血脂异常与巨噬细胞/小胶质细胞诱导的RNV联系起来的步骤的简化示意图。
1)
1)
Enhanced LDL-cholesterol uptake
增强低密度脂蛋白胆固醇摄取
: Under hypoxic/ischemic conditions, macrophages/microglia show increased expression of LDL-receptor (LDLR) and increased internalization of LDL-cholesterol (LDL-C). 2)
:在缺氧/缺血条件下,巨噬细胞/小胶质细胞显示LDL受体(LDLR)表达增加,LDL胆固醇(LDL-C)内化增加。二)
Activation of ACAT1/SOAT1
激活ACAT1/SOAT1
: Hypoxic/ischemic conditions promote increased cholesterol uptake along with increased ACAT1/SOAT1 activity which increases CE formation. 3)
:缺氧/缺血条件促进胆固醇摄取增加,同时ACAT1/SOAT1活性增加,从而增加CE的形成。三)
ROS mediated oxidation of CE
: Ischemia induces ROS formation, which leads to CE oxidation (Ox-CE) via activation of radical and nonradical modification pathways
:缺血诱导ROS形成,通过激活自由基和非自由基修饰途径导致CE氧化(Ox-CE)
69
69
. 4)
. 4)
Induction of Inflammation signaling
炎症信号的诱导
: Ox-CE can activate
:Ox CE可以激活
TREM1
TREM1
through TLR4
通过TLR4
59
59
,
,
68
68
. TREM1 induces inflammation by activating the DAP12/Syk (spleen tyrosine kinase) signaling cascade. TREM1 inhibition decreases levels of inflammatory cytokines
TREM1通过激活DAP12/Syk(脾酪氨酸激酶)信号级联反应诱导炎症。TREM1抑制降低炎性细胞因子水平
65
65
. 5)
. 5)
Release of proinflammatory cytokines
促炎细胞因子的释放
: The nuclear factor-κB (NFκβ) signaling pathway is induced by TREM1, which leads to the production of proinflammatory cytokines such as IL6, IL1β, TNFα, MCSF
:TREM1诱导核因子-κB(NFκβ)信号通路,导致产生促炎细胞因子,例如IL6,IL1β,TNFα,MCSF
41
41
,
,
70
70
6)
6)
Retinal neovascularization
视网膜新生血管
: Activated macrophages/microglia play a key role in regulating angiogenesis and are critically involved in the pathogenesis of RNV. Created in BioRender. Zaidi, S. (2025) BioRender.com/c38e697.
:活化的巨噬细胞/小胶质细胞在调节血管生成中起关键作用,并与RNV的发病机制密切相关。在BioRender中创建。。
Full size image
全尺寸图像
Dyslipidemia, macrophage activation, and inflammation
血脂异常,巨噬细胞活化和炎症
Our studies have implicated ACAT1/SOAT1 activity and CE formation in the OIR-induced increases in expression of LDLR and TREM1 along with MCSF1 as well as inflammatory cytokines [59]. We and others have shown that TNFα is involved in pathological RNV, breakdown of the blood retinal barrier, and ACAT1/SOAT1 expression.
。我们和其他人已经证明,TNFα参与病理性RNV,血-视网膜屏障的破坏和ACAT1/SOAT1的表达。
59
59
,
,
63
63
,
,
64
64
. The mechanism of hyperlipidemia-induced macrophage activation and the role of TREM1 in the process are not fully understood. While several endogenous ligands for TREM1 have been identified, the mechanism of their activation is still not clear
高脂血症诱导的巨噬细胞活化的机制以及TREM1在该过程中的作用尚不完全清楚。虽然已经确定了TREM1的几种内源性配体,但其激活机制仍不清楚
65
65
.
.
One possible mechanism may involve activation of the toll like receptor 4 (TLR4)-Syk pathway. In a macrophage model of dyslipidemia, activation of TLR4 has been shown to play a key role in ROS formation. Stimulation of peritoneal macrophages with minimally modified LDL cholesterol (mmLDL) has been shown to promote significant increases in NOX2-derived ROS leading to increases in expression of inflammatory cytokines.
一种可能的机制可能涉及激活toll样受体4(TLR4)-Syk途径。在血脂异常的巨噬细胞模型中,TLR4的激活已被证明在ROS形成中起关键作用。已显示用最小修饰的LDL胆固醇(mmLDL)刺激腹膜巨噬细胞可促进NOX2衍生的ROS的显着增加,从而导致炎性细胞因子的表达增加。
66
66
. This effect was completely blocked in TLR4 knockout mice. In contrast, macrophages from MyD88 (myeloid differentiation primary response protein) knockout mice showed a normal ROS response. This suggests that mmLDL cholesterol-induced NOX2 derived ROS production in macrophages depends on the presence of TLR4 but not MyD88.
这种作用在TLR4基因敲除小鼠中被完全阻断。相反,来自MyD88(骨髓分化初级反应蛋白)敲除小鼠的巨噬细胞显示出正常的ROS反应。。
Also, LDL cholesterol-induced activation of TLR4 in macrophages has been shown to involve TLR4-mediated Syk activation and downstream signaling. J774 macrophages stimulated with LDL cholesterol showed increased coimmunoprecipitation of Syk with TLR4.
此外,已显示LDL胆固醇诱导的巨噬细胞中TLR4的激活涉及TLR4介导的Syk激活和下游信号传导。用LDL胆固醇刺激的J774巨噬细胞显示Syk与TLR4的免疫共沉淀增加。
66
66
. In a recent study using microglial N9 cells, it was found that blocking ACAT1 with K604 significantly reduced the proinflammatory responses induced by LPS. K604 decreased the total TLR4 protein content by promoting TLR4 endocytosis, which enhanced the trafficking of TLR4 to the lysosomes for degradation.
在最近一项使用小胶质细胞N9细胞的研究中,发现用K604阻断ACAT1可显着降低LPS诱导的促炎反应。K604通过促进TLR4内吞作用降低了总TLR4蛋白含量,从而增强了TLR4向溶酶体的运输以进行降解。
This suppression of TLR4 resulted in the inhibition of its proinflammatory signaling cascade in response to LPS.
TLR4的这种抑制导致其响应LPS的促炎信号级联反应的抑制。
67
67
. The mechanism of this effect is as yet unknown, but may involve ACAT1/SOAT1 inhibitor-induced alterations in TLR4 membrane microdomains that cause it to undergo an increase in caveolae-mediated endocytosis.
这种作用的机制尚不清楚,但可能涉及ACAT1/SOAT1抑制剂诱导的TLR4膜微区的改变,导致其经历细胞膜穴样内陷介导的内吞作用的增加。
Another likely mechanism is that oxidized CE could be involved. Studies have shown that oxidized cholesteryl arachidonate with bicyclic endoperoxide and hydroperoxide groups (BEP-CE) works as a specific oxidized CE to activate macrophages in a TREM2/MD2 (myeloid differentiation factor 2)-dependent manner.
。研究表明,具有双环内过氧化物和氢过氧化物基团的氧化胆固醇花生四烯酸(BEP-CE)作为特定的氧化CE以TREM2/MD2(髓样分化因子2)依赖性方式激活巨噬细胞。
68
68
. MD2 is a TREM2 binding protein that dimerizes with TLR4 and is required for TLR4 activation. BEP-CE induces TLR4/MD2 binding and TLR4 dimerization which promotes phosphorylation of SyK, ERK1/2, JNK and c-Jun, cell spreading, and uptake of dextran and native LDL cholesterol by macrophages
MD2是一种TREM2结合蛋白,与TLR4二聚化,是TLR4激活所必需的。BEP-CE诱导TLR4/MD2结合和TLR4二聚化,促进SyK,ERK1/2,JNK和c-Jun的磷酸化,细胞扩散以及巨噬细胞摄取葡聚糖和天然LDL胆固醇
68
68
. Taken together, these results suggest involvement of different sources of free radicals in the process of beta oxidation of LDL cholesterol which converts CEs into active forms capable of activating other enzymes or inducing the expression on other proteins. More studies are needed to fully elucidate the TREM1/TLR4/ SyK signaling pathway in ischemic retinopathy..
综上所述,这些结果表明不同来源的自由基参与了LDL胆固醇的β-氧化过程,该过程将CE转化为能够激活其他酶或诱导其他蛋白质表达的活性形式。需要更多的研究来充分阐明缺血性视网膜病变中的TREM1/TLR4/SyK信号通路。。
Conclusion
结论
We have demonstrated a novel strategy to limit pathological RNV and promote physiological repair in the mouse OIR model by inhibiting ACAT1/SOAT1 activity and thereby preventing CE formation and blocking activation of TREM1. The mechanism behind hypoxia-induced inflammation and macrophage/microglia activation is not yet clear.
我们已经证明了一种新的策略,通过抑制ACAT1/SOAT1活性来限制病理性RNV并促进小鼠OIR模型中的生理修复,从而防止CE形成并阻断TREM1的激活。缺氧诱导的炎症和巨噬细胞/小胶质细胞活化背后的机制尚不清楚。
Our studies in the OIR model have shown that LDLR is induced by hypoxia and that LDLR deletion completely blocks intravitreal RNV.
我们在OIR模型中的研究表明,LDLR是由缺氧诱导的,LDLR缺失完全阻断了玻璃体内RNV。
59
59
which strongly supports the role of LDL cholesterol uptake in the pathology. In the OIR model, inhibition of ACAT1/SOAT1 significantly reduces inflammation and inhibits pathological RNV while improving vascular repair without altering VEGF expression. Anti-VEGF therapy during ischemic retinopathy is associated with some risks of neurovascular dysfunction since VEGF is a survival factor required for retinal neuronal function and vascular repair, especially during OIR.
这有力地支持了LDL胆固醇摄取在病理学中的作用。在OIR模型中,抑制ACAT1/SOAT1显着减少炎症并抑制病理性RNV,同时改善血管修复而不改变VEGF表达。缺血性视网膜病变期间的抗VEGF治疗与神经血管功能障碍的一些风险相关,因为VEGF是视网膜神经元功能和血管修复所需的生存因子,尤其是在OIR期间。
Collectively, dysregulation of retinal lipid metabolism in ischemic retinopathy can impact a variety of factors involved in inflammation and neurovascular damage and therefore visual functions. In summary targeting ACAT1/SOAT1 activity offers a novel strategy for treatment of ischemic retinopathies and other diseases that involve pathological RNV..
总的来说,缺血性视网膜病变中视网膜脂质代谢的失调会影响炎症和神经血管损伤以及视觉功能的多种因素。总之,靶向ACAT1/SOAT1活性为治疗缺血性视网膜病变和其他涉及病理性RNV的疾病提供了一种新策略。。
Limitations and future directions
局限性和未来方向
Under normal conditions ACAT1/SOAT1 is important for a variety of homeostatic functions, particularly in relation to immune function. However research in models of Alzheimer’s and cardiovascular disease has shown that excessive CE formation leads to the activation of myeloid cells and subsequently to cellular damage and that this can be blocked by inhibiting ACAT1/SOAT1 activity.
在正常情况下,ACAT1/SOAT1对于多种稳态功能很重要,特别是与免疫功能有关。然而,对阿尔茨海默氏病和心血管疾病模型的研究表明,过量的CE形成会导致髓样细胞活化,进而导致细胞损伤,这可以通过抑制ACAT1/SOAT1活性来阻断。
55
55
,
,
56
56
,
,
57
57
. While the mechanism of this protective action is not fully established, results of studies using a model of LPS-induced neuroinflammation suggest that this protective effect involves alterations in the caveolae/lipid raft region of the plasma membrane
虽然这种保护作用的机制尚未完全确定,但使用LPS诱导的神经炎症模型的研究结果表明,这种保护作用涉及质膜小窝/脂筏区域的改变
67
67
.
.
The above mentioned work in Alzheimer’s and cardiovascular disease models has shown that blockade of ACAT1/SOAT1 can limit disease pathology without impairing normal physiological functions. However considering that neonatal mice are undergoing normal development, we monitored body weight, motility, behavior, and plasma levels of cytokines and lipid profiles after treatment with the ACAT1/SOAT1 inhibitor or vehicle control.
上述在阿尔茨海默病和心血管疾病模型中的工作表明,阻断ACAT1/SOAT1可以限制疾病病理而不损害正常的生理功能。然而,考虑到新生小鼠正在经历正常发育,我们在用ACAT1/SOAT1抑制剂或媒介物对照治疗后监测了体重,运动性,行为以及血浆细胞因子和血脂水平。
Those analyses showed no adverse effects with the inhibitor treatment. Our data further showed that inhibitor treatment over a period of 10 days inhibits pathological RNV and promotes physiological vascular repair while limiting vision loss tested after the mice mature. In comparison with anti-VEGF, the ACAT1/SOAT1 inhibitor treatment should be safer since blocking VEGF affects all cells that require it for their normal function including neurons as well as vascular endothelial cells..
这些分析显示抑制剂治疗没有不良反应。我们的数据进一步表明,抑制剂治疗10天可抑制病理性RNV并促进生理性血管修复,同时限制小鼠成熟后测试的视力丧失。与抗VEGF相比,ACAT1/SOAT1抑制剂治疗应该更安全,因为阻断VEGF会影响所有需要其正常功能的细胞,包括神经元和血管内皮细胞。。
In our study we did not identify subtypes of CEs. Their identification will be key to defining more clearly the role of CE in this pathology. To access this, correlating a lipidomic analysis with studies of the expression of ACAT1/SOAT1, TREM1, MCSF1, VEGF and inflammatory cytokines should be a priority.
在我们的研究中,我们没有确定CE的亚型。他们的鉴定将是更清楚地定义CE在这种病理学中的作用的关键。为了获得这一点,应优先将脂质组学分析与ACAT1/SOAT1,TREM1,MCSF1,VEGF和炎性细胞因子表达的研究相关联。
Our further studies will explore the known markers of retinal neuronal damage, including vascular permeability, leukocyte adhesion, acellular capillary formation, retinal inflammation, and oxidative stress in relation to the tissue damage induced by ACAT1/SOAT1 in models of diabetic retinopathy (i.e., Akita mice, STZ-induced diabetic mice, .
我们的进一步研究将探索视网膜神经元损伤的已知标志物,包括血管通透性,白细胞粘附,无细胞毛细血管形成,视网膜炎症和与糖尿病视网膜病变模型(即秋田小鼠,STZ诱导的糖尿病小鼠)中ACAT1/SOAT1诱导的组织损伤相关的氧化应激。
db/db
分贝/分贝
mice). Studies using strategies for deletion of ACAT1/SOAT1 in macrophage and retinal microglial cells will give us a better understanding of the underlying mechanisms.
小鼠)。使用巨噬细胞和视网膜小胶质细胞中ACAT1/SOAT1缺失策略的研究将使我们更好地了解其潜在机制。
Data availability
数据可用性
No datasets were generated or analysed during the current study.
在当前的研究中,没有生成或分析数据集。
References
参考文献
Laouri, M., Chen, E., Looman, M. & Gallagher, M. The burden of disease of retinal vein occlusion: review of the literature.
Laouri,M.,Chen,E.,Looman,M。&Gallagher,M。视网膜静脉阻塞疾病的负担:文献综述。
Eye (Lond.)
眼睛(Lond.)
25
25
, 981–988,
, 981–988,
https://doi.org/10.1038/eye.2011.92
https://doi.org/10.1038/eye.2011.92
(2011).
(2011).
Article
文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mutlu, F. M. & Sarici, S. U. Treatment of retinopathy of prematurity: a review of conventional and promising new therapeutic options.
Mutlu,F.M。&Sarici,S.U。早产儿视网膜病变的治疗:常规和有前景的新治疗选择的回顾。
Int. J. Ophthalmol.
国际眼科杂志。
6
6
, 228–236,
, 228–236,
https://doi.org/10.3980/j.issn.2222-3959.2013.02.23
https://doi.org/10.3980/j.issn.2222-3959.2013.02.23
(2013).
(2013).
Article
文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kropp, M. et al. Diabetic retinopathy as the leading cause of blindness and early predictor of cascading complications-risks and mitigation.
Kropp,M。等人。糖尿病视网膜病变是失明的主要原因,也是级联并发症风险和缓解的早期预测因子。
EPMA J.
EPMA J。
14
14
, 21–42,
, 21–42,
https://doi.org/10.1007/s13167-023-00314-8
https://doi.org/10.1007/s13167-023-00314-8
(2023).
(2023).
Article
文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pieramici, D. J. & Rabena, M. D. Anti-VEGF therapy: comparison of current and future agents.
Pieramici,D.J。和Rabena,M.D。抗VEGF治疗:当前和未来药物的比较。
Eye (Lond.)
眼睛(Lond.)
22
22
, 1330–1336,
, 1330–1336,
https://doi.org/10.1038/eye.2008.88
https://doi.org/10.1038/eye.2008.88
(2008).
(2008).
Article
文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Maharaj, A. S. et al. VEGF and TGF-beta are required for the maintenance of the choroid plexus and ependyma.
Maharaj,A.S.等人,VEGF和TGF-β是维持脉络丛和室管膜所必需的。
J. Exp. Med.
实验医学学报
205
205
, 491–501,
, 491–501,
https://doi.org/10.1084/jem.20072041
https://doi.org/10.1084/jem.20072041
(2008).
(2008).
Article
文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Verheul, H. M. & Pinedo, H. M. Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition.
Verheul,H.M。&Pinedo,H.M。涉及血管生成抑制毒性的可能分子机制。
Nat. Rev. Cancer
7
7
, 475–485,
, 475–485,
https://doi.org/10.1038/nrc2152
https://doi.org/10.1038/nrc2152
(2007).
(2007).
Article
文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mancuso, M. R. et al. Rapid vascular regrowth in tumors after reversal of VEGF inhibition.
Mancuso,M.R.等人。逆转VEGF抑制后肿瘤中的快速血管再生。
J. Clin. Invest.
J、 临床。投资。
116
116
, 2610–2621,
, 2610–2621,
https://doi.org/10.1172/JCI24612
https://doi.org/10.1172/JCI24612
(2006).
(2006).
Article
文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Graziosi, A., et al. Oxidative stress markers and the retinopathy of prematurity.
Graziosi,A。等人,《氧化应激标志物与早产儿视网膜病变》。
J. Clin. Med
J.克林顿。与
. 9, 2711 (2020).
. 9, 2711 (2020).
https://doi.org/10.3390/jcm9092711
https://doi.org/10.3390/jcm9092711
.
.
Tang, J. & Kern, T. S. Inflammation in diabetic retinopathy.
Tang,J。&Kern,T。S。糖尿病视网膜病变中的炎症。
Prog. Retin. Eye Res.
掠夺。Retin眼睛研究。
30
30
, 343–358,
, 343–358,
https://doi.org/10.1016/j.preteyeres.2011.05.002
https://doi.org/10.1016/j.preteyeres.2011.05.002
(2011).
(2011).
Article
文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kubota, Y. et al. M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis.
Kubota,Y。等人。M-CSF抑制选择性靶向病理性血管生成和淋巴管生成。
J. Exp. Med.
实验医学学报
206
206
, 1089–1102,
, 1089–1102,
https://doi.org/10.1084/jem.20081605
https://doi.org/10.1084/jem.20081605
(2009).
(2009).
Article
文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Checchin, D. et al. Potential role of microglia in retinal blood vessel formation.
Checchin,D。等人。小胶质细胞在视网膜血管形成中的潜在作用。
Invest. Ophthalmol. Vis. Sci.
投资。眼科。可见。。
47
47
, 3595–3602,
, 3595–3602,
https://doi.org/10.1167/iovs.05-1522
https://doi.org/10.1167/iovs.05-1522
(2006).
(2006).
Article
文章
PubMed
PubMed
Google Scholar
谷歌学者
Espinosa-Heidmann, D. G. et al. Macrophage depletion diminishes lesion size and severity in experimental choroidal neovascularization.
Espinosa Heidmann,D.G.等人。巨噬细胞耗竭减少了实验性脉络膜新生血管的病变大小和严重程度。
Invest. Ophthalmol. Vis. Sci.
投资。眼科。可见。。
44
44
, 3586–3592,
, 3586–3592,
https://doi.org/10.1167/iovs.03-0038
https://doi.org/10.1167/iovs.03-0038
(2003).
(2003).
Article
文章
PubMed
PubMed
Google Scholar
谷歌学者
Sakurai, E. et al. Macrophage depletion inhibits experimental choroidal neovascularization.
Sakurai,E。等人。巨噬细胞耗竭抑制实验性脉络膜新血管形成。
Invest. Ophthalmol. Vis. Sci.
投资。眼科。可见。。
44
44
, 3578–3585,
, 3578–3585,
https://doi.org/10.1167/iovs.03-0097
https://doi.org/10.1167/iovs.03-0097
(2003).
(2003).
Article
文章
PubMed
PubMed
Google Scholar
谷歌学者
Zhou, Y. D. et al. Diverse roles of macrophages in intraocular neovascular diseases: a review.
Zhou,Y.D.等。巨噬细胞在眼内新生血管疾病中的多种作用:综述。
Int. J. Ophthalmol.
国际眼科杂志。
10
10
, 1902–1908,
, 1902–1908,
https://doi.org/10.18240/ijo.2017.12.18
https://doi.org/10.18240/ijo.2017.12.18
(2017).
(2017).
Article
文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pikuleva, I. A. & Curcio, C. A. Cholesterol in the retina: the best is yet to come.
Pikuleva,I.A。和Curcio,C.A。视网膜中的胆固醇:最好的还没有到来。
Prog. Retin Eye Res.
掠夺。视网膜眼部研究。
41
41
, 64–89,
, 64–89,
https://doi.org/10.1016/j.preteyeres.2014.03.002
https://doi.org/10.1016/j.preteyeres.2014.03.002
(2014).
(2014).
Article
文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chang, T. Y., Li, B. L., Chang, C. C. & Urano, Y. Acyl-coenzyme A:cholesterol acyltransferases.
Chang,T.Y.,Li,B.L.,Chang,C.C。和Urano,Y。酰基辅酶A:胆固醇酰基转移酶。
Am. J. Physiol. Endocrinol. Metab.
Am.J.Physiol。内分泌。代谢。
297
297
, E1–E9,
,E1–E9,
https://doi.org/10.1152/ajpendo.90926.2008
https://doi.org/10.1152/ajpendo.90926.2008
(2009).
(2009).
Article
文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shibuya, Y., Chang, C. C. & Chang, T. Y. ACAT1/SOAT1 as a therapeutic target for Alzheimer’s disease.
Shibuya,Y.,Chang,C.C。&Chang,T.Y。ACAT1/SOAT1作为阿尔茨海默病的治疗靶点。
Future Med. Chem.
未来医学化学。
7
7
, 2451–2467,
, 2451–2467,
https://doi.org/10.4155/fmc.15.161
https://doi.org/10.4155/fmc.15.161
(2015).
(2015).
Article
文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zabielska, J., Sledzinski, T. & Stelmanska, E. Acyl-coenzyme a: cholesterol acyltransferase inhibition in cancer treatment.
Zabielska,J.,Sledzinski,T。&Stelmanska,E。酰基辅酶a:癌症治疗中的胆固醇酰基转移酶抑制。
Anticancer Res
抗癌研究
39
39
, 3385–3394,
, 3385–3394,
https://doi.org/10.21873/anticanres.13482
https://doi.org/10.21873/anticanres.13482
(2019).
(2019).
Article
文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Busik, J. V. Lipid metabolism dysregulation in diabetic retinopathy.
Busik,J.V。糖尿病视网膜病变中的脂质代谢失调。
J. Lipid Res
J、 脂质Res
62
62
, 100017,
, 100017,
https://doi.org/10.1194/jlr.TR120000981
https://doi.org/10.1194/jlr.TR120000981
(2021).
(2021).
Article
文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chou, Y., Ma, J., Su, X. & Zhong, Y. Emerging insights into the relationship between hyperlipidemia and the risk of diabetic retinopathy.
Chou,Y.,Ma,J.,Su,X。&Zhong,Y。对高脂血症与糖尿病视网膜病变风险之间关系的新见解。
Lipids Health Dis.
脂质健康疾病。
19
19
, 241,
, 241,
https://doi.org/10.1186/s12944-020-01415-3
https://doi.org/10.1186/s12944-020-01415-3
(2020).
(2020).
Article
文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jenkins, A. J., Grant, M. B. & Busik, J. V. Lipids, hyperreflective crystalline deposits and diabetic retinopathy: potential systemic and retinal-specific effect of lipid-lowering therapies.
Jenkins,A.J.,Grant,M.B。&Busik,J.V。脂质,高反射晶体沉积物和糖尿病视网膜病变:降脂疗法的潜在全身和视网膜特异性作用。
Diabetologia
糖尿病学
65
65
, 587–603,
, 587–603,
https://doi.org/10.1007/s00125-022-05655-z
https://doi.org/10.1007/s00125-022-05655-z
(2022).
(2022).
Article
文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Brooks, S. E. et al. Reduced severity of oxygen-induced retinopathy in eNOS-deficient mice.
Brooks,S.E.等人降低了eNOS缺陷小鼠氧诱导视网膜病变的严重程度。
Invest. Ophthalmol. Vis. Sci.
投资。眼科。可见。。
42
42
, 222–228 (2001).
, 222–228 (2001).
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gu, X. L. et al. Hyperoxia induces retinal vascular endothelial cell apoptosis through formation of peroxynitrite.
Gu,X.L.等人。高氧通过形成过氧亚硝酸盐诱导视网膜血管内皮细胞凋亡。
Am. J. Physiol.-Cell Ph
Am.J.Physiol-细胞Ph值
285
285
, C546–C554,
,C546–C554,
https://doi.org/10.1152/ajpcell.00424.2002
https://doi.org/10.1152/ajpcell.00424.2002
(2003).
(2003).
Article
文章
CAS
中科院
Google Scholar
谷歌学者
Suwanpradid, J. et al. Arginase 2 deficiency prevents oxidative stress and limits hyperoxia-induced retinal vascular degeneration.
Suwanpradid,J。等人。精氨酸酶2缺乏可防止氧化应激并限制高氧诱导的视网膜血管变性。
PLoS One
公共科学图书馆一号
9
9
, e110604,
,e110604,
https://doi.org/10.1371/journal.pone.0110604
https://doi.org/10.1371/journal.pone.0110604
(2014).
(2014).
Article
文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chan, E. C. et al. Involvement of Nox2 NADPH oxidase in retinal neovascularization.
Chan,E.C.等人。Nox2 NADPH氧化酶参与视网膜新血管形成。
Invest Ophthalmol. Vis. Sci.
投资眼科。可见。。
54
54
, 7061–7067,
, 7061–7067,
https://doi.org/10.1167/iovs.13-12883
https://doi.org/10.1167/iovs.13-12883
(2013).
(2013).
Article
文章
PubMed
PubMed
Google Scholar
谷歌学者
Rojas, M. et al. Requirement of NOX2 expression in both retina and bone marrow for diabetes-induced retinal vascular injury.
。
PLoS One
公共科学图书馆一号
8
8
, e84357,
,e84357,
https://doi.org/10.1371/journal.pone.0084357
https://doi.org/10.1371/journal.pone.0084357
(2013).
(2013).
Article
文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Al-Shabrawey, M. et al. Role of NADPH oxidase in retinal vascular inflammation.
Al-Shabrawey,M。等人。NADPH氧化酶在视网膜血管炎症中的作用。
Invest Ophthalmol. Vis. Sci.
投资眼科。可见。。
49
49
, 3239–3244,
, 3239–3244,
https://doi.org/10.1167/iovs.08-1755
https://doi.org/10.1167/iovs.08-1755
(2008).
(2008).
Article
文章
PubMed
PubMed
Google Scholar
谷歌学者
Yokota, H. et al. Neuroprotection from retinal ischemia/reperfusion injury by NOX2 NADPH oxidase deletion.
Yokota,H。等人。NOX2 NADPH氧化酶缺失对视网膜缺血/再灌注损伤的神经保护作用。
Invest Ophthalmol. Vis. Sci.
投资眼科。可见。。
52
52
, 8123–8131,
, 8123–8131,
https://doi.org/10.1167/iovs.11-8318
https://doi.org/10.1167/iovs.11-8318
(2011).
(2011).
Article
文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Narayanan, S. P. et al. Arginase in retinopathy.
Narayanan,S.P.等人,视网膜病变中的精氨酸酶。
Prog. Retin Eye Res
掠夺。视网膜眼部研究
36
36
, 260–280,
, 260–280,
https://doi.org/10.1016/j.preteyeres.2013.06.002
https://doi.org/10.1016/j.preteyeres.2013.06.002
(2013).
(2013).
Article
文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Moldovan, L. & Moldovan, N. I. Oxygen free radicals and redox biology of organelles.
摩尔多瓦,L。和摩尔多瓦,N.I。氧自由基和细胞器的氧化还原生物学。
Histochem Cell Biol.
组织化学细胞生物学。
122
122
, 395–412,
, 395–412,
https://doi.org/10.1007/s00418-004-0676-y
https://doi.org/10.1007/s00418-004-0676-y
(2004).
(2004).
Article
文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Schonfeld, P. & Wojtczak, L. Fatty acids as modulators of the cellular production of reactive oxygen species.
Schonfeld,P。&Wojtczak,L。脂肪酸作为细胞产生活性氧的调节剂。
Free Radic. Biol. Med
自由基。生物。
45
45
, 231–241,
, 231–241,
https://doi.org/10.1016/j.freeradbiomed.2008.04.029
https://doi.org/10.1016/j.freeradbiomed.2008.04.029
(2008).
(2008).
Article
文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Perez, S., Rius-Perez, S. Macrophage polarization and reprogramming in acute inflammation: a redox perspective.
Perez,S.,Rius-Perez,S。急性炎症中的巨噬细胞极化和重编程:氧化还原观点。
Antioxidants (Basel)
抗氧化剂(巴塞尔)
.
.
11
11
, 1394
, 1394
https://doi.org/10.3390/antiox11071394
https://doi.org/10.3390/antiox11071394
(2022).
(2022).
Fouda, A. Y. et al. Targeting proliferative retinopathy: Arginase 1 limits vitreoretinal neovascularization and promotes angiogenic repair.
Fouda,A.Y.等人。针对增殖性视网膜病变:精氨酸酶1限制玻璃体视网膜新血管形成并促进血管生成修复。
Cell Death Dis.
细胞死亡Dis。
13
13
, 745,
, 745,
https://doi.org/10.1038/s41419-022-05196-8
https://doi.org/10.1038/s41419-022-05196-8
(2022).
(2022).
Article
文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gao, X. et al. Macrophages promote vasculogenesis of retinal neovascularization in an oxygen-induced retinopathy model in mice.
Gao,X。等人。在小鼠氧诱导的视网膜病变模型中,巨噬细胞促进视网膜新血管形成的血管生成。
Cell Tissue Res.
细胞组织研究。
364
364
, 599–610,
, 599–610,
https://doi.org/10.1007/s00441-015-2353-y
https://doi.org/10.1007/s00441-015-2353-y
(2016).
(2016).
Article
文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Li, J. et al. The phase changes of M1/M2 phenotype of microglia/macrophage following oxygen-induced retinopathy in mice.
Li,J。等人。小鼠氧诱导视网膜病变后小胶质细胞/巨噬细胞M1/M2表型的相变。
Inflamm. Res
炎症。没有
.
.
70
70
, 183–192,
, 183–192,
https://doi.org/10.1007/s00011-020-01427-w
https://doi.org/10.1007/s00011-020-01427-w
(2021).
(2021).
Article
文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mechoulam, H. & Pierce, E. A. Expression and activation of STAT3 in ischemia-induced retinopathy.
Mechoulam,H。&Pierce,E.A。缺血诱导的视网膜病变中STAT3的表达和激活。
Invest. Ophthalmol. Vis. Sci.
投资。眼科。可见。。
46
46
, 4409–4416,
, 4409–4416,
https://doi.org/10.1167/iovs.05-0632
https://doi.org/10.1167/iovs.05-0632
(2005).
(2005).
Article
文章
PubMed
PubMed
Google Scholar
谷歌学者
Shahror, R. A. et al. Role of myeloid cells in ischemic retinopathies: recent advances and unanswered questions.
。
J. Neuroinflammation
J、神经炎症
21
21
, 65,
, 65,
https://doi.org/10.1186/s12974-024-03058-y
https://doi.org/10.1186/s12974-024-03058-y
(2024).
(2024).
Article
文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yoshida, S. et al. Role of MCP-1 and MIP-1alpha in retinal neovascularization during postischemic inflammation in a mouse model of retinal neovascularization.
Yoshida,S.等人。MCP-1和MIP-1α在视网膜新生血管小鼠模型缺血后炎症期间视网膜新生血管形成中的作用。
J. Leukoc. Biol.
J.洛伊克。生物。
73
73
, 137–144,
, 137–144,
https://doi.org/10.1189/jlb.0302117
https://doi.org/10.1189/jlb.0302117
(2003).
(2003).
Article
文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cecchini, M. G. et al. Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse.
Cecchini,M.G.等人。集落刺激因子-1在小鼠出生后发育过程中组织巨噬细胞的建立和调节中的作用。
Development
发展
120
120
, 1357–1372,
, 1357–1372,
https://doi.org/10.1242/dev.120.6.1357
https://doi.org/10.1242/dev.120.6.1357
(1994).
(1994).
Article
文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Aharinejad, S. et al. Colony-stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice.
Aharinejad,S。等人。通过反义寡核苷酸和小干扰RNA阻断集落刺激因子-1抑制小鼠中人乳腺肿瘤异种移植物的生长。
Cancer Res
癌症研究
64
64
, 5378–5384,
, 5378–5384,
https://doi.org/10.1158/0008-5472.CAN-04-0961
https://doi.org/10.1158/0008-5472.CAN-04-0961
(2004).
(2004).
Article
文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rojas, M. A., Shen, Z. T., Caldwell, R. B. & Sigalov, A. B. Blockade of TREM-1 prevents vitreoretinal neovascularization in mice with oxygen-induced retinopathy.
Rojas,M.A.,Shen,Z.T.,Caldwell,R.B。和Sigalov,A.B。阻断TREM-1可预防氧诱导视网膜病变小鼠的玻璃体视网膜新血管形成。
Biochim Biophys. Acta Mol. Basis Dis.
Biochim Biophys公司。分子基础学报。
1864
1864
, 2761–2768,
, 2761–2768,
https://doi.org/10.1016/j.bbadis.2018.05.001
https://doi.org/10.1016/j.bbadis.2018.05.001
(2018).
(2018).
Article
文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Colonna, M. & Facchetti, F. TREM-1 (triggering receptor expressed on myeloid cells): a new player in acute inflammatory responses.
Colonna,M。&Facchetti,F。TREM-1(在骨髓细胞上表达的触发受体):急性炎症反应的新参与者。
J. Infect. Dis.
J、 感染。。
187
187
, S397–S401,
,S397–S401,
https://doi.org/10.1086/374754
https://doi.org/10.1086/374754
(2003).
(2003).
Article
文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mishra, K. P., Jain, S., Ganju, L. & Singh, S. B. Hypoxic stress induced TREM-1 and inflammatory chemokines in human peripheral blood mononuclear cells.
Mishra,K.P.,Jain,S.,Ganju,L。&Singh,S.B。低氧应激诱导人外周血单核细胞中的TREM-1和炎性趋化因子。
Indian J. Clin. Biochem
印度J.Clin。生物化学
.
.
29
29
, 133–138,
, 133–138,
https://doi.org/10.1007/s12291-013-0345-9
https://doi.org/10.1007/s12291-013-0345-9
(2014).
(2014).
Article
文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ferat-Osorio, E. et al. The increased expression of TREM-1 on monocytes is associated with infectious and noninfectious inflammatory processes.
Ferat Osorio,E。等人。单核细胞上TREM-1表达的增加与感染性和非感染性炎症过程有关。
J. Surg. Res
J.外科医生。
150
150
, 110–117,
, 110–117,
https://doi.org/10.1016/j.jss.2007.12.805
https://doi.org/10.1016/j.jss.2007.12.805
(2008).
(2008).
Article
文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Xu, P. et al. Microglial TREM-1 receptor mediates neuroinflammatory injury via interaction with SYK in experimental ischemic stroke.
Xu,P。等人。小胶质细胞TREM-1受体在实验性缺血性中风中通过与SYK相互作用介导神经炎症损伤。
Cell Death Dis.
细胞死亡Dis。
10
10
, 555,
, 555,
https://doi.org/10.1038/s41419-019-1777-9
https://doi.org/10.1038/s41419-019-1777-9
(2019).
(2019).
Article
文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhao, T. et al. Inhibition of TREM-1 alleviates neuroinflammation by modulating microglial polarization via SYK/p38MAPK signaling pathway after traumatic brain injury.
Zhao,T。等人。在创伤性脑损伤后,通过SYK/p38MAPK信号通路调节小胶质细胞极化,抑制TREM-1减轻神经炎症。
Brain Res.
大脑研究。
1834
1834
, 148907,
, 148907,
https://doi.org/10.1016/j.brainres.2024.148907
https://doi.org/10.1016/j.brainres.2024.148907
(2024).
(2024).
Article
文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Jove, M. et al. Lipids and lipoxidation in human brain aging. Mitochondrial ATP-synthase as a key lipoxidation target.
Jove,M。等人。人脑衰老中的脂质和脂质氧化。线粒体ATP合酶作为关键的脂质氧化靶标。
Redox Biol.
氧化还原生物。
23
23
, 101082,
, 101082,
https://doi.org/10.1016/j.redox.2018.101082
https://doi.org/10.1016/j.redox.2018.101082
(2019).
(2019).
Article
文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yin, F. Lipid metabolism and Alzheimer’s disease: clinical evidence, mechanistic link and therapeutic promise.
Yin,F。脂质代谢和阿尔茨海默病:临床证据,机制联系和治疗前景。
FEBS J.
FEBS J。
290
290
, 1420–1453,
, 1420–1453,
https://doi.org/10.1111/febs.16344
https://doi.org/10.1111/febs.16344
(2023).
(2023).
Article
文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gonen, A. & Miller, Y. I. From inert storage to biological activity-in search of identity for oxidized cholesteryl esters.
Gonen,A。&Miller,Y.I。从惰性储存到生物活性,以寻找氧化胆固醇酯的身份。
Front Endocrinol. (Lausanne)
前内分泌。
11
11
, 602252,
, 602252,
https://doi.org/10.3389/fendo.2020.602252
https://doi.org/10.3389/fendo.2020.602252
(2020).
(2020).
Article
文章
PubMed
PubMed
Google Scholar
谷歌学者
Zysset, D. et al. TREM-1 links dyslipidemia to inflammation and lipid deposition in atherosclerosis.
Zysset,D。等人TREM-1将血脂异常与动脉粥样硬化中的炎症和脂质沉积联系起来。
Nat. Commun.
Nat.普通。
7
7
, 13151,
, 13151,
https://doi.org/10.1038/ncomms13151
https://doi.org/10.1038/ncomms13151
(2016).
(2016).
Article
文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, Q. et al. Impaired lipophagy induced-microglial lipid droplets accumulation contributes to the buildup of TREM1 in diabetes-associated cognitive impairment.
Li,Q。等人。受损的脂质自噬诱导的小胶质细胞脂滴积聚有助于糖尿病相关认知障碍中TREM1的积累。
Autophagy
自噬
19
19
, 2639–2656
, 2639–2656
https://doi.org/10.1080/15548627.2023.2213984
https://doi.org/10.1080/15548627.2023.2213984
(2023).
(2023).
Article
文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hai, Q., & Smith, J. D. Acyl-Coenzyme A: Cholesterol Acyltransferase (ACAT) in cholesterol metabolism: from its discovery to clinical trials and the genomics era.
Hai,Q.,&Smith,J.D。酰基辅酶A:胆固醇代谢中的胆固醇酰基转移酶(ACAT):从发现到临床试验和基因组学时代。
Metabolites
代谢物
.
.
11
11
, 543,
, 543,
https://doi.org/10.3390/metabo11080543
https://doi.org/10.3390/metabo11080543
(2021).
(2021).
Saadane, A. et al. Retinal hypercholesterolemia triggers cholesterol accumulation and esterification in photoreceptor cells.
Saadane,A。等人。视网膜高胆固醇血症触发感光细胞中胆固醇的积累和酯化。
J. Biol. Chem.
J.生物学。化学。
291
291
, 20427–20439,
, 20427–20439,
https://doi.org/10.1074/jbc.M116.744656
https://doi.org/10.1074/jbc.M116.744656
(2016).
(2016).
Article
文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chang, C. C., Huh, H. Y., Cadigan, K. M. & Chang, T. Y. Molecular cloning and functional expression of human acyl-coenzyme A:cholesterol acyltransferase cDNA in mutant Chinese hamster ovary cells.
Chang,C.C.,Huh,H.Y.,Cadigan,K.M。&Chang,T.Y。人酰基辅酶A:胆固醇酰基转移酶cDNA在突变中国仓鼠卵巢细胞中的分子克隆和功能表达。
J. Biol. Chem.
J.生物学。化学。
268
268
, 20747–20755 (1993).
, 20747–20755 (1993).
Article
文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chen, L. et al. ACAT1 and metabolism-related pathways are essential for the progression of clear cell renal cell carcinoma (ccRCC), as determined by co-expression network analysis.
通过共表达网络分析确定,ACAT1和代谢相关途径对于透明细胞肾细胞癌(ccRCC)的进展至关重要。
Front Oncol.
前部Oncol。
9
9
, 957,
, 957,
https://doi.org/10.3389/fonc.2019.00957
https://doi.org/10.3389/fonc.2019.00957
(2019).
(2019).
Article
文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shibuya, K. et al. Brain Targeting of Acyl-CoA:Cholesterol O-Acyltransferase-1 Inhibitor K-604 via the intranasal route using a hydroxycarboxylic acid solution.
。
ACS Omega
ACS欧米茄
4
4
, 16943–16955,
, 16943–16955,
https://doi.org/10.1021/acsomega.9b02307
https://doi.org/10.1021/acsomega.9b02307
(2019).
(2019).
Article
文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, Y. T. et al. ACAT-1 gene polymorphism is associated with increased susceptibility to coronary artery disease in Chinese Han population: a case-control study.
Wang,Y。T。等。ACAT-1基因多态性与中国汉族人群冠心病易感性增加相关:一项病例对照研究。
Oncotarget
肿瘤靶点
8
8
, 89055–89063,
, 89055–89063,
https://doi.org/10.18632/oncotarget.21649
https://doi.org/10.18632/oncotarget.21649
(2017).
(2017).
Article
文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sakashita, N. et al. Cholesterol loading in macrophages stimulates formation of ER-derived vesicles with elevated ACAT1 activity.
Sakashita,N。等人。巨噬细胞中的胆固醇负荷刺激具有升高的ACAT1活性的ER衍生囊泡的形成。
J. Lipid Res.
J、 脂质研究。
51
51
, 1263–1272,
, 1263–1272,
https://doi.org/10.1194/jlr.M900288
https://doi.org/10.1194/jlr.M900288
(2010).
(2010).
Article
文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zaidi, S. A. H. et al. Role of acyl-coenzyme A: cholesterol transferase 1 (ACAT1) in retinal neovascularization.
Zaidi,S.A.H.等人。酰基辅酶A:胆固醇转移酶1(ACAT1)在视网膜新血管形成中的作用。
J. Neuroinflammation
J、神经炎症
20
20
, 14,
, 14,
https://doi.org/10.1186/s12974-023-02700-5
https://doi.org/10.1186/s12974-023-02700-5
(2023).
(2023).
Article
文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Inague, A. et al. Oxygen-induced pathological angiogenesis promotes intense lipid synthesis and remodeling in the retina.
Inague,A。等人。氧诱导的病理性血管生成促进视网膜中强烈的脂质合成和重塑。
iScience
iScience
26
26
, 106777,
, 106777,
https://doi.org/10.1016/j.isci.2023.106777
https://doi.org/10.1016/j.isci.2023.106777
(2023).
(2023).
Article
文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Amato, R. et al. VEGF as a survival factor in ex vivo models of early diabetic retinopathy.
Amato,R。等人。VEGF作为早期糖尿病视网膜病变离体模型中的存活因子。
Invest Ophthalmol. Vis. Sci.
投资眼科。可见。。
57
57
, 3066–3076,
, 3066–3076,
https://doi.org/10.1167/iovs.16-19285
https://doi.org/10.1167/iovs.16-19285
(2016).
(2016).
Article
文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gerber, H. P. et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3’-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation.
血管内皮生长因子通过磷脂酰肌醇3'-激酶/Akt信号转导途径调节内皮细胞的存活。Flk-1/KDR激活的要求。
J. Biol. Chem.
J.生物学。化学。
273
273
, 30336–30343,
, 30336–30343,
https://doi.org/10.1074/jbc.273.46.30336
https://doi.org/10.1074/jbc.273.46.30336
(1998).
(1998).
Article
文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Shi, X. et al. Inhibition of TNF-alpha reduces laser-induced choroidal neovascularization.
Shi,X。等人。抑制TNF-α可减少激光诱导的脉络膜新生血管形成。
Exp. Eye Res
Exp.Eye Res公司
.
.
83
83
, 1325–1334,
, 1325–1334,
https://doi.org/10.1016/j.exer.2006.07.007
https://doi.org/10.1016/j.exer.2006.07.007
(2006).
(2006).
Article
文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lei, L. et al. TNF-alpha stimulates the ACAT1 expression in differentiating monocytes to promote the CE-laden cell formation.
Lei,L。等人。TNF-α刺激分化单核细胞中的ACAT1表达,以促进富含CE的细胞形成。
J. Lipid Res
J、 脂质Res
50
50
, 1057–1067,
, 1057–1067,
https://doi.org/10.1194/jlr.M800484-JLR200
https://doi.org/10.1194/jlr.M800484-JLR200
(2009).
(2009).
Article
文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, C. et al. The role of triggering receptor expressed on myeloid cells-1 (TREM-1) in central nervous system diseases.
Zhang,C。等。髓样细胞表达的触发受体-1(TREM-1)在中枢神经系统疾病中的作用。
Mol. Brain
分子大脑
15
15
, 84,
, 84,
https://doi.org/10.1186/s13041-022-00969-w
https://doi.org/10.1186/s13041-022-00969-w
(2022).
(2022).
Article
文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bae, Y. S. et al. Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein: toll-like receptor 4- and spleen tyrosine kinase-dependent activation of NADPH oxidase 2.
Bae,Y.S.等人。巨噬细胞产生活性氧,以响应最低程度氧化的低密度脂蛋白:toll样受体4和脾脏酪氨酸激酶依赖性NADPH氧化酶2的激活。
Circ. Res
Circ。没有
104
104
, 210–218
, 210–218
https://doi.org/10.1161/CIRCRESAHA.108.181040
https://doi.org/10.1161/CIRCRESAHA.108.181040
(2009).
(2009).
Article
文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Li, H., et al. ACAT1/SOAT1 blockade suppresses LPS-mediated neuroinflammation by modulating the fate of toll-like receptor 4 in microglia.
Li,H。等人。ACAT1/SOAT1阻断通过调节小胶质细胞中toll样受体4的命运来抑制LPS介导的神经炎症。
Int. J. Mol. Sci
国际分子科学杂志
.
.
24
24
, 5616,
, 5616,
https://doi.org/10.3390/ijms24065616
https://doi.org/10.3390/ijms24065616
(2023).
(2023).
Choi, S. H. et al. Polyoxygenated cholesterol ester hydroperoxide activates TLR4 and SYK dependent signaling in macrophages.
Choi,S.H.等人。多氧胆固醇酯氢过氧化物激活巨噬细胞中的TLR4和SYK依赖性信号传导。
PLoS One
公共科学图书馆一号
8
8
, e83145,
,e83145,
https://doi.org/10.1371/journal.pone.0083145
https://doi.org/10.1371/journal.pone.0083145
(2013).
(2013).
Article
文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Murphy, R. C. & Johnson, K. M. Cholesterol, reactive oxygen species, and the formation of biologically active mediators.
Murphy,R.C。和Johnson,K.M。胆固醇,活性氧和生物活性介质的形成。
J. Biol. Chem.
J.生物学。化学。
283
283
, 15521–15525,
, 15521–15525,
https://doi.org/10.1074/jbc.R700049200
https://doi.org/10.1074/jbc.R700049200
(2008).
(2008).
Article
文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pan, P. et al. TREM-1 promoted apoptosis and inhibited autophagy in LPS-treated HK-2 cells through the NF-kappaB pathway.
Pan,P。等人。TREM-1通过NF-κB途径促进LPS处理的HK-2细胞凋亡并抑制自噬。
Int J. Med Sci.
国际医学科学杂志。
18
18
, 8–17,
, 8–17,
https://doi.org/10.7150/ijms.50893
https://doi.org/10.7150/ijms.50893
(2021).
(2021).
Article
文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download references
下载参考资料
Acknowledgements
致谢
We acknowledge Ta-Yuan Chang, PhD, and Catherine Chung-Yao Chang, PhD, Geisel School of Medicine, Hanover, NH for providing feedback. We also acknowledge Dhruvi Pandya, Medical Student at MCG for reading and suggesting corrections. The figure was generated using BioRender, under CC-BY licensing (Creative Commons).
我们感谢新罕布什尔州汉诺威市Geisel医学院的Ta Yuan Chang博士和Catherine Chung Yao Chang博士提供的反馈。我们也感谢MCG医学生Dhruvi Pandya的阅读和建议。该数字是在CC-BY许可(知识共享)下使用BioRender生成的。
This study was supported by grants from the National Institute of Health R21EY032265 and 1R01EY035683 to MAR and RBC, and P30EY031631 to the Culver Vision Discovery Institute at Augusta University..
。。
Author information
作者信息
Author notes
作者笔记
These authors contributed equally: Syed A. H. Zaidi, Modesto A. Rojas.
这些作者做出了同样的贡献:Syed A.H.Zaidi,Modesto A.Rojas。
Authors and Affiliations
作者和隶属关系
Vascular Biology Center, Augusta University, Augusta, GA, 30912, USA
血管生物学中心,奥古斯塔大学,奥古斯塔,佐治亚州,30912,美国
Syed A. H. Zaidi, Ruth B. Caldwell & Modesto A. Rojas
赛义德A。H。扎伊迪,露丝B。考德威尔和莫德斯托A。罗哈斯
Vision Discovery Institute, Augusta University, Augusta, GA, 30912, USA
奥古斯塔大学视觉发现研究所,奥古斯塔,佐治亚州,30912,美国
Syed A. H. Zaidi, Ruth B. Caldwell & Modesto A. Rojas
赛义德A。H。扎伊迪,露丝B。考德威尔和莫德斯托A。罗哈斯
Department of Medicine, Augusta University, Augusta, GA, 30912, USA
奥古斯塔大学医学系,佐治亚州奥古斯塔,30912,美国
Syed A. H. Zaidi
Syed A.H.更多
Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, 30912, USA
奥古斯塔大学细胞生物学与解剖学系,美国佐治亚州奥古斯塔30912
Ruth B. Caldwell
露丝·B·考德威尔
Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, 30912, USA
奥古斯塔大学药理学和毒理学系,佐治亚州奥古斯塔,30912,美国
Modesto A. Rojas
谦虚的,谦虚的
Authors
作者
Syed A. H. Zaidi
Syed A.H.更多
View author publications
查看作者出版物
You can also search for this author in
您也可以在中搜索此作者
PubMed
PubMed
Google Scholar
谷歌学者
Ruth B. Caldwell
露丝·B·考德威尔
View author publications
查看作者出版物
You can also search for this author in
您也可以在中搜索此作者
PubMed
PubMed
Google Scholar
谷歌学者
Modesto A. Rojas
谦虚的,谦虚的
View author publications
查看作者出版物
You can also search for this author in
您也可以在中搜索此作者
PubMed
PubMed
Google Scholar
谷歌学者
Contributions
捐款
MAR wrote the first draft of the perspective. SAHZ and RBC provided critical feedback and revised the manuscript. SAHZ prepared the figure with input from MAR and RBC. SAHZ and MAR share equal first authorship for this article. Both RBC and MAR share correspondence for this article. All authors revised and approved the final manuscript..
马尔写了《透视图》的初稿。SAHZ和RBC提供了重要的反馈并修改了手稿。SAHZ根据MAR和RBC的输入准备了这个数字。SAHZ和MAR在本文中拥有同等的第一作者身份。RBC和MAR都有本文的通信。所有作者都修改并批准了最终稿件。。
Corresponding authors
通讯作者
Correspondence to
通信对象
Ruth B. Caldwell
露丝·B·考德威尔
or
或
Modesto A. Rojas
谦虚的,谦虚的
.
.
Ethics declarations
道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Additional information
其他信息
Publisher’s note
出版商注释
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。
Rights and permissions
权限和权限
Open Access
开放存取
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit .
要查看此许可证的副本,请访问。
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
.
.
Reprints and permissions
重印和许可
About this article
关于本文
Cite this article
引用本文
Zaidi, S.A.H., Caldwell, R.B. & Rojas, M.A. Myeloid ACAT1/SOAT1: a novel regulator of dyslipidemia and retinal neovascularization.
Zaidi,S.A.H.,Caldwell,R.B。&Rojas,M.A。髓样ACAT1/SOAT1:血脂异常和视网膜新生血管形成的新型调节剂。
npj Metab Health Dis
npj代谢健康疾病
3
3
, 2 (2025). https://doi.org/10.1038/s44324-024-00046-x
2 (2025).https://doi.org/10.1038/s44324-024-00046-x
Download citation
下载引文
Received
已接收
:
:
17 September 2024
2024年9月17日
Accepted
已接受
:
:
11 December 2024
2024年12月11日
Published
已发布
:
:
13 January 2025
2025年1月13日
DOI
DOI
:
:
https://doi.org/10.1038/s44324-024-00046-x
https://doi.org/10.1038/s44324-024-00046-x
Share this article
分享这篇文章
Anyone you share the following link with will be able to read this content:
与您共享以下链接的任何人都可以阅读此内容:
Get shareable link
获取可共享链接
Sorry, a shareable link is not currently available for this article.
很抱歉,本文目前没有可共享的链接。
Copy to clipboard
复制到剪贴板
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供