EN
登录

无标签定量蛋白质组学分析揭示了拟南芥对肉桂精油的生理和生化反应

Label free quantitative proteomic analysis reveals the physiological and biochemical responses of Arabidopsis thaliana to cinnamon essential oil

Nature 等信源发布 2025-02-20 19:20

可切换为仅中文


Abstract

摘要

The increasing use of synthetic chemical herbicides has resulted in environmental, human and animal health issues. This has also led to the development of herbicide resistance in weed populations. The use of essential oils (EOs) can contribute to the development of effective, eco-friendly and nature-based alternatives to these chemical products due to their phytotoxicity and multisite action.

合成化学除草剂的日益使用已导致环境、人类和动物健康问题。这也促使杂草种群中出现了除草剂抗性。由于精油(EOs)具有植物毒性和多靶点作用,它们的使用有助于开发有效、环保且基于自然的化学产品替代品。

Our study aimed to evaluate the proteomic response of .

我们的研究旨在评估 的蛋白质组学反应。

Arabidopsis thaliana

拟南芥

(

(

A. thaliana

拟南芥

) leaves to the application of a cinnamon essential oil (CEO) emulsion. The results showed that the application of CEO emulsion at a concentration of 6% severely impacted the proteomic profile of

)留下应用于肉桂精油(CEO)乳液。结果表明,浓度为6%的CEO乳液的应用严重影响了

A. thaliana

拟南芥

, especially for membrane proteins and those involved in the photosynthesis process. Interestingly, 40 proteins were identified and listed as the most differentially accumulated proteins in the leaves of

,特别是膜蛋白和那些参与光合作用过程的蛋白。有趣的是,40种蛋白质被鉴定并列为在叶片中差异积累最显著的蛋白质。

A. thaliana

拟南芥

. CEO decreased the expression of all the proteins associated with catabolism and anabolism processes while simultaneously increasing the expression levels of proteins involved in the response to oxidative stress. Overall, these findings allowed us to obtain a global view of the proteome response to CEO, opening promising perspectives for the development of natural herbicides, especially given the low probability of developing resistant weed populations..

CEO降低了所有与分解代谢和合成代谢过程相关的蛋白质的表达,同时增加了参与氧化应激反应的蛋白质的表达水平。总体而言,这些发现使我们能够全面了解蛋白质组对CEO的响应,为开发天然除草剂开辟了广阔的前景,特别是考虑到产生抗性杂草种群的可能性较低。

Introduction

简介

The intensive use of chemical pesticides is one of the major causes of biodiversity loss. It has also contributed to the development of many pesticide-resistant weed species worldwide

大量使用化学农药是导致生物多样性丧失的主要原因之一。它还促使了全球许多抗药性杂草种类的产生。

1

1

. In fact, 211 weed species have been recently identified as herbicide resistant

事实上,最近已确定211种杂草对除草剂具有抗性

2

2

. Globally, there are 404 herbicide-resistant weed species (species × site of action). Weeds resistant to acetolactate synthase (ALS) inhibitors make up approximately one-third of all cases (133 out of 404) and are particularly problematic for rice and other cereals

在全球范围内,共有404种除草剂抗性杂草(物种×作用位点)。其中,对乙酰乳酸合成酶(ALS)抑制剂产生抗性的杂草约占所有案例的三分之一(404例中的133例),尤其对水稻和其他谷物造成严重问题。

3

3

. Unlike chemical herbicides, which have a well-defined single site of action, bioherbicides based on allelochemical molecules stand out because of their multisite actions

与具有明确单一作用位点的化学除草剂不同,基于化感分子的生物除草剂因其多作用位点而脱颖而出。

4

4

. For these reasons, the current agricultural system needs to change its practices by not only reducing the use of chemical herbicides but also using more sustainable solutions such as bioherbicides. The latter are defined as natural products used to control weeds and can be based on natural metabolites produced by living organisms, including plants and microbes.

由于这些原因,当前的农业系统需要改变其做法,不仅减少化学除草剂的使用,还要使用更可持续的解决方案,如生物除草剂。后者被定义为用于控制杂草的天然产品,可以基于由包括植物和微生物在内的生物体产生的天然代谢物。

2

2

.

Currently, agrochemical companies are becoming increasingly interested in ecofriendly products and are investing in the research and development of biopesticides

目前,农化公司对环保产品越来越感兴趣,并正在投资于生物农药的研发。

1

1

. For more than three decades, the agricultural chemical sector has not introduced any new herbicides with novel sites of action, which has made farmers dependent on existing herbicides

在过去的三十多年里,农业化工领域没有推出任何具有新颖作用位点的新型除草剂,这使得农民依赖于现有的除草剂。

5

5

. Hence, it is crucial to develop a new generation of botanical herbicides with new modes of action. In this sense, essential oils (EOs) could be among the best candidates.

因此,开发新一代具有新作用模式的植物除草剂至关重要。在这方面,精油(EOs)可能是最佳候选者之一。

EOs contain secondary metabolites produced by aromatic plants in response to biotic and abiotic stresses and provide a number of ecological advantages to plants. They contain many active compounds that are distinguished by multisite actions in plant cells, which could slow the resistance of weeds to weed killers.

精油含有芳香植物在生物和非生物胁迫下产生的次生代谢物,为植物提供了许多生态优势。它们包含许多活性化合物,这些化合物在植物细胞中具有多靶点作用,可以减缓杂草对除草剂的抗性。

Another advantage of EOs is that they cause no constraint on the environment due to their high volatility and biodegradability. Moreover, EOs have shown promising herbicidal activity. Considering these factors, they constitute a good alternative to chemical herbicides.

精油的另一个优势是,由于其高挥发性和可生物降解性,它们对环境没有任何限制。此外,精油显示出良好的除草活性。考虑到这些因素,它们构成了化学除草剂的良好替代品。

6

6

,

7

7

,

8

8

.

The phytotoxic effect of EOs on plants has been widely reported for the last 20 years. Numerous studies have shown this effect through the inhibition of seed germination and seedling growth

植物精油对植物的植物毒性效应在过去的20年里已被广泛报道。大量研究通过种子萌发和幼苗生长的抑制作用展示了这一效应。

9

9

,

10

10

,

11

11

,

12

12

,

13

13

,

14

14

,

15

15

,

16

16

,

17

17

. For example, it has been shown that

。例如,已经表明

Rosmarinus officinalis

迷迭香

EO, at lower concentrations, slows down the seedling growth of

环氧乙烷在较低浓度下会减缓幼苗的生长。

Trifolium incarnatum

绛车轴草

,

Silybum marianum

水飞蓟

, and

,以及

Phalaris minor

小型芒草

, but at 5 mM, it completely inhibits seed germination

,但在5 mM时,它完全抑制种子萌发

11

11

. This is similar to the finding

。这一发现类似

12

12

, who reported that

,谁报告说

Thymbra capitata

百里香属头状花序

EO inhibited the germination and seedling growth of

EO抑制了种子的萌发和幼苗生长

Erigeron canadensis L

加拿大一枝黄花

.,

.,

Sonchus oleraceus

菊苣

(L.) L., and

(L.) L., 和

Chenopodium album L

白藜

. at 0.125 µL/ml.

在0.125 µL/ml。

In addition, several studies have described the site(s) of action of EOs

此外,一些研究描述了EOs的作用位点。

18

18

,

19

19

,

20

20

,

21

21

. These studies have shown that EOs can target the plasma membrane, cell wall, mitochondrial respiration and photosynthesis system. In fact, they can disturb the physiology and metabolic functions of weeds and lead to cell death. Nevertheless, no study has investigated the effect of EOs on the protein expression of plants..

这些研究已经表明,EOs可以靶向细胞膜、细胞壁、线粒体呼吸和光合系统。事实上,它们可以扰乱杂草的生理和代谢功能,并导致细胞死亡。然而,尚无研究调查EOs对植物蛋白质表达的影响。

Cinnamomum cassia

肉桂

has been traditionally used to treat gastritis and dyspepsia, blood circulation disturbances and inflammatory diseases

传统上用于治疗胃炎、消化不良、血液循环障碍和炎症性疾病

22

22

,

23

二十三

. Moreover,

此外,

Cinnamomum cassia

肉桂

EO (CEO), like many EOs, has many medicinal and pharmacological properties, particularly antioxidant, neuroprotective, anticancer and antidiabetic properties

EO(首席执行官)像许多EO一样,具有多种药用和药理特性,特别是抗氧化、神经保护、抗癌和抗糖尿病特性。

24

24

,

25

25

,

26

26

,

27

27

,

28

28

,

29

29

. It has been described in the literature that CEO has fungicidal

文献中已描述过CEO具有杀真菌作用

30

30

,

31

31

,

32

32

bactericidal

杀菌的

27

27

, insecticidal

,杀虫的

33

33

,

34

34

,

35

35

and herbicidal

除草的

17

17

,

19

19

,

36

36

activities, as described recently, and could be a promising alternative for chemical pesticides. To develop a better understanding of the phytotoxic effects of CEO, a label-free proteomic approach was adopted in this study to obtain a global view of the proteome response to CEO. The obtained results provide insights into the complex mode of action of CEO on .

活动,如最近所述,可以成为化学农药的一种有前途的替代品。为了更好地理解CEO的植物毒性效应,本研究采用了一种无标记的蛋白质组学方法,以获得对CEO蛋白组响应的整体视图。所得结果提供了对CEO复杂作用模式的见解。

A. thaliana

拟南芥

.

Methods

方法

Preparation of an herbicide solution based on cinnamon essential oil

基于肉桂精油的除草剂溶液的制备

CEO was purchased from Vossen & Co. (Av. Van Volxem 264/C1, 1190 Bruxelles, Belgium). The technical data sheet obtained through GC‒MS analysis revealed that the major compound was trans-cinnamaldehyde. The essential oil was formulated in water as an oil-in-water emulsion with 1% Tween 20 from Sigma‒Aldrich, which was used as a surfactant.

CEO是从Vossen & Co.(比利时布鲁塞尔Van Volxem大道264/C1号,邮编1190)购买的。通过GC-MS分析获得的技术数据表显示,主要化合物为反式肉桂醛。该精油被配制成水包油乳液,使用Sigma-Aldrich的1% Tween 20作为表面活性剂。

Moreover, the concentrations of the EO were selected based on preliminary tests and literature references.

此外,EO的浓度是基于初步测试和文献参考选择的。

17

17

,

19

19

.

Postemergence test under greenhouse conditions

温室条件下的出苗后试验

A postemergence experiment was conducted to study the herbicidal effect of CEO on four-week-old

进行了一项出苗后试验,以研究CEO对四周大的植物的除草效果

A. thaliana

拟南芥

under controlled conditions. The greenhouse was maintained at a natural photoperiod supplemented with artificial light if needed, with temperatures set at 20 ± 3 °C according to the sunlight. The relative humidity was maintained at 60 ± 3%. Seeds of

在受控条件下,温室保持自然光周期,必要时补充人工光照,温度根据阳光情况设定为20±3°C,相对湿度保持在60±3%。种子

A. thaliana

拟南芥

were sown in 10 × 10 cm pots (one plant per pot). The plants were watered daily to maintain adequate soil moisture and promote uniform germination and growth. Once the weeds reached the 2–3 leaf stage (after 4 weeks), two solutions were sprayed (4 mL) on leaves using small Trigger Sprayer (100 ml): (1) a negative control containing 1% Tween 20 and (2) a formulated CEO.

种子被播种在10×10厘米的花盆中(每盆一株)。每天浇水以保持适当的土壤湿度,促进均匀的发芽和生长。当杂草长到2-3叶期(4周后),使用小型喷雾瓶(100毫升)将两种溶液(各4毫升)喷洒在叶片上:(1)含1% Tween 20的阴性对照溶液,(2)配制的CEO溶液。

Four replicates were considered for each condition, with each replicate containing 5 plants..

每种条件下考虑了四个重复,每个重复包含5株植物。

One hour after the plants were sprayed with CEO on the leaves, the plant material was collected. The second and third leaves were harvested, snap-frozen in liquid nitrogen, and stored at -80 °C. Three plants per treatment were kept to evaluate the phytotoxic effect over a 48-hour period. Additionally, after the CEO treatment, the watering remains consistent through the bottom of the pot (which has drainage holes) using a watering tray.

在植物叶片上喷洒CEO一小时后,收集了植物材料。收获第二和第三片叶子,用液氮速冻,并储存在-80°C。每种处理保留三株植物,以评估48小时内的植物毒性效应。此外,在CEO处理后,通过带排水孔的花盆底部使用浇水盘保持浇水一致。

In this case, the plants will not be affected by any water stress during the treatment. To assess the green coverage percentage during this evaluation, ImageJ software was used with the following equation:.

在这种情况下,在处理过程中植物不会受到任何水分胁迫的影响。为了评估此期间的绿色覆盖率,使用了ImageJ软件,并采用了以下公式:。

$${\text{Green coverage percentage }}\left( \% \right){\text{ }} = \frac{{~{\text{green}}~{\text{surface}}~{\text{area of plant}}}}{{{\text{Total}}~{\text{surface}}~{\text{area}}~{\text{of}}~{\text{plant}}}}*100,$$

绿色覆盖率(%)= (植物的绿色表面积 / 植物的总表面积)* 100,

(1)

(1)

In the ImageJ analysis, the total surface area of A.

在ImageJ分析中,A的总表面积。

thaliana

拟南芥

was calculated using a broader fixed saturation range of 30 to 110, which accounts for all visible leaf tissues. This range ensures that damaged or discolored leaves are also included in the measurement. For the green surface area of the plant, this parameter represents the total area of the green parts of the leaves.

使用了更宽的固定饱和度范围30到110进行计算,这一范围涵盖了所有可见的叶片组织。该范围确保受损或变色的叶片也包含在测量中。对于植物的绿色表面积,此参数代表叶片绿色部分的总面积。

In the ImageJ analysis, it was calculated using a fixed saturation range of 50 to 110, which specifically isolates the actively photosynthetic tissue. This range ensures that only the green, functional leaf areas are included in the measurement. A reduction in green surface area is an indicator of the CEO effect on the plant’s ability to photosynthesize, reflecting damage to the chlorophyll-containing tissues..

在ImageJ分析中,使用了固定的饱和度范围50到110进行计算,该范围专门分离出活跃的光合作用组织。这个范围确保只有绿色、功能正常的叶片区域被纳入测量。绿色表面面积的减少反映了CEO效应对植物光合作用能力的影响,表明含叶绿素组织受到了损伤。

Protein extraction

蛋白质提取

A. thaliana

拟南芥

was chosen as a model plant because the full genome information was already available. For each sample, fresh matter from

被选为模式植物是因为其完整的基因组信息已经可用。对于每个样本,新鲜材料来自

A. thaliana

拟南芥

leaves was homogenized in a Potter homogenizer (Wheaton, IL, United States) in 800 mL of homogenization buffer (8 M urea, 100 mM TEAB (triethylammonium bicarbonate), pH 8.5 (HCl), 2 mM EDTA, 10 mM dithiothreitol (DTT), protease inhibitor mix composed of 1 mM phenylmethylsulfonyl fluoride (PMSF, Merck-Sigma-Aldrich, Darmstadt, Germany), 2 µg/mL each of leupeptin (Carl Roth, Karlsruhe, Germany), aprotinin (Carl Roth, Karlsruhe, Germany), antipain (Carl Roth, Karlsruhe, Germany), pepstatin (Carl Roth, Karlsruhe, Germany), and chymostatin (Merck-Sigma-Aldrich, Darmstadt, Germany), and 0.6% w/v polyvinylpolypyrrolidone (Polyclar.

叶子在800毫升的匀浆缓冲液中使用Potter匀浆器(Wheaton,伊利诺伊州,美国)进行匀浆,匀浆缓冲液包含8 M尿素、100 mM TEAB(三乙基铵碳酸氢盐)、pH 8.5(HCl)、2 mM EDTA、10 mM二硫苏糖醇(DTT)、蛋白酶抑制剂混合物(由1 mM苯甲基磺酰氟(PMSF,Merck-Sigma-Aldrich,达姆施塔特,德国)、每种2 µg/mL的亮抑酶肽(Carl Roth,卡尔斯鲁厄,德国)、抑肽酶(Carl Roth,卡尔斯鲁厄,德国)、抗痛素(Carl Roth,卡尔斯鲁厄,德国)、胃蛋白酶素(Carl Roth,卡尔斯鲁厄,德国)和胰凝乳蛋白酶素(Merck-Sigma-Aldrich,达姆施塔特,德国)组成),以及0.6% w/v聚乙烯聚吡咯烷酮(Polyclar)。

®

®

AT, SERVA Electrophoresis GmbH, Heidelberg, Germany). The homogenate was centrifuged for 5 min at 9000 rpm at 4 °C, and the supernatant was then centrifuged again at 54,000 rpm (TLAA55, Optima-Beckman, Indianapolis, USA) for 30 min at 4 °C. To separate the soluble and membrane fractions. Each sample after ultracentrifugation therefore gives two fractions, a supernatant called soluble fraction and a pellet called membrane fraction.

AT,SERVA电泳有限公司,海德堡,德国)。将匀浆在4°C下以9000 rpm离心5分钟,然后将上清液再次在4°C下以54,000 rpm(TLAA55,Optima-Beckman,印第安纳波利斯,美国)离心30分钟,以分离可溶性部分和膜部分。每个超速离心后的样品因此得到两个部分,上清液称为可溶性部分,沉淀物称为膜部分。

The protein concentration was determined according to the Bradford method (1976) using a Bio-Rad protein assay kit with bovine gamma globulin as a standard. For each sample, 20 µg was transferred to 0.5 mL polypropylene Protein LoBind Eppendorf tubes and precipitated via the chloroform-methanol method (Wessel and Flugge 1984).

蛋白质浓度按照Bradford方法(1976)使用Bio-Rad蛋白质测定试剂盒测定,以牛γ球蛋白为标准。每个样品取20 µg转移到0.5 mL聚丙烯Protein LoBind Eppendorf管中,并通过氯仿-甲醇法(Wessel和Flugge 1984)进行沉淀。

To solubilize the proteins, 20 µL of 100 mM TEAB, pH 8.5 (triethylammonium bicarbonate) containing 0.5% RapiGest surfactant (Waters, Milford, USA), was added..

为了溶解蛋白质,加入了20 µL含有0.5% RapiGest表面活性剂(Waters,美国米尔福德)的100 mM TEAB(三乙基铵碳酸氢盐),pH 8.5。

In-solution trypsin digestion

溶液内胰蛋白酶消化

The proteins were then reduced with 5 mM DTT (dithiothreitol) and alkylated with 15 mM iodoacetamide. The samples were diluted five times with 20 µL of 100 mM TEAB, pH 8.5. Proteolysis was performed with 1 µg of Sequencing Grade trypsin (Promega, Madison, USA) and was continued overnight at 37 °C. Each sample was dried under vacuum with an RVC 2–25 Martin Christ Concentrator (Martin Christ Instrument Inc., Osterode, Germany) and stored at -80 °C..

蛋白质用5 mM DTT(二硫苏糖醇)还原,并用15 mM碘乙酰胺进行烷基化。样品用20 µL 100 mM TEAB(pH 8.5)稀释五倍。使用1 µg测序级胰蛋白酶(Promega,麦迪逊,美国)进行蛋白酶解,并在37°C下继续过夜。每个样品用RVC 2-25 Martin Christ浓缩仪(Martin Christ仪器公司,奥斯特罗德,德国)在真空下干燥,并储存在-80°C。

2.5 Peptide separation using nanoUPLC.

2.5 使用nanoUPLC进行肽分离。

Before peptide separation, the samples were dissolved in 20 µL of 0.1% (v/v) formic acid and 2% (v/v) acetonitrile (ACN). The peptide mixture was separated by reversed-phase chromatography on a NanoACQUITY UPLC MClass system (Waters) with MassLynx V4.1 (Waters) software. For the digestion of proteins, 200 ng was injected into an ACQUITY UPLC M-Class C18 column (5 μm, 180 μm × 20 mm, 100 A) and desalted under isocratic conditions at a flow rate of 15 µL/min in 99% formic acid and 1% (v/v) ACN buffer for 3 min.

在肽段分离之前,样品被溶解在20 µL的0.1%(v/v)甲酸和2%(v/v)乙腈(ACN)中。肽段混合物通过NanoACQUITY UPLC MClass系统(Waters)使用MassLynx V4.1(Waters)软件进行反相色谱分离。对于蛋白质的消化,将200 ng注入ACQUITY UPLC MClass C18柱(5 μm,180 μm × 20 mm,100 Å),并在等度条件下以15 µL/min的流速使用99%甲酸和1%(v/v)ACN缓冲液进行脱盐3分钟。

The peptide mixture was subjected to reversed-phase chromatography on a C18 column (100 Å, 1.8 mm, 75 μm × 150 mm) PepMap column (Waters) for 130 min at 35 °C at a flow rate of 300 nL/min using a two-part linear gradient from 1% (v/v) ACN, 0.1% formic acid to 35% (v/v) ACN, 0.1% formic acid and from 35% (v/v) ACN, 0.1% formic acid to 85% (v/v) ACN, 0.1% formic acid.

肽混合物在C18柱(100 Å,1.8 mm,75 μm × 150 mm)PepMap柱(Waters)上进行了130分钟的反相色谱分离,柱温35°C,流速为300 nL/min,使用两段线性梯度,从1% (v/v) ACN、0.1%甲酸到35% (v/v) ACN、0.1%甲酸,再从35% (v/v) ACN、0.1%甲酸到85% (v/v) ACN、0.1%甲酸。

The column was re-equilibrated under initial conditions after washing for 10 min with 85% (v/v) ACN and 0.1% formic acid at a flow rate of 300 nL/min. For online LC‒MS analysis, nanoUPLC was coupled to a mass spectrometer through a nanoelectrospray ionization (nanoESI) source emitter..

在以300 nL/min的流速使用85%(v/v)ACN和0.1%甲酸洗脱10分钟后,柱子在初始条件下重新平衡。对于在线LC-MS分析,nanoUPLC通过纳米电喷雾离子化(nanoESI)源发射器与质谱仪联用。

LC-IMS (Ion mobility Separation)-QTOF-MS analysis (HDMSE)

LC-IMS(离子迁移分离)-QTOF-MS分析(HDMSE)

Ion mobility separation-high definition enhanced (IMS-HDMSE) analysis was performed on a SYNAPT G2-Si high-definition mass spectrometer (Waters) equipped with a NanoLockSpray dual electrospray ion source (Waters). Precut-fused silica PicoTip

在配备NanoLockSpray双电喷雾离子源(Waters)的SYNAPT G2-Si高分辨率质谱仪(Waters)上进行了离子迁移分离-高清晰度增强(IMS-HDMSE)分析。预切割熔融石英PicoTip

R

R

Emitters with outer diameters of 360 mm, inner diameters of 20 mm, 10 µm tips, and lengths of 2.5” (Waters) were used for the nanoelectrosprays. Precut-fused silica TicoTip

外径为360毫米、内径为20毫米、尖端为10微米、长度为2.5英寸(Waters)的发射器被用于纳米电喷雾。预切割熔融石英TicoTip

R

R

Emitters with outer diameters of 360 mm, inner diameters of 20 mm, and lengths of 2.5” (Waters) were used for the lock mass solution. The eluent was sprayed at a spray voltage of 2.4 kV with a sampling cone voltage of 25 V and a source offset of 30 V. The source temperature was set to 80 °C. The HDMS.

使用外径为360毫米、内径为20毫米、长度为2.5英寸(Waters)的发射器用于锁定质量溶液。洗脱液在2.4千伏的喷雾电压、25伏的采样锥电压和30伏的源偏移下进行喷雾。源温度设定为80°C。高分辨率质谱仪(HDMS)。

E

E

method in resolution mode was used to collect data from 15 min to 106 min after injection. This method acquires MS

在分辨率模式下使用的方法用于从注射后15分钟到106分钟收集数据。该方法获取MS

E

E

in positive and resolution mode over the m/z range from 50 to 2000 with a scan time of 1 s and a collision energy ramp starting from ion mobility bin 20 (20 eV) to 110 (45 eV). The collision energy in the transfer cell for low-energy MS mode was set to 4 eV. For postacquisition lock mass correction of the data in the MS method, the doubly charged monoisotopic ion of [Glu.

在 m/z 范围从 50 到 2000 内以正离子和分辨率模式进行扫描,扫描时间为 1 秒,碰撞能量斜坡从离子迁移率 bin 20(20 eV)到 110(45 eV)。传输池中低能量 MS 模式的碰撞能量设置为 4 eV。对于质谱方法中数据的后采集锁质量校正,使用了 [Glu 的双电荷单同位素离子。

1

1

)-fibrinopeptide B was used at 100 fmol/µL using the reference sprayer of the nanoESI source with a frequency of 30 s at 0.5 ml/min into the mass spectrometer.

)-纤维蛋白肽 B 以 100 fmol/µL 的浓度使用,通过纳米电喷雾离子源的参比喷雾器,以 0.5 ml/min 的流速、30 秒的频率引入质谱仪。

ESI-QTOF data processing

ESI-QTOF 数据处理

HDMS

高清媒体系统

E

E

data were processed with Progenesis QI (Nonlinear DYNAMICS, Waters) software using the

数据使用Progenesis QI(Nonlinear DYNAMICS, Waters)软件进行处理

A. thaliana

拟南芥

protein sequence database (UniProt 20220410, 16127 entries). Propionamide was used as the fixed cysteine modification, oxidation was used as the variable methionine modification, trypsin was used as the digestion enzyme, and one missed cleavage was allowed. The protein confidence score is obtained by adding up the scores of all the peptides involved in the identification of the protein, even if there are some that do not participate in its quantification.

蛋白质序列数据库(UniProt 20220410,16127个条目)。丙酰胺被用作固定的半胱氨酸修饰,氧化被用作可变的甲硫氨酸修饰,胰蛋白酶被用作消化酶,并允许一个漏切位点。蛋白质置信度评分是通过将所有参与该蛋白质鉴定的肽段得分相加而获得的,即使其中有一些未参与其定量。

The individual score of each peptide is calculated by adding up the scores obtained for a number of parameters associated with the quality of the ions detected. The tolerance on the mass and the intensities of the different isotopes must be similar. The reproducibility of the retention times and ion mobility (if used), as well as the quality of the fragmentation, should be evaluated based on the number of experimental fragments whose masses match the theoretical masses expected for a peptide (Progenesis QI, Nonlinear DYNAMICS, Waters).

每个肽段的个体得分通过将与检测到的离子质量相关的多个参数所得的分数相加计算得出。质量公差和不同同位素的强度应相似。保留时间及离子迁移率(若使用)的可重复性,以及碎裂的质量,应根据其实验片段中质量与肽段预期理论质量匹配的数量进行评估(Progenesis QI,Nonlinear DYNAMICS,Waters)。

In addition, the mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD056647 and .

此外,质谱蛋白质组学数据已通过PRIDE合作伙伴库提交给ProteomeXchange联盟,数据集标识符为PXD056647。

https://doi.org/10.6019/PXD056647

https://doi.org/10.6019/PXD056647

.

Statistical analysis

统计分析

Four biological replicates were used for each sample. The nonconflicting peptide method was used for relative quantification which means that proteins are quantified using only peptides that are not also part of another protein hit and protein abundance in a run is calculated from the sum of all the unique normalised peptide ion abundances corresponding to that protein (Progenesis QI, Nonlinear DYNAMICS, Waters).

每个样本使用了四个生物学重复。相对定量采用了非冲突肽段方法,这意味着蛋白质的定量仅使用那些不同时属于其他蛋白质命中的肽段,并且在一次运行中,蛋白质的丰度是通过与该蛋白质对应的所有独特归一化肽段离子丰度总和计算得出的(Progenesis QI,Nonlinear DYNAMICS,Waters)。

Statistical analyses were performed using the R (version R-4.3.0) software.

统计分析使用 R(版本 R-4.3.0)软件进行。

37

37

. Protein abundances were log2-transformed and then normalized to the median. Exploratory Principal Component Analysis (PCA) was performed with missing data imputed by the regularized iterative PCA algorithm with the missMDA R package

蛋白质丰度经log2转换后,再标准化为中位数。使用missMDA R包中的正则化迭代PCA算法对缺失数据进行填补后,进行了探索性主成分分析(PCA)。

38

38

. Differential abundance analyses were performed with the R package limma

. 使用R包limma进行差异丰度分析

39

39

to compare the EO versus the control samples in each separate fraction based on moderated t-statistics. The p values were adjusted with the false discovery rate (FDR). The resulting adjusted p values and log2-fold changes are represented in the volcano plots. All tests were two-tailed. Hierarchical clustering (Euclidean distance and Ward method) and the associated heatmaps were also generated based on the z scores of proteins with adjusted p values < 0.05.

基于适度t统计量,比较每个独立组分中EO样本与对照样本。p值通过错误发现率(FDR)进行调整。调整后的p值和log2倍变化表示在火山图中。所有检验均为双尾检验。层次聚类(欧几里得距离和Ward法)及相关热图也根据调整后p值<0.05的蛋白质的z分数生成。

To determine the differentially abundant proteins, we filtered them based on 3 criteria.

为了确定差异丰富的蛋白质,我们根据三个标准对它们进行了过滤。

40

40

: (1) absolute value of log2-fold change (logFC) > 1, (2) adjusted p value (adj.P. Val) < 0.05 and (3) minimum number of unique peptides

:(1) log2倍变化绝对值(logFC)> 1,(2) 校正后的p值(adj.P.Val)< 0.05,以及 (3) 最低独特肽段数量

= 3

= 3

(Fig.

(图。

1

1

; Table

1

1

).

)。

Fig. 1

图1

Phytotoxic effect of CEO on

CEO对植物的毒性影响

A. thaliana

拟南芥

. (

。 (

A

A

) immediately prior to treatment (T0), (

) 治疗前即刻 (T0),(

B

B

) 5 minutes after treatment, (

)治疗后5分钟,(

C

C

) 1 hour after treatment, (

)治疗后1小时,(

D

D

) 6 hours after treatment, (

)治疗后6小时,(

E

E

) 24 hours after treatment, (

) 治疗后 24 小时,(

F

F

) 48 hours after treatment. Three plants per treatment were used for this experiment. (

`) 治疗后48小时。本实验每种处理使用了三株植物。(`

B

B

to

F

F

) Show images of the same plant in the same pot at different time points after CEO treatment, illustrating the progression of the treatment’s effects over time.

) 在CEO处理后不同时间点展示同一盆植物的图像,说明处理效果随时间的进展。

Full size image

全尺寸图像

Table 1 The most affected differentially accumulated proteins presented in

表1 最受影响的差异积累蛋白呈现

A. Thaliana

拟南芥

treated with CEO.

用CEO处理。

Full size table

全尺寸表格

In addition, the identified differentially abundant proteins were annotated and grouped by function bins based on the MapMan ontology for

此外,鉴定出的差异丰度蛋白根据MapMan本体进行功能分类注释和分组。

A. thaliana

拟南芥

downloaded from GoMapMan

从GoMapMan下载

41

41

. They are represented in a heatmap with the average abundance per group of samples for each functional bin. This average abundance is calculated by taking the mean value of log normalized abundances where the grand mean has been added.

它们在热图中以每个功能组的样本组平均丰度表示。该平均丰度是通过取对数归一化丰度的平均值并加上总平均值来计算的。

Results

结果

Overview of the proteome profile of leaves treated with CEO

CEO处理叶片的蛋白质组概况概述

A phenotypic experiment was conducted to assess the phytotoxic effects of CEO over a 48-hour period. As shown in Figs.

进行了一项表型实验,以评估CEO在48小时内的植物毒性效应。如图所示。

1

1

and

2

2

, the herbicidal activity was observed on

,观察到除草活性

A. thaliana

拟南芥

. Leaf wilting occurred just 1 h after treatment, with a 42.53% reduction in green coverage (Fig.

。处理后1小时叶片就开始萎蔫,绿色覆盖度减少了42.53%(图。

1

1

C), followed by a noticeable decrease in green pigmentation after 6 h (Fig.

C),6小时后绿色色素显著减少(图。

1

1

D). By 48 h, both the leaves and stems were completely withered and discolored, reaching a 98.1% reduction in green coverage (Fig.

D). 到48小时时,叶片和茎部完全枯萎并变色,绿色覆盖率减少了98.1%(图。

1

1

F).

F).

Fig. 2

图2

Green coverage percentage of

绿化覆盖率

A. thaliana

拟南芥

treated with CEO at 6%. Results were statistically analyzed using one-way analysis of variance (ANOVA, R software) followed by Tukey’s multiple range test. Differences between individual means were considered significant at

用6%的CEO处理。结果使用单因素方差分析(ANOVA,R软件)进行统计分析,随后进行Tukey多重范围检验。个体均值之间的差异在

p

p

< 0.05. Therefore, values in a figure followed by the same letter are not significantly different. Statistical analysis was performed based on the “time of treatment” rather than the treatment itself. ImageJ software was used to evaluate the green coverage percentage during this assessment, as detailed in the Materials and Methods section..

小于0.05。因此,图中相同字母标记的数值之间没有显著差异。统计分析是基于“处理时间”而非处理本身进行的。在此评估过程中,使用ImageJ软件来计算绿色覆盖率,详见材料与方法部分。

Full size image

全尺寸图像

Then, we used a label-free quantitative proteomics approach to investigate the herbicidal effect of CEO. In total, 3682 proteins were identified and quantified in

然后,我们使用无标记定量蛋白质组学方法研究了CEO的除草效果。总共鉴定了3682个蛋白质并进行了定量分析。

A. thaliana

拟南芥

leaves. All the sequences of the identified peptide fragments in the soluble and membrane fractions can be found in supplementary Table

叶子。所有在可溶性和膜组分中鉴定的肽片段序列均可在补充表中找到。

S1

S1

and Table

和表格

S2

S2

, respectively. Compared to those in untreated leaves, 325 differentially accumulated proteins were found, and among them, 145 were overaccumulated, while 180 were downregulated (Fig.

,分别。与未处理叶片中的相比,发现了325个差异积累的蛋白质,其中145个过量积累,而180个下调(图。

3

3

).

)。

Fig. 3

图3

Number of proteins identified and differentially accumulated in leaves of

叶片中鉴定和差异积累的蛋白质数量

A. thaliana

拟南芥

treated with CEO. The number of abundant proteins was determined by filtering the proteins based on 3 criteria: (1) absolute value of log2-fold change (logFC) > 1, (2) adjusted p value (adj.P. Val) < 0.05 and (3) minimum number of unique peptides = 3.

用CEO处理。丰富蛋白质的数量通过基于3个标准过滤蛋白质来确定:(1)log2倍变化(logFC)的绝对值>1,(2)调整后的p值(adj.P.Val)<0.05,以及(3)最少独特肽段数量=3。

Full size image

全尺寸图像

The scores plot of the PCA represented in Fig.

图中表示的PCA得分图

4

4

clearly distinguishes between the control and treated leaves of

清楚地区分了对照叶和处理叶

A. thaliana

拟南芥

by CEO. Indeed, the first PCA dimension, representing the main axis of variation, enables the separation of the controls from the EOs both in the soluble fraction (71.3%) and in the membrane fraction (83.2%).

由首席执行官表示。事实上,第一个主成分分析维度代表了变异的主要轴,能够将对照组与EOs在可溶性部分(71.3%)和膜部分(83.2%)中区分开来。

Fig. 4

图4

Score plot of the principal component analysis of all identified proteins of

所有已鉴定蛋白质的主成分分析得分图

A. thaliana

拟南芥

in the membrane fraction. (

在膜组分中。

A

A

) Membrane fraction (

)膜组分(

B

B

) Soluble fraction.

可溶性部分。

Full size image

全尺寸图像

The volcano plots illustrate and link log fold changes and adjusted p values for each protein (Fig.

火山图展示了每个蛋白质的对数倍数变化和调整后的p值(图。

5

5

A and B). It showed that a high number of differential accumulated protein were identified after only 1 h of treatment with CEO.

A 和 B)。结果表明,经CEO处理仅1小时后,就鉴定出大量的差异积累蛋白。

Fig. 5

图5

Volcano plot analysis showing differentially accumulated proteins between control leaves of

火山图分析显示对照叶片之间差异积累的蛋白质

A. thaliana

拟南芥

and leaves treated with CEO. (

并用CEO处理过的叶子。(

A

A

) membrane fraction (adjusted p value < 0.05 and absolute log fold change > 1), (

)膜组分(调整后的p值<0.05且绝对对数倍数变化>1),(

B

B

) soluble fraction (adjusted p value < 0.05 and absolute log fold change > 1). Blue dots represent underaccumulated proteins, and red dots represent overaccumulated proteins; gray dots are not significantly up- or downregulated.

)可溶性部分(调整后的p值<0.05且绝对对数倍数变化>1)。蓝点代表积累不足的蛋白质,红点代表过度积累的蛋白质;灰点表示没有显著上调或下调的蛋白质。

Full size image

全尺寸图像

To further analyze the data, we performed heatmap clustering, which highlighted significant proteomic changes across various functional categories, as represented by the MapMan functional bins (Fig.

为了进一步分析数据,我们进行了热图聚类,这突出了不同功能类别中的显著蛋白质组学变化,如 MapMan 功能模块所示(图。

6

6

A, and

A,和

6

6

B). The differentially accumulated proteins were classified into 31 categories for the membrane fraction and 25 categories for the soluble fraction. It revealed significant proteome remodeling after CEO exposure, impacting an essential metabolic pathway such as the pentose phosphate cycle, glycolysis, photosynthesis, nitrogen metabolism, fermentation, and cell wall synthesis.

B). 差异积累蛋白被分为31类膜组分和25类可溶性组分。结果表明,CEO暴露后引发了显著的蛋白质组重塑,影响了诸如磷酸戊糖循环、糖酵解、光合作用、氮代谢、发酵以及细胞壁合成等关键代谢途径。

These changes confirm the substantial damage caused by CEO. In addition, among the most affected differentially accumulated proteins, we identified the photosystem II subunit H2 light-harvesting complex protein, photosystem I subunit H2 protein, GPI-anchored adhesin-like protein, and nitrate reductase 2 with the highest fold changes, which reached 16.18, 15.53 8.23 and 7.96, respectively (Table .

这些变化证实了首席执行官造成的重大损害。此外,在受影响最严重差异积累蛋白中,我们鉴定出光系统II亚基H2捕光复合体蛋白、光系统I亚基H2蛋白、GPI锚定黏附素样蛋白和硝酸还原酶2的变化倍数最高,分别达到16.18、15.53、8.23和7.96(表。

1

1

). Indeed, proteins involved in metabolic processes were also differentially accumulated (e.g., phospholipase D delta glyceraldehyde 3-phosphate dehydrogenase asparagine synthetase 2 alpha-glucan phosphorylase 2). All these modifications certainly impacted the accumulation of proteins involved in the response to oxidative stress as well as proteins involved in the transduction of cellular signals (e.g., dicarboxylate transporter 1, PLC-like phosphodiesterase family protein plastid-lipid associated protein PAP selenoprotein O)..

). 事实上,参与代谢过程的蛋白质也出现了差异积累(例如,磷脂酶D delta、甘油醛-3-磷酸脱氢酶、天冬酰胺合成酶2、α-葡聚糖磷酸化酶2)。所有这些变化无疑影响了参与应对氧化应激反应的蛋白质以及参与细胞信号转导的蛋白质的积累(例如,二羧酸转运蛋白1、PLC样磷酸二酯酶家族蛋白、质体脂质相关蛋白PAP、硒蛋白O)。

Fig. 6

图6

Heatmap analysis showing the average abundance of all differentially accumulated proteins (adjusted p value < 0.05 and absolute log fold change > 1 and minimum number of unique peptides = 3) between control leaves of

热图分析显示了所有差异积累蛋白的平均丰度(调整后的p值<0.05,绝对log倍数变化>1,独特肽段的最小数量=3)在对照叶片之间

A. thaliana

拟南芥

and leaves treated with CEO, gathered into MapMan functional bins. This average abundance is calculated by taking the mean value of log normalized abundances where the grand mean has been added. The “percent” column represents the proportion of quantified proteins belonging to a functional bin that are identified as differentially abundant proteins.

用CEO处理的叶片被归类到MapMan功能组。这个平均丰度是通过取对数归一化丰度的平均值并加上总平均值来计算的。“百分比”列代表归属于某个功能组的量化蛋白质中被鉴定为差异丰度蛋白质的比例。

A: membrane fraction, B: soluble fraction..

A:膜组分,B:可溶性组分。

Full size image

全尺寸图像

Discussion

讨论

In this study, we found that 6% CEO caused wilting of leaves after only one hour of spraying, which confirmed its phytotoxic effect and highlights its contact herbicidal actions. This effect has been demonstrated for the first time by Tworkoski, 2002

在这项研究中,我们发现喷洒 6% CEO 一小时后导致叶片萎蔫,证实了其植物毒性作用,并突显了其接触性除草作用。Tworkoski 于 2002 年首次证明了这一效果。

36

36

, who showed the strong phytotoxic activity of CEO against

,展示了CEO对以下对象的强烈植物毒性活性

Chenopodium album

白藜

,

Ambrosia artemisiifolia

蒿属植物

, and

,以及

Sorghum halepense

高粱属植物

. He found that 2% of CEO caused rapid leaf injury and strong electrolyte leakage. In addition to its herbicidal activity, CEO has several other biological properties. In this context, the insecticidal activity of CEO against

他发现2%的CEO导致叶片迅速受损并产生强烈的电解质泄漏。除了其除草活性外,CEO还具有几种其他的生物特性。在此背景下,CEO对昆虫的杀虫活性

Sitophilus zeamais

玉米象甲

on maize was reported

据报道,玉米

33

33

and the fungicidal activity of the same EO against

相同精油对

Botrytis cinerea

灰葡萄孢菌

on pears after 4 days has also been described

在梨上4天后也有描述

42

42

. All studies confirmed that cinnamaldehyde, the lead compound, is responsible for the toxic effect of CEO. Furthermore, the phytotoxic effect of phenylpropanoids, including cinnamaldehyde, on the leaves of

所有研究均证实,肉桂醛作为主要化合物,是导致CEO毒性的原因。此外,包括肉桂醛在内的苯丙素类化合物对叶片的植物毒性作用

A. thaliana

拟南芥

could be explained by their interaction with membrane receptors, unlike monoterpenes, which disturb lipid organization

可以通过它们与膜受体的相互作用来解释,而不像单萜那样会扰乱脂质组织。

19

19

. It is crucial to remember that the toxic properties of essential oils depend strongly on their chemical composition, which is affected by genetic variation, sampled plant tissues, growing conditions and extraction methods

。必须牢记,精油的毒性特性很大程度上取决于其化学成分,而化学成分又受到遗传变异、植物组织样本、生长条件和提取方法的影响。

11

11

. In the case of herbicidal activity, another factor was the tested weed species. In fact, phytotoxic activity can be more effective on one plant species than on another. For instance, the foliar application of a Caraway EO emulsion had a greater impact on the biochemical parameters of barnyard grass than on those of maize.

在除草活性的情况下,另一个因素是被测试的杂草种类。事实上,植物毒性活性对一种植物可能比对另一种植物更有效。例如,香芹精油乳液的叶面施用对稗草的生化参数影响大于对玉米的影响。

43

43

. On this subject, the selective action of an EO toward one undesired plant species and not another is due to the mode(s) of action of its compounds, which tend to block one metabolic pathway in some plants and not others

关于这个主题,一种精油对一种不需要的植物物种的选择性作用而不是另一种,是由于其化合物的作用模式,这些模式倾向于阻断某些植物中的一种代谢途径,而不是其他植物。

44

44

.

In this paper, we studied the herbicidal effect of CEO on

在本文中,我们研究了CEO的除草效果

A. thaliana

拟南芥

through protein expression. To our knowledge, this is the first time that label-free quantitative proteomic technology has been used to analyze the biochemical responses of plants after treatment with EOs. This advanced analytical method has been used to create cellular proteome maps and characterize interactions between plants and pathogens or defense reactions to biotic or abiotic stress.

通过蛋白质表达。据我们所知,这是首次使用无标记定量蛋白质组学技术来分析植物在EOs处理后的生化反应。这种先进的分析方法已被用于创建细胞蛋白质组图谱,并表征植物与病原体之间的相互作用或对生物或非生物胁迫的防御反应。

45

45

. It has also been used to facilitate comparative and proteomic analyses of complex samples. Nevertheless, it will be necessary in the future to improve separation technology and bioinformatic analysis.

。它还被用于促进复杂样品的比较和蛋白质组学分析。然而,未来有必要改进分离技术和生物信息学分析。

Our proteomic analysis revealed that CEO induced dramatic changes in the leaves of

我们的蛋白质组学分析显示,CEO在叶片中引起了显著的变化。

A. thaliana

拟南芥

after only one hour of exposure. Indeed, 325 proteins were differentially accumulated between the treated leaves and untreated leaves. A similar study was conducted to investigate the insecticidal effect of

仅在一小时的暴露后,确实有325种蛋白质在处理过的叶片和未处理的叶片之间出现了差异积累。为了研究杀虫效果,还进行了类似的研究。

Mentha arvensis

野薄荷

essential oil on the weevil of

我们evil的精油

Sitophilus granarie

谷象属 granarie

40

40

. A total of 55 differentially accumulated proteins were detected. They showed that after 24 h of contact, the toxicity of this essential oil to insects had a notable impact on various biological processes, especially those related to the nervous and muscular systems. Due to their abundance of active compounds, essential oils offer a multitude of mechanisms of action with a low probability of developing resistant weed populations.

共检测到55种差异积累蛋白。结果显示,接触24小时后,这种精油对昆虫的毒性对各种生物过程产生了显著影响,尤其是那些与神经系统和肌肉系统相关的生物过程。由于其丰富的活性化合物,精油提供了多种作用机制,且发展出抗性杂草种群的概率较低。

46

46

. This will be further discussed below.

。这一点将在下文进一步讨论。

Among the 27 herbicide groups, 7 directly disturb the photosynthesis system of weeds by inhibiting key enzymes, especially 4-hydroxyphenylpyruvate dioxygenase (HPPD inhibitors). They can also bind to protein complexes present in the chloroplast thylakoid membrane and consequently completely stop the electron transport chain, as is the case for triazine.

在27类除草剂中,有7种通过抑制关键酶直接干扰杂草的光合作用系统,特别是4-羟基苯基丙酮酸双加氧酶(HPPD抑制剂)。它们还可以与叶绿体类囊体膜中的蛋白质复合物结合,从而完全阻止电子传递链,例如三嗪类除草剂。

It has been described in the literature that photosynthesis is one of the most important biological processes in plant physiology, allowing the production of oxygen and energy in the form of sugar.

文献中已描述光合作用是植物生理学中最重要的生物过程之一,能够以糖的形式生产氧气和能量。

47

47

. Several studies have confirmed that photosynthesis is inhibited in the presence of allelochemicals, particularly EOs

几项研究已经证实,在存在化感物质(尤其是挥发性有机物)的情况下,光合作用受到抑制。

2

2

,

21

21

,

48

48

. A phenotypic experiment showed that by 48 hours, the stems and leaves became discolored and dried, confirming the desiccant effect caused by the disruption of photosynthetic mechanisms. This is further supported by our proteomic analysis, which revealed that just one hour was enough to completely destabilize photosynthetic activity in .

表型实验显示,到48小时时,茎和叶变色并干枯,证实了光合作用机制的破坏所导致的干燥效果。我们的蛋白质组学分析进一步支持了这一点,结果显示仅需一小时就足以完全破坏光合作用活性。

A. thaliana

拟南芥

, as evidenced by a significant reduction in photosystem proteins in both the soluble and membrane fractions. On the other hand, proteomic analyses revealed additional differentially accumulated proteins that were not associated with the visual observations, such as nitrate reductase, which plays a key role in nitrogen assimilation in plants.

,这可以通过可溶性和膜组分中光系统蛋白的显著减少来证明。另一方面,蛋白质组学分析揭示了与视觉观察无关的其他差异积累蛋白,例如在植物氮同化中起关键作用的硝酸还原酶。

This is illustrated in Fig. .

这在图中进行了说明。

6

6

, which shows that 31 physiological processes in

,这表明了 31 种生理过程在

A.thaliana

拟南芥

were disrupted. Among these processes, nitrogen metabolism, pentose phosphate pathway, along with fermentation, were significantly affected. These results could be directly in line with Ben kaab et al., 2020

被破坏。在这些过程中,氮代谢、磷酸戊糖途径以及发酵受到显著影响。这些结果与Ben kaab等人(2020年)的研究直接一致。

48

48

, who state that plant extracts containing multiple molecules usually exhibit multisite action, which contrasts with synthetic herbicides that typically target a single site. It has also been shown that EO decreases water content and consequently acts as a desiccant herbicide

,他们指出,含有多种分子的植物提取物通常表现出多靶点作用,这与通常针对单一靶点的合成除草剂形成对比。还已证明,EO会降低水分含量,从而起到干燥剂除草剂的作用。

11

11

,

59

59

. This could be supported by our proteomic analysis, which showed overexpression of some proteins involved in the retention of water content in plants through the regulation of stomatal closure (phospholipase D delta protein and membrane protein AT1G32080.1). In addition, photosystem subunit 1 protein, photosystem 2 light-harvesting protein and photosynthetic electron transfer B protein are integral components of the four protein complexes located on the thylakoid membrane of the chloroplast which are strongly downregulated (Table .

这可以通过我们的蛋白质组学分析得到支持,该分析显示了一些参与通过调节气孔关闭来保留植物水分的蛋白质的过表达(磷脂酶D delta蛋白和膜蛋白AT1G32080.1)。此外,光系统亚基1蛋白、光系统2捕光蛋白和光合电子传递B蛋白是位于叶绿体类囊体膜上的四个蛋白质复合物的重要组成部分,这些蛋白被显著下调(表。

1

1

). They play an important role in the preservation of the electrochemical gradient required for the phosphorylation of ADP to ATP

)。它们在维持ADP磷酸化为ATP所需的电化学梯度方面发挥着重要作用。

47

47

. The rubisco-activated protein was also downregulated. This protein is absolutely necessary for photosynthesis, particularly because it allows for the fixation of atmospheric CO

. Rubisco活化蛋白也被下调。这种蛋白对光合作用绝对必要,特别是因为它能够固定大气中的二氧化碳。

2

2

and its subsequent incorporation in the Calvin cycle for energy production in the form of sugar

并随后将其纳入卡尔文循环,以糖的形式进行能量生产

49

49

. The thylakoid lumen protein, which is also one of the top 40 DEPs, was downregulated. It maintains photosystem 2 under high light and contributes to the phosphorylation of ADP to ATP by pumping H + to the stroma

。类囊体腔蛋白也是排名前40的差异表达蛋白之一,其表达下调。它在强光下维持光系统2的稳定,并通过将H+泵入基质促进ADP磷酸化为ATP。

50

50

. All these results are in agreement with those of Li et al., 2021

所有这些结果都与Li等人(2021)的结果一致。

51,

51,

who confirmed that the phytotoxic effect of essential oils is related to the inhibition of

谁证实了精油的植物毒性效应与抑制作用有关

A. thaliana

拟南芥

photosynthesis. They revealed for the first time the possibility that the essential oil of

光合作用。他们首次揭示了精油的可能作用

Artemisia argyi

艾草

may act as an HPPD inhibitor to block the photosynthesis chain in weed species. In fact, they analyzed the HPPD content by an immunosorbent assay (ELISA) kit and showed that at 4 µL/mL, the HPPD content significantly decreased by 31.24% in comparison to that in the control group. In addition, herbicides that specifically inhibit HPPD, such as mesotrione, effectively manage a broad spectrum of weed species.

可能作为HPPD抑制剂来阻断杂草种类中的光合作用链。事实上,他们通过酶联免疫吸附测定(ELISA)试剂盒分析了HPPD含量,并发现与对照组相比,在4 µL/mL时,HPPD含量显著减少了31.24%。此外,专门抑制HPPD的除草剂(如硝磺草酮)能有效控制广泛的杂草种类。

52

52

. It is important to mention that the main compounds of

。需要强调的是,主要化合物为

Artemisia argyi

艾草

essential oil are monoterpenes that can thus penetrate the cell and damage cellular organelles without affecting membrane permeability due to their small size

精油是单萜类化合物,由于其体积小,可以穿透细胞并破坏细胞器,而不会影响膜的通透性。

53

53

.

The plasma membrane serves as a solid barrier separating the cell from its surroundings and plays a vital role in the perception of external signals, facilitating exchanges between the cytoplasm and the cellular environment

质膜充当固体屏障,将细胞与其周围环境分隔开,并在感知外部信号、促进细胞质与细胞环境之间的交换方面发挥着至关重要的作用。

54

54

,

55

55

. Thus, any alteration in the structure of the plant plasma membrane caused by bioactive compounds will disrupt its function and integrity and consequently disturb biochemical and physiological processes

因此,任何由生物活性化合物引起的植物细胞膜结构的改变都会破坏其功能和完整性,从而扰乱生化和生理过程。

56

56

,

57

57

. For these reasons, scientists believe that the plant plasma membrane is one of the potential cellular targets of essential oils (EOs). The authors also suggested first studying the interactions between phytochemical compounds and the plasma membrane to understand the mode of action of these compounds.

由于这些原因,科学家们认为植物细胞膜是精油(EOs)潜在的细胞靶点之一。作者还建议首先研究植物化学物质与细胞膜之间的相互作用,以了解这些化合物的作用方式。

58

58

,

59

59

,

60

60

. These compounds can interact with lipid membranes and can react as pro-oxidants by inducing lipid peroxidation

这些化合物可以与脂质膜相互作用,并通过诱导脂质过氧化作为促氧化剂反应。

48

48

. Molecular dynamic simulations revealed that cinnamaldehyde (CIN) molecules can penetrate only up to the polar head region of the model plasma membrane, where they can interact with membrane proteins, such as membrane receptors and ion channels

分子动力学模拟显示,肉桂醛(CIN)分子只能穿透到模型质膜的极性头部区域,在那里它们可以与膜蛋白相互作用,例如膜受体和离子通道。

19

19

. This finding is in line with the results of our study. In fact, CEO downregulated 264 protein membranes in

。这一发现与我们的研究结果一致。事实上,CEO下调了264种蛋白膜

A. thaliana

拟南芥

leaves. These membrane proteins are present not only in the plasma membrane but also in various cellular organelles, including the thylakoids of chloroplasts, mitochondria, the endoplasmic reticulum, the Golgi apparatus, lysosomes and peroxisomes. This made it challenging to identify the specific proteins of the plasma membrane..

叶子。这些膜蛋白不仅存在于质膜中,还存在于各种细胞器中,包括叶绿体的类囊体、线粒体、内质网、高尔基体、溶酶体和过氧化物酶体。这使得识别质膜的特定蛋白变得具有挑战性。

As shown in Fig.

如图所示。

6

6

, CEO affect the secondary metabolism and the signalization process. Importantly, all types of constraints on plants induce oxidative stress

,CEO影响次级代谢和信号传导过程。重要的是,对植物的所有类型的约束都会诱导氧化应激。

61

61

. In addition, allelochemical compounds can induce oxidative stress by generating reactive oxygen species (ROS). The latter are highly reactive, which can make them toxic in certain cases

此外,化感化合物可以通过生成活性氧(ROS)诱导氧化应激。后者具有高反应性,在某些情况下可能使其具有毒性。

62

62

. They play an important signaling role in regulating essential processes such as growth, development, response to biotic and abiotic environmental stimuli, defense against pathogens and stomatal behavior

它们在调控生长、发育、对生物和非生物环境刺激的响应、抵御病原体和气孔行为等基本过程中发挥着重要的信号作用。

63

63

. ROS can react directly with biological molecules, such as DNA, proteins or lipids, generating mutations and damaging membranes, leading to cell and tissue damage and causing programmed cell death (PCD) processes

ROS可以直接与生物分子(如DNA、蛋白质或脂质)反应,生成突变并损害膜结构,导致细胞和组织损伤,并引发程序性细胞死亡(PCD)过程。

64

64

. The main type of ROS is O

ROS的主要类型是O

2

2

, which can be transformed into another harmful ROS, such as a hydroxyl radical. Excessive ROS production also causes oxidative damage to cellular proteins, lipids, and nucleic acids and activates death pathways in several cell types

,它可以转化为另一种有害的活性氧,例如羟基自由基。过量的活性氧产生还会对细胞蛋白质、脂质和核酸造成氧化损伤,并激活多种细胞类型的死亡途径。

65

65

.

To summarize the mechanism of action of CEO, phenotypic evidence demonstrates its rapid effect, consistent with its contact effect on the leaf cuticle. This effect is further confirmed by the downregulation of proteins involved in the biosynthesis of the cuticle, as shown by proteomic analysis. Furthermore, the observed leaf discoloration and drying validate its desiccant properties.

总之,CEO的作用机制可概括如下:表型证据表明其作用迅速,与其对叶片角质层的接触作用一致。蛋白质组学分析进一步证实了这一点,显示参与角质层生物合成的蛋白质下调。此外,观察到的叶片变色和干燥验证了其干燥剂特性。

Proteomic analysis supports this observation, as overexpression of certain proteins involved in water retention has been noted. This could be related to a decrease in membrane integrity, as shown by Ben Kaab et al. 2020.

蛋白质组学分析支持这一观察,因为已经注意到某些与水分滞留有关的蛋白质过表达。这可能与膜完整性下降有关,正如Ben Kaab等人在2020年所展示的。

48

48

, leading to water leakage. It is also well known that essential oils contain small molecules that are able to easily interact with the plant cell membranes, which could induce a prooxidant effect, commonly referred to as the “burndown effect.” This was confirmed by researchers at the WSSA Annual Meeting, who affirmed that most plant-based bioherbicides produce burning effects.

,导致漏水。众所周知,精油含有小分子,能够轻松与植物细胞膜相互作用,这可能会引发促氧化作用,通常被称为“烧伤效应”。这一点在WSSA年会上得到了研究人员的证实,他们确认大多数植物基生物除草剂都会产生灼烧效果。

66

66

Consequently, we observed an overexpression of proteins involved in managing oxidative stress, resulting from oxidative damage to membrane systems on one hand, and, on the other hand, the desiccant effect of CEO, which results from the loss of membrane integrity. This will likely change the expression of several proteins, particularly those involved in photosynthesis and fermentation, which is highly dependent on water..

因此,我们观察到与管理氧化应激相关的蛋白质过表达,一方面是由于膜系统遭受氧化损伤,另一方面是CEO的干燥效应,这源于膜完整性的丧失。这可能会改变多种蛋白质的表达,尤其是那些参与光合作用和发酵过程的蛋白质,而这些过程高度依赖于水分。

Concerning the label-free protein quantification method, it requires high reproducibility in sample preparation and handling

关于无标记蛋白质定量方法,它要求样品制备和处理具有高重现性。

67

67

,

68

68

. Variations may occur between samples analyzed by LC/MS even between technical replicates. Unlike labeling quantification methods where all samples are analyzed together, it is necessary to analyze all samples separately. This therefore requires processing a large number of replicates to obtain statistically stable data.

即使在技术重复样本之间,通过LC/MS分析的样本也可能出现差异。与所有样本一起分析的标记定量方法不同,这里需要分别分析所有样本。因此,这需要处理大量的重复样本以获得统计上稳定的数据。

Normalizing a large number of replicates can ultimately reduce the number of proteins of interest.

对大量重复样本进行归一化最终可能会减少目标蛋白的数量。

69

69

. If some proteins are too abundant, less expressed proteins will be less well or not at all identified.

如果某些蛋白质过于丰富,表达较少的蛋白质将较难或完全无法被识别。

Conclusion

结论

Currently, there is a significant demand for more research to develop natural products for agronomic application. Unfortunately, the authorization processes in EU states are time-consuming, complex and expensive and require safety documentation, such as for ecotoxicological studies. Understanding the mode(s) of action is crucial for conducting these studies efficiently.

目前,对于开发用于农艺应用的天然产品,有大量研究需求。然而,欧盟国家的授权过程耗时、复杂且昂贵,并且需要安全性文件,例如生态毒理学研究。理解作用模式对于高效开展这些研究至关重要。

Interestingly, our research confirmed that cinnamon essential oil (CEO) could be a promising botanical herbicide for controlling weed invasion. This has been confirmed by its high and rapid phytotoxicity. Notably, our proteomic approach showed, for the first time, that a high number of proteins could be differentially accumulated after only one hour of CEO treatment.

有趣的是,我们的研究证实肉桂精油(CEO)可以作为一种有前景的植物性除草剂来控制杂草入侵。其高效且快速的植物毒性已经证实了这一点。值得注意的是,我们的蛋白质组学方法首次表明,在CEO处理仅一小时后,大量蛋白质可能差异积累。

The results also showed that photosynthesis was strongly inhibited by the reduction in the expression of photosystem proteins in thylakoid membranes. It is also important to mention that quantification by the label-free approach offers a greater dynamic range and broader identified protein coverage, but lower quantification accuracy and reproducibility.

结果还表明,叶绿体膜中光合系统蛋白表达的减少强烈抑制了光合作用。值得一提的是,无标记定量方法虽然提供了更大的动态范围和更广泛的蛋白质覆盖,但其定量准确性和可重复性较低。

70

70

. Finally, this study showed that CEO has a strong herbicidal effect, making it a suitable source of natural herbicides with a low probability of developing resistant weed populations. In future studies, Other weed and crops types should be tested to better understand the herbicidal effects of CEO. Additionally, field trials should be conducted to evaluate this activity under uncontrolled conditions.

最后,本研究显示CEO具有很强的除草效果,这使其成为一种合适的天然除草剂来源,且发展出抗性杂草种群的概率较低。在今后的研究中,应该测试其他杂草和作物类型,以更好地了解CEO的除草效果。此外,还应进行田间试验,以评估其在非受控条件下的活性。

Since CEO has contact herbicidal action, studying its effect on the cuticle and cell wall is crucial for determining its mode of action..

由于CEO具有接触除草作用,研究其对表皮和细胞壁的影响对于确定其作用方式至关重要。

Data availability

数据可用性

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD056647 and 10.6019/PXD056647.

质谱蛋白质组学数据已通过PRIDE合作伙伴存储库提交至ProteomeXchange联盟,数据集标识符为PXD056647和10.6019/PXD056647。

References

参考文献

Schütte, G. et al. Herbicide resistance and biodiversity: Agronomic and environmental aspects of genetically modified herbicide-resistant plants.

Schütte, G. 等。除草剂抗性与生物多样性:转基因抗除草剂植物的农艺和环境方面。

Environ. Sci. Eur.

环境科学与工程

29

29

, 5 (2017).

,5(2017)。

Article

文章

PubMed

PubMed

PubMed Central

PubMed Central

MATH

数学

Google Scholar

谷歌学术索

Soltys, D., Krasuska, U. & Bogatek, R. Gniazdowska, a. allelochemicals as Bioherbicides - Present and perspectives. Herbic. - Curr.

索尔蒂斯,D.,克拉苏萨,U. & 博加特克,R. 格尼亚佐夫斯卡,A. 化感化合物作为生物除草剂 - 现状与前景。除草剂 - 当前。

Res. Case Stud. Use

案例研究使用

. 517–542.

. 517–542.

https://doi.org/10.5772/56185

https://doi.org/10.5772/56185

(2013).

(2013)。

Heap, I. Global perspective of herbicide-resistant weeds.

堆,我。全球视角下的抗除草剂杂草。

Pest Manag Sci.

害虫管理科学。

70

70

, 1306–1315 (2014).

,1306-1315(2014)。

Article

文章

CAS

中国科学院

PubMed

PubMed

MATH

数学

Google Scholar

谷歌学术搜索

Radhakrishnan, R., Alqarawi, A. A. & Abd Allah, E. F. Bioherbicides: Current knowledge on weed control mechanism.

Radhakrishnan, R., Alqarawi, A. A. & Abd Allah, E. F. 生物除草剂:当前对杂草控制机制的认识。

Ecotoxicol. Environ. Saf.

生态毒理学与环境安全

158

158

, 131–138 (2018).

,131-138页(2018年)。

Article

文章

CAS

中国科学院

PubMed

PubMed

MATH

数学

Google Scholar

谷歌学术搜索

Dayan, F. E. & Duke, S. O. Natural compounds as Next-Generation herbicides.

Dayan, F. E. & Duke, S. O. 天然化合物作为下一代除草剂。

Plant. Physiol.

植物生理学。

166

166

, 1090–1105 (2014).

,1090-1105(2014)。

Article

文章

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术索

Assadpour, E. et al. Application of essential oils as natural biopesticides; recent advances.

Assadpour, E. 等。应用精油作为天然生物农药的最新进展。

Crit. Rev. Food Sci. Nutr.

食品科学与营养评论

0

0

, 1–21 (2023).

,1-21页(2023年)。

Google Scholar

谷歌学术搜索

Pavela, R. & Benelli, G. Essential oils as ecofriendly biopesticides? Challenges and constraints.

帕维尔,R. & 贝内利,G. 天然精油作为环保型生物农药?挑战与限制。

Trends Plant. Sci.

植物科学趋势

21

21

, 1000–1007 (2016).

,1000-1007(2016)。

Article

文章

CAS

中国科学院

PubMed

PubMed

MATH

数学

Google Scholar

谷歌学术索

Li, J. et al. Artemisia argyi essential oil exerts herbicidal activity by inhibiting photosynthesis and causing oxidative damage.

李, J. 等。艾草精油通过抑制光合作用和引起氧化损伤发挥除草活性。

Ind. Crops Prod.

工业作物产品

194

194

, 116258 (2023).

,116258(2023)。

Article

文章

CAS

中国科学院

MATH

数学

Google Scholar

谷歌学术

Uremis, I., Arslan, M. & Sangun, M. K. Herbicidal activity of essential oils on the germination of some problem weeds.

乌雷米斯,I.,阿尔斯兰,M.,桑贡,M. K. 某些问题杂草种子萌发的精油除草活性。

Asian J. Chem.

亚洲化学杂志

21

21

, 3199–3210 (2009).

,3199-3210(2009)。

CAS

中国科学院

MATH

数学

Google Scholar

谷歌学术索

Bouabidi, W. et al. Chemical composition, phytotoxic and antifungal properties of Ruta chalepensis L. essential oils.

Bouabidi, W. 等。芸香精油的化学成分、植物毒性和抗真菌特性。

Nat. Prod. Res.

天然产物研究

29

29

, 864–868 (2015).

,864-868页(2015年)。

Article

文章

CAS

中国科学院

PubMed

PubMed

Google Scholar

谷歌学术索

Ben Kaab, S. et al. Rosmarinus officinalis essential oil as an effective antifungal and herbicidal agent.

Ben Kaab, S. 等。迷迭香精油作为一种有效的抗真菌和除草剂。

Span. J. Agric. Res.

西班牙农业研究杂志

17

17

, e1006 (2019).

,e1006(2019)。

Article

文章

Google Scholar

谷歌学术搜索

Verdeguer, M. et al. A. Herbicidal activity of Thymbra capitata (L.) Cav. Essential oil.

韦尔德格尔,M. 等。《Thymbra capitata (L.) Cav. 精油的除草活性》。

Molecules

分子

,

25

25

, (2020).

,(2020)。

Raveau, R. & Fontaine, J. & Lounès-Hadj Sahraoui, A. essential oils as potential alternative biocontrol products against plant pathogens and weeds: A review.

Raveau, R. & Fontaine, J. & Lounès-Hadj Sahraoui, A. 植物病原体和杂草的潜在替代生物防治产品:精油综述。

Foods

食物

9

9

, (2020).

,(2020)。

Taban, A., Saharkhiz, M. J. & Kavoosi, G. Development of pre-emergence herbicide based on arabic gum-gelatin, apple pectin and savory essential oil nano-particles: A potential green alternative to metribuzin.

塔班,A.,萨哈鲁兹,M. J.,& 卡沃西,G. 基于阿拉伯胶-明胶、苹果果胶和冬季香草精油纳米颗粒的苗前除草剂开发:一种潜在的绿色替代甲基磺草酮的方法。

Int. J. Biol. Macromol.

国际生物大分子杂志

167

167

, 756–765 (2021).

,756-765(2021)。

Article

文章

CAS

中国科学院

PubMed

PubMed

Google Scholar

谷歌学术搜索

Somala, N., Laosinwattana, C. & Teerarak, M. Formulation process, physical stability and herbicidal activities of Cymbopogon nardus essential oil-based nanoemulsion.

Somala, N., Laosinwattana, C. & Teerarak, M. 香茅精油纳米乳液的制备过程、物理稳定性及除草活性。

Sci. Rep.

科学报告

12

12

, 1–14 (2022).

,1–14(2022)。

Article

文章

Google Scholar

谷歌学术索

Ni, X. et al. Inhibitory activities of essential oils from Syzygium aromaticum on emergence of Echinochloa crus-galli. (2023).

倪, X. 等。丁香精油对稗草出苗的抑制活性。(2023)

https://doi.org/10.1371/journal.pone.0304863

https://doi.org/10.1371/journal.pone.0304863

Bai, H. et al. Phytochemical profiling and allelopathic effect of garlic essential oil on barnyard grass (Echinochloa crusgalli L).

白海等。大蒜精油的植物化学分析及其对稗草(Echinochloa crusgalli L)的化感作用。

PLoS One

PLoS One

.

18

18

, e0272842 (2023).

,e0272842(2023)。

Article

文章

CAS

中国科学院

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术

Yang, C., Hu, D. H. & Feng, Y. Antibacterial activity and mode of action of the Artemisia capillaris essential oil and its constituents against respiratory tract infection-causing pathogens.

杨, C., 胡, D. H. & 冯, Y. 茵陈蒿精油及其成分对呼吸道感染病原体的抗菌活性和作用模式。

Mol. Med. Rep.

分子医学报告

11

11

, 2852–2860 (2015).

,2852–2860(2015)。

Article

文章

CAS

中国科学院

PubMed

PubMed

MATH

数学

Google Scholar

谷歌学术索

Lins, L. et al. Insights into the relationships between herbicide activities, molecular structure and membrane interaction of cinnamon and citronella essential oils.

林斯,L. 等。肉桂和香茅精油的除草活性、分子结构与膜相互作用的关系洞察。

Int. J. Mol. Sci.

国际分子科学杂志

20

20

, 1234 (2019).

,1234(2019)。

Article

文章

MATH

数学

Google Scholar

谷歌学术

Dedieu, L. et al. Antibacterial mode of action of the Daucus carota essential oil active compounds against Campylobacter jejuni and efflux-mediated drug resistance in Gram-negative bacteria.

Dedieu, L. 等。胡萝卜精油活性化合物对空肠弯曲菌的抗菌作用模式及革兰氏阴性菌外排泵介导的耐药性。

Molecules

分子

,

25

25

, (2020).

,(2020)。

Verdeguer, M., Sánchez-Moreiras, A. M. & Araniti, F. Phytotoxic effects and mechanism of action of essential oils and terpenoids.

韦尔德格,M.,桑切斯-莫赖拉斯,A. M. & 阿拉尼蒂,F. 精油和萜类化合物的植物毒性效应及作用机制。

Plants

植物

9

9

, 1–48 (2020).

,1-48页(2020年)。

Article

文章

Google Scholar

谷歌学术搜索

Wu, S. J. & Ng, L. T. Antiproliferative activity of Cinnamomum cassia constituents and effects of pifithrin-alpha on their apoptotic signaling pathways in Hep G2 cells. Evidence-based Complement.

吴世杰,吴丽婷。肉桂成分的抗增殖活性及pifithrin-alpha 对其在Hep G2细胞中凋亡信号通路的影响。《循证补充医学》。

Altern. Med.

替代医学

(2011).

(2011)。

Pannee, C., Chandhanee, I. & Wacharee, L. Antiinflammatory effects of essential oil from the leaves of Cinnamomum cassia and cinnamaldehyde on lipopolysaccharide-stimulated J774A.1 cells.

潘妮、钱达尼和瓦查里。肉桂叶精油和肉桂醛对脂多糖刺激的J774A.1细胞的抗炎作用。

J. Adv. Pharm. Technol. Res.

高级药物技术研究杂志

5

5

, 164–170 (2014).

,164-170页(2014年)。

Article

文章

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术索

Choi, J. et al. Constituents of the essential oil of the Cinnamomum cassia stem bark and its biological properties.

崔,J. 等。肉桂茎皮精油的成分及其生物学特性。

Arch. Pharm. Res.

药物研究档案

24

24

(5), 418–423 (2001).

(5), 418–423 (2001).

Article

文章

CAS

中国科学院

PubMed

PubMed

MATH

数学

Google Scholar

谷歌学术

Verspohl, E. J., Bauer, K. & Neddermann, E. Antidiabetic effect of Cinnamomum cassia and Cinnamomum zeylanicum in vivo and in vitro.

Verspohl, E. J., Bauer, K. & Neddermann, E. 肉桂和锡兰肉桂在体内和体外的抗糖尿病作用。

Phyther Res.

菲瑟研究。

19

19

, 203–206 (2005).

,203-206页(2005年)。

Article

文章

Google Scholar

谷歌学术

Liao, B. C. et al. Cinnamaldehyde inhibits the tumor necrosis factor-α-induced expression of cell adhesion molecules in endothelial cells by suppressing NF-κB activation: effects upon IκB and Nrf2. Toxicol.

廖, B. C. 等。肉桂醛通过抑制NF-κB活化来抑制肿瘤坏死因子-α诱导的内皮细胞黏附分子表达:对IκB和Nrf2的影响。毒理学。

Appl. Pharmacol.

应用药理学

229

229

, 161–171 (2008).

,161-171页(2008年)。

Article

文章

CAS

中国科学院

Google Scholar

谷歌学术

de Oliveira, M. M. M., Brugnera, D. F., do Nascimento, J. A., Batista, N. N. & Piccoli, R. H. Cinnamon essential oil and cinnamaldehyde in the control of bacterial biofilms formed on stainless steel surfaces.

德奥利维拉,M. M. M.,布鲁格拉,D. F.,多纳西门托,J. A.,巴蒂斯塔,N. N.,皮科利,R. H. 肉桂精油和肉桂醛在控制不锈钢表面形成的细菌生物膜中的应用。

Eur. Food Res. Technol.

欧洲食品研究与技术

234

234

, 821–832 (2012).

,821-832页(2012年)。

Article

文章

Google Scholar

谷歌学术

Chou, S. T. et al. Cinnamomum cassia essential oil inhibits α-MSH-induced melanin production and oxidative stress in murine B16 melanoma cells.

周,S. T. 等。肉桂精油抑制α-MSH诱导的小鼠B16黑色素瘤细胞中黑色素的产生和氧化应激。

Int. J. Mol. Sci.

国际分子科学杂志

14

14

, 19186–19201 (2013).

,19186-19201(2013)。

Article

文章

CAS

中国科学院

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术索

Sharifi-Rad, J. et al. Cinnamomum species: Bridging phytochemistry knowledge, pharmacological properties and toxicological safety for health benefits.

Sharifi-Rad, J. 等。肉桂属植物:连接植物化学知识、药理特性和毒理学安全性以促进健康益处。

Front. Pharmacol.

药理学前沿

12

12

, 1–27 (2021).

,1-27(2021)。

Article

文章

MATH

数学

Google Scholar

谷歌学术索

Feng, J. et al. Preparation of cinnamaldehyde nanoemulsions: Formula optimization, antifungal activity, leaf adhesion, and safety assessment.

冯静等。肉桂醛纳米乳液的制备:配方优化、抗真菌活性、叶片附着及安全性评估。

Ind. Crops Prod.

工业作物产品

200

200

, 116825 (2023).

,116825(2023)。

Article

文章

CAS

中国科学院

Google Scholar

谷歌学术搜索

Rajkovic, K., Pekmezovic, M., Barac, A. & Nikodinovic-Runic, J. Arsić Arsenijević, V. Inhibitory effect of thyme and cinnamon essential oils on aspergillus flavus: Optimization and activity prediction model development.

Rajkovic, K., Pekmezovic, M., Barac, A. & Nikodinovic-Runic, J. Arsić Arsenijević, V. 百里香和肉桂精油对黄曲霉的抑制作用:优化与活性预测模型开发。

Ind. Crops Prod.

工业作物产品

65

65

, 7–13 (2015).

,7-13页(2015年)。

Article

文章

CAS

中国科学院

Google Scholar

谷歌学术搜索

Kocevski, D. et al. Antifungal effect of Allium tuberosum, Cinnamomum cassia, and Pogostemon cablin essential oils and their components against populations of aspergillus species.

Kocevski, D. 等。韭菜、肉桂和广藿香精油及其成分对曲霉菌属种群的抗真菌效果。

J. Food Sci.

食品科学杂志

78

78

, 731–737 (2013).

,731-737页(2013年)。

Article

文章

Google Scholar

谷歌学术

Yang, Y., Isman, M. B. & Tak, J. H. Insecticidal activity of 28 essential oils and a commercial product containing cinnamomum cassia bark essential oil against sitophilus zeamais Motschulsky.

杨, Y., 伊斯曼, M. B. & 卓, J. H. 28种精油和含有肉桂皮精油的商业产品对玉米象甲的杀虫活性。

Insects

昆虫

11

11

, 1–15 (2020).

,1-15(2020)。

Article

文章

CAS

中国科学院

Google Scholar

谷歌学术

Lee, E. J., Kim, J. R., Choi, D. R. & Ahn, Y. J. Toxicity of cassia and cinnamon oil compounds and cinnamaldehyde-related compounds to Sitophilus oryzae (Coleoptera: Curculionidae).

李,E. J.,金,J. R.,崔,D. R.,安,Y. J. 肉桂和肉桂油化合物及肉桂醛相关化合物对米象(鞘翅目:象甲科)的毒性。

J. Econ. Entomol.

经济昆虫学杂志

101

101

, 1960–1966 (2008).

,1960-1966(2008)。

Article

文章

CAS

中国科学院

PubMed

PubMed

Google Scholar

谷歌学术

Viteri Jumbo, L. O., Faroni, L. R. A., Oliveira, E. E., Pimentel, M. A. & Silva, G. N. Potential use of clove and cinnamon essential oils to control the bean weevil, Acanthoscelides obtectus say, in small storage units.

Viteri Jumbo, L. O., Faroni, L. R. A., Oliveira, E. E., Pimentel, M. A. & Silva, G. N. 丁香和肉桂精油在小型储存单元中控制豆象虫(Acanthoscelides obtectus Say)的潜在用途。

Ind. Crops Prod.

工业作物产品

56

56

, 27–34 (2014).

,27-34页(2014年)。

Article

文章

CAS

中国科学院

Google Scholar

谷歌学术

Tworkoski, T. Herbicide effects of essential oils.

Tworkoski,T。精油的除草剂效果。

Weed Sci.

杂草科学

50

50

, 425–431 (2002).

,425-431页(2002年)。

Article

文章

CAS

中国科学院

MATH

数学

Google Scholar

谷歌学术

R Core Team. Development Core Team. A language and environment for statistical computing. R Foundation for Statistical Computing ,

R核心团队。开发核心团队。一种用于统计计算的语言和环境。R统计计算基金会,

3

3

(2020). (2020).

(2020). (2020).

Josse, J., Husson, F. & missMDA A package for handling missing values in multivariate data analysis.

Josse, J., Husson, F. & missMDA 一个用于处理多元数据分析中缺失值的软件包。

J. Stat. Softw.

统计软件期刊

70

70

, (2016).

,(2016)。

Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies.

Ritchie, M. E. 等。Limma 支持 RNA 测序和微阵列研究的差异表达分析。

Nucleic Acids Res.

核酸研究

43

43

, e47 (2015).

,e47(2015)。

Article

文章

PubMed

PubMed

PubMed Central

PubMed Central

MATH

数学

Google Scholar

谷歌学术搜索

Renoz, F. et al. The modes of action of Mentha arvensis essential oil on the granary weevil Sitophilus granarius revealed by a label-free quantitative proteomic analysis.

Renoz, F. 等。通过无标记定量蛋白质组学分析揭示田野薄荷精油对谷物象鼻虫的作用模式。

J. Pest Sci.

害虫科学杂志

95

95

, 381–395 (2022). (2004).

,381-395页(2022年)。(2004年)。

Ramsak, Z. et al. GoMapMan: integration, consolidation and visualization of plant gene annotations within the MapMan ontology.

Ramsak, Z. 等。GoMapMan:在MapMan本体中整合、巩固和可视化植物基因注释。

42

42

, 1167–1175 (2014).

,1167-1175(2014)。

Wang, Y. et al. Evaluation of cinnamon essential oil microemulsion and its vapor phase for controlling postharvest gray mold of pears (Pyrus pyrifolia).

王烨等。肉桂精油微乳液及其气相控制梨(Pyrus pyrifolia)采后灰霉病的评估。

J. Sci. Food Agric.

农业食品科学杂志

94

94

, 1000–1004 (2014).

,1000-1004(2014)。

Article

文章

CAS

中国科学院

PubMed

PubMed

MATH

数学

Google Scholar

谷歌学术索

Synowiec, A., Możdżeń, K., Krajewska, A., Landi, M. & Araniti, F. Carum carvi L. essential oil: a promising candidate for botanical herbicide against Echinochloa crus-galli (L.) P. Beauv. In maize cultivation.

Synowiec, A., Możdżeń, K., Krajewska, A., Landi, M. & Araniti, F. 藏茴香精油:一种有前景的针对稗草的植物性除草剂。在玉米种植中。

Ind. Crops Prod.

工业作物产品

140

140

, 111652 (2019).

,111652(2019)。

Article

文章

CAS

中国科学院

Google Scholar

谷歌学术

Araniti, F., Miras-Moreno, B., Lucini, L., Landi, M. & Abenavoli, M. R. Metabolomic, proteomic and physiological insights into the potential mode of action of thymol, a phytotoxic natural monoterpenoid phenol: the phytotoxic effect of thymol on adult plants of A. Thaliana.

阿里纳蒂,F.,米拉斯-莫雷诺,B.,卢钦尼,L.,兰迪,M. & 阿贝纳沃利,M. R. 关于百里香酚(一种植物毒性天然单萜酚)潜在作用模式的代谢组学、蛋白质组学和生理学见解:百里香酚对拟南芥成年植株的植物毒性效应。

Plant. Physiol. Biochem.

植物生理学与生物化学

153

153

, 141–153 (2020).

,141-153(2020)。

Article

文章

CAS

中国科学院

PubMed

PubMed

Google Scholar

谷歌学术搜索

Salvato, F. et al. Label-free quantitative proteomics of enriched nuclei from sugarcane (Saccharum ssp) stems in response to Drought stress.

Salvato, F. 等。甘蔗(Saccharum ssp)茎在干旱胁迫下富集核的无标记定量蛋白质组学研究。

Proteomics

蛋白质组学

19

19

, 1–15 (2019).

,1–15(2019)。

Article

文章

Google Scholar

谷歌学术索

Cordeau, S., Triolet, M., Wayman, S., Steinberg, C. & Guillemin, J. P. Bioherbicides: Dead in the water? A review of the existing products for integrated weed management.

科迪欧,S.,特里奥莱,M.,韦曼,S.,斯坦伯格,C.,吉勒曼,J.P. 生物除草剂:水中之死?现有产品在综合杂草管理中的应用综述。

Crop Prot.

作物保护

87

87

, 44–49 (2016).

,44-49页(2016年)。

Article

文章

CAS

中国科学院

Google Scholar

谷歌学术

Liu, M. & Lu, S. Plastoquinone and Ubiquinone in plants: Biosynthesis, physiological function and metabolic Engineering.

刘, M. & 卢, S. 植物中的质体醌和泛醌:生物合成、生理功能与代谢工程。

Front. Plant. Sci.

植物科学前沿

7

7

, 1–18 (2016).

,1–18(2016)。

Article

文章

ADS

广告

MATH

数学

Google Scholar

谷歌学术索

Ben Kaab, S. et al. Cynara cardunculus crude extract as a powerful natural herbicide and insight into the mode of action of its bioactive molecules.

Ben Kaab, S. 等。Cynara cardunculus 粗提物作为一种强效天然除草剂及其生物活性分子作用机制的见解。

Biomolecules

生物分子

10

10

, (2020).

,(2020)。

Liu, P. et al. Physiological responses and proteomic changes reveal insights into Stylosanthes response to manganese toxicity.

刘鹏等。生理反应和蛋白质组学变化揭示了对锰毒性的反应机制。

BMC Plant. Biol.

BMC植物生物学。

19

19

, 1–21 (2019).

,1-21(2019)。

Google Scholar

谷歌学术搜索

Jarvit, S., Gollanf, P. J. & Aro, E. M. Understanding the roles of the thylakoid lumen in photosynthesis regulation.

Jarvit, S., Gollanf, P. J. & Aro, E. M. 理解类囊体腔在光合作用调控中的作用。

Front. Plant. Sci.

植物科学前沿

4

4

, 1–14 (2013).

,1–14(2013)。

MATH

数学

Google Scholar

谷歌学术搜索

Li, J. et al. Allelopathic effect of Artemisia argyi on the germination and growth of various weeds.

李佳等,艾草对多种杂草种子萌发和生长的化感作用。

Sci. Rep.

科学报告

11

11

, 1–15 (2021).

,1–15(2021)。

Google Scholar

谷歌学术搜索

He, B., Hu, Y., Wang, W., Yan, W. & Ye, Y. The progress towards novel herbicide modes of action and targeted herbicide development.

何斌、胡燕、王伟、颜伟、叶宇。新型除草剂作用方式及靶向除草剂研发的进展。

Agronomy

农学

12

12

, (2022).

,(2022)。

Bettaieb Rebey, I. et al. Bioactive compounds and antioxidant activity of Pimpinella anisum L. accessions at different ripening stages.

Bettaieb Rebey, I. 等。不同成熟阶段的茴香(Pimpinella anisum L.)种质的生物活性化合物及抗氧化活性。

Sci. Hortic. (Amsterdam)

《园艺科学》(阿姆斯特丹)

.

246

246

, 453–461 (2019).

,453-461页(2019年)。

Article

文章

CAS

中国科学院

Google Scholar

谷歌学术索

Trinidad Marquez, C., Millán, C. & Salmon, J. M. Plasma membrane sterols are involved in yeast’s ability to adsorb polyphenolic compounds resulting from wine model solution browning.

特立尼达·马奎斯,C.,米兰,C.,萨蒙,J.M.。血浆膜甾醇参与酵母吸附多酚化合物的能力,这些化合物是由葡萄酒模型溶液褐变产生的。

J. Agric. Food Chem.

农业与食品化学杂志

57

57

, 8026–8032.

,8026–8032。

https://doi.org/10.1021/jf901629u

https://doi.org/10.1021/jf901629u

(2009).

(2009)。

Article

文章

CAS

中国科学院

PubMed

PubMed

Google Scholar

谷歌学术

Dayan, F. E. & Watson, S. B. Plant cell membrane as a marker for light-dependent and light-independent herbicide mechanisms of action.

Dayan, F. E. & Watson, S. B. 植物细胞膜作为光依赖性和光非依赖性除草剂作用机制的标志。

Pestic Biochem. Physiol.

农药生物化学与生理学

101

101

, 182–190 (2011).

,182-190(2011)。

Article

文章

CAS

中国科学院

MATH

数学

Google Scholar

谷歌学术

Deleu, M., Crowet, J., Nasir, M. N. & Lins, L. Complementary biophysical tools to investigate lipid specificity in the interaction between bioactive molecules and the plasma membrane: A review.

德勒伊,M.,克罗埃,J.,纳西尔,M. N.,林斯,L. 互补的生物物理工具用于研究生物活性分子与细胞膜相互作用中的脂质特异性:综述。

BBA - Biomembr.

BBA - 生物膜

https://doi.org/10.1016/j.bbamem.2014.08.023

https://doi.org/10.1016/j.bbamem.2014.08.023

(2014).

(2014)。

Article

文章

Google Scholar

谷歌学术索

Erlejman, A. G., Verstraeten, S. V., Fraga, C. G. & Oteiza, P. I. The interaction of flavonoids with membranes: Potential determinant of flavonoid antioxidant effects.

Erlejman, A. G., Verstraeten, S. V., Fraga, C. G. & Oteiza, P. I. 类黄酮与细胞膜的相互作用:类黄酮抗氧化作用的潜在决定因素。

Free Radic Res.

自由基研究

38

38

, 1311–1320 (2004).

,1311-1320(2004)。

Article

文章

CAS

中国科学院

PubMed

PubMed

Google Scholar

谷歌学术搜索

Movileanu, L., Neagoe, I. & Luiza, M. Interaction of the antioxidant flavonoid quercetin with planar lipid bilayers.

Movileanu, L., Neagoe, I. & Luiza, M. 抗氧化黄酮类槲皮素与平面脂质双层的相互作用。

205

205

, 135–146 (2000).

,135-146页(2000年)。

Dayan, F. E., Owens, D. K., Watson, S. B., Asolkar, R. N. & Boddy, L. G. Sarmentine, a natural herbicide from Piper species with multiple herbicide mechanisms of action.

达亚恩,F. E.,欧文斯,D. K.,沃森,S. B.,阿索尔卡尔,R. N.,博迪,L. G. 胡椒属植物中的天然除草剂——沙门汀,具有多种除草作用机制。

Front. Plant. Sci.

植物科学前沿

6

6

, 222 (2015).

,222(2015)。

Article

文章

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术

Lebecque, S., Lins, L., Dayan, F. E., Fauconnier, M. L. & Deleu, M. Interactions between natural herbicides and lipid bilayers mimicking the plant plasma membrane.

勒贝克,S.,林斯,L.,达扬,F. E.,福孔尼尔,M. L.,德勒,M. 天然除草剂与模拟植物细胞膜的脂质双层之间的相互作用。

Front. Plant. Sci.

植物科学前沿

10

10

, 1–11 (2019).

,1-11页(2019年)。

Google Scholar

谷歌学术

Mittler, R. Oxidative stress, antioxidants and stress tolerance 7,

米特勒,R. 氧化应激、抗氧化剂与胁迫耐受性 7,

Trends Plant Sci.

植物科学趋势

7

7

(9), 405–410 (2002).

(9), 405–410 (2002).

Singh, H. P., Batish, D. R., Kaur, S., Arora, K. & Kohli, R. K. A -Pinene inhibits growth and induces oxidative stress in roots. 1261–1269 (2006).

Singh, H. P., Batish, D. R., Kaur, S., Arora, K. & Kohli, R. K. α-蒎烯抑制根系生长并诱导氧化应激。1261–1269(2006)。

https://doi.org/10.1093/aob/mcl213

https://doi.org/10.1093/aob/mcl213

Galati, G., Sabzevari, O., Wilson, J. X. & Brien, P. J. O. Prooxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolics.

Galati, G., Sabzevari, O., Wilson, J. X. & Brien, P. J. O. 酚类膳食黄酮及其他多酚的酚氧自由基的促氧化活性及细胞效应。

177

177

, 91–104 (2002).

,91-104页(2002年)。

Mahdavikia, F., Saharkhiz, M. J. & Karami, A. Defensive response of radish seedlings to the oxidative stress arising from phenolic compounds in the extract of peppermint (Mentha × piperita L).

马赫达维基亚,F.,萨哈尔赫兹,M. J. & 卡拉米,A. 萝卜幼苗对来自薄荷(Mentha × piperita L)提取物中酚类化合物引起的氧化应激的防御反应。

Sci. Hortic. (Amsterdam)

《园艺科学》(阿姆斯特丹)

.

https://doi.org/10.1016/j.scienta.2016.11.029

https://doi.org/10.1016/j.scienta.2016.11.029

(2017).

(2017)。

Article

文章

Google Scholar

谷歌学术索

Ksouri, R. et al. Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents.

Ksouri, R. 等。可食用药用盐生植物柽柳(Tamarix gallica L.)及其相关多酚成分的抗氧化和抗菌活性。

Food Chem. Toxicol.

食品化学与毒理学

47

47

, 2083–2091 (2009).

,2083-2091(2009)。

Article

文章

CAS

中国科学院

PubMed

PubMed

MATH

数学

Google Scholar

谷歌学术

Duke, S. O. et al. New approaches to Herbicide and Bioherbicide Discovery.

杜克,S. O. 等。除草剂和生物除草剂发现的新方法。

Weed Sci.

杂草科学

1–21.

1–21。

https://doi.org/10.1017/wsc.2024.54

https://doi.org/10.1017/wsc.2024.54

(2024).

(2024)。

Ong, S. E. & Mann, M. Mass Spectrometry–Based Proteomics turns quantitative.

Ong, S. E. 和 Mann, M. 基于质谱的蛋白质组学变得可量化。

Nat. Chem. Biol.

自然化学生物学。

1

1

, 252–262 (2005).

,252-262页(2005年)。

Article

文章

CAS

中国科学院

PubMed

PubMed

Google Scholar

谷歌学术索

Bantscheff, M., Lemeer, S., Savitski, M. M. & Kuster, B. Quantitative mass spectrometry in proteomics: Critical review update from 2007 to the present.

班切夫,M.,勒梅尔,S.,萨维茨基,M. M.,库斯特,B. 蛋白质组学中的定量质谱:2007年至今的批判性综述更新。

Anal. Bioanal Chem.

分析生物分析化学。

404

404

, 939–965 (2012).

,939-965(2012)。

Article

文章

CAS

中国科学院

PubMed

PubMed

Google Scholar

谷歌学术

Välikangas, T., Suomi, T. & Elo, L. L. A systematic evaluation of normalization methods in quantitative label-free proteomics.

Välikangas, T., Suomi, T. & Elo, L. L. 定量无标记蛋白质组学中归一化方法的系统评估。

Brief. Bioinform

简明生物信息学

19

19

, 1–11 (2018).

,1–11(2018)。

PubMed

PubMed

Google Scholar

谷歌学术索

Li, Z. et al. Systematic comparison of label-free, metabolic labeling, and isobaric chemical labeling for quantitative proteomics on LTQ orbitrap velos.

李,Z. 等。LTQ Orbitrap Velos 上无标记、代谢标记和等压化学标记的定量蛋白质组学系统比较。

J. Proteome Res.

蛋白质组研究杂志

11

11

, 1582–1590 (2012).

,1582-1590(2012)。

Article

文章

ADS

广告

CAS

中国科学院

PubMed

PubMed

MATH

数学

Google Scholar

谷歌学术索

Download references

下载参考资料

Acknowledgements

致谢

We would like to thank Simon Derhet and Joseph Nader for their technical assistance. We would like to sincerely thank APEO SRL for their valuable scientific support in this research.

我们要感谢Simon Derhet和Joseph Nader提供的技术协助。我们还要真诚感谢APEO SRL在本研究中提供的宝贵科学支持。

Funding

资金

This research was carried out with the support of the General Operational Directorate of the Economy, Employment and Research (DGO6) (WALLONIA).

本研究是在经济、就业和研究总运营局(DGO6)(瓦隆尼亚)的支持下进行的。

Author information

作者信息

Authors and Affiliations

作者与所属机构

Integrated and Urban Plant Pathology Laboratory, University of Liège, Gembloux Agro-Bio Tech, 2 Passage des Déportés, 5030, Gembloux, Belgium

比利时列日大学综合与城市植物病理学实验室,Gembloux Agro-Bio Tech,2号被放逐者通道,5030,Gembloux,比利时

Sofiene Ben Kaab, Bérénice Foncoux & M. Haissam Jijakli

索菲恩·本·卡布、贝雷尼丝·丰库克斯和M. 海萨姆·吉贾克利

Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du sud 4-5, 1348, Louvain-la-Neuve, Belgium

鲁汶生物分子科学与技术研究所,UCLouvain,南十字街4-5号,1348,比利时新鲁汶

Manon Martin, Hervé Degand & Pierre Morsomme

曼侬·马丁,埃尔韦·德甘,皮埃尔·莫索梅

APEO SRL (Agronomical Plant Extracts & Essential Oils), Passage des Déportés 2, 5030, Gembloux, Belgium

比利时根布卢瓦5030,被驱逐者通道2号,APEO有限公司(农用植物提取物和精油)

Bérénice Foncoux

贝雷尼丝·丰库克斯

Authors

作者

Sofiene Ben Kaab

苏菲恩·本·卡布

View author publications

查看作者的出版物

You can also search for this author in

您还可以搜索此作者在

PubMed

PubMed

Google Scholar

谷歌学术索

Manon Martin

曼侬·马丁

View author publications

查看作者的出版物

You can also search for this author in

您还可以搜索此作者在

PubMed

PubMed

Google Scholar

谷歌学术

Hervé Degand

埃尔韦·德甘

View author publications

查看作者的出版物

You can also search for this author in

您还可以搜索此作者在

PubMed

PubMed

Google Scholar

谷歌学术搜索

Bérénice Foncoux

贝雷尼丝·丰库克斯

View author publications

查看作者的出版物

You can also search for this author in

您还可以搜索该作者在

PubMed

PubMed

Google Scholar

谷歌学术

Pierre Morsomme

皮埃尔·莫索姆

View author publications

查看作者的出版物

You can also search for this author in

您还可以搜索此作者在

PubMed

PubMed

Google Scholar

谷歌学术

M. Haissam Jijakli

哈伊萨姆·吉贾克利先生

View author publications

查看作者的出版物

You can also search for this author in

您还可以搜索此作者在

PubMed

PubMed

Google Scholar

谷歌学术

Contributions

贡献

SBK, MHJ, PM conceptualized the research. SBK, HD, MHJ designed the research. SBK, HD conducted the experiments. MM analyzed the data. SBK wrote the manuscript. All authors contributed to the article and approved the submitted version.

SBK、MHJ、PM构思了研究。SBK、HD、MHJ设计了研究。SBK、HD进行了实验。MM分析了数据。SBK撰写了手稿。所有作者都对文章做出了贡献并批准了提交的版本。

Corresponding author

通讯作者

Correspondence to

致函

Sofiene Ben Kaab

索菲恩·本·卡布

.

Ethics declarations

伦理声明

Competing interests

竞争利益

The authors declare no competing interests.

作者声明不存在竞争性利益。

Additional information

更多信息

Publisher’s note

出版社说明

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature 对已发布地图中的管辖权声明和机构隶属关系保持中立。

Electronic supplementary material

电子补充材料

Below is the link to the electronic supplementary material.

以下是电子补充材料的链接。

Supplementary Material 1

补充材料1

Supplementary Material 2

补充材料2

Rights and permissions

权利与许可

Open Access

开放获取

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

本文根据知识共享署名4.0国际许可证获得许可,该许可证允许您在任何媒介或格式中使用、分享、改编、分发和复制,只要您对原作者和来源给予适当的署名,提供指向知识共享许可证的链接,并说明是否进行了修改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的 Creative Commons 许可证中,除非材料的信用条款另有说明。如果材料未包含在文章的 Creative Commons 许可证中,且您打算的使用方式不被法律法规允许或超出了允许的使用范围,您需要直接从版权持有人处获得许可。

To view a copy of this licence, visit .

要查看此许可证的副本,请访问 。

http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

.

Reprints and permissions

重印和许可

About this article

关于本文

Cite this article

引用这篇文章

Kaab, S.B., Martin, M., Degand, H.

卡布,S.B.,马丁,M.,德甘,H.

et al.

等。

Label free quantitative proteomic analysis reveals the physiological and biochemical responses of

无标签定量蛋白质组学分析揭示了生理和生化反应

Arabidopsis thaliana

拟南芥

to cinnamon essential oil.

肉桂精油。

Sci Rep

科学报告

15

15

, 6156 (2025). https://doi.org/10.1038/s41598-025-89368-4

,6156(2025)。https://doi.org/10.1038/s41598-025-89368-4

Download citation

下载引用

Received

已收到

:

21 June 2024

2024年6月21日

Accepted

已接受

:

05 February 2025

2025年2月5日

Published

已发布

:

20 February 2025

2025年2月20日

DOI

数字对象标识符

:

https://doi.org/10.1038/s41598-025-89368-4

https://doi.org/10.1038/s41598-025-89368-4

Share this article

分享这篇文章

Anyone you share the following link with will be able to read this content:

任何你分享以下链接的人都将能够阅读此内容:

Get shareable link

获取可共享链接

Sorry, a shareable link is not currently available for this article.

抱歉,这篇文章目前没有可共享的链接。

Copy to clipboard

复制到剪贴板

Provided by the Springer Nature SharedIt content-sharing initiative

由 Springer Nature SharedIt 内容共享计划提供

Keywords

关键词

Essential oils

精油

Weed populations

杂草种群

Botanical herbicides

植物除草剂

Arabidopsis thaliana

拟南芥

Differentially accumulated proteins

差异积累蛋白