EN
登录

检测脱落酸(ABA)调节甜樱桃果实成熟一致性的作用机理生理和分子机制

Detecting the physiological and molecular mechanisms by which abscisic acid (ABA) regulates the consistency of sweet cherry fruit maturity

Nature 等信源发布 2025-02-21 19:01

可切换为仅中文


Abstract

摘要

In the cultivation and production of sweet cherry, the cost of picking fruit is high due to inconsistency in the maturation period, which has affected the development of the cherry industry. In this study, the effects of exogenous abscisic acid (ABA) on the sweet cherry variety ‘Luying 3’ fruit quality and maturation stage were observed and recorded, and the physiological and molecular mechanisms were explored to systematically analyze the effects of ABA on sweet cherry fruit ripening to promote the development of the cherry industry.

在甜樱桃的栽培和生产中,由于成熟期不一致导致采收成本高,影响了樱桃产业的发展。本研究观察并记录了外源脱落酸(ABA)对甜樱桃品种‘鲁樱3号’果实品质和成熟阶段的影响,并探讨了其生理和分子机制,系统分析了ABA对甜樱桃果实成熟的调控作用,以促进樱桃产业的发展。

Exogenous ABA (400 mg L.

外源ABA(400 mg L。

−1

−1

) enhanced the color of ‘Luying 3’ fruit in the developing stage but had no significant effect on the fruit weight, soluble solid content, titratable acid content, and sugar-acid ratio in the mature stage. The application of ABA significantly promoted the secretion of endogenous ABA, gibberellin (GA) and salicylic acid (SA).

)增强了‘绿英3号’果实发育阶段的颜色,但对成熟阶段的果实重量、可溶性固形物含量、可滴定酸含量和糖酸比没有显著影响。ABA的施用显著促进了内源ABA、赤霉素(GA)和水杨酸(SA)的分泌。

A total of 766 differentially expressed genes (DEGs) were obtained between the treatment group and the control group at 47 and 54 d after flowering. The DEGs were significantly enriched in plant hormone signal transduction pathway, MAPK plant signal transduction pathway and glycolysis pathway. Six genes related to the synthesis of endogenous hormones were screened, of which five were upregulated and one was downregulated.

在花后47 d和54 d,处理组与对照组之间共获得766个差异表达基因(DEGs),这些基因显著富集在植物激素信号转导途径、MAPK植物信号转导途径和糖酵解途径。筛选到6个与内源激素合成相关的基因,其中5个上调,1个下调。

Four DEGs related to the sweet cherry fruit metabolic rate were upregulated by ABA, which positively regulated fruit ripening. Eight differentially expressed AP2/ERF transcription factors were identified, of which 5 were upregulated and 3 were downregulated. This study provides a theoretical foundation for the application of ABA in promoting the consistency of cherry fruit maturity..

四个与甜樱桃果实代谢速率相关的差异表达基因受到ABA的上调,这正向调节了果实的成熟。鉴定出八个差异表达的AP2/ERF转录因子,其中5个上调,3个下调。本研究为ABA在促进樱桃果实成熟一致性方面的应用提供了理论基础。

Introduction

简介

The European sweet cherry (

欧洲甜樱桃 (

Prunus avium

欧洲甜樱桃

) is native to Europe and South Asia, including a small isolated area in the western Himalayas, and is commonly referred to as sweet cherry

)原产于欧洲和南亚,包括喜马拉雅山西部的一个小孤立地区,通常被称为甜樱桃

1

1

. Sweet cherry, which belongs to the Rosaceae family, is a

. 甜樱桃属于蔷薇科,是

Prunus

李属

species in the subgroup Cerasus

樱属亚组中的物种

2

2

. Sweet cherry cultivation has the advantages of early fruiting, quick effects, environmental safety, and so on. According to the Food and Agriculture Organization of the United Nations (FAO) database (

甜樱桃栽培具有结果早、见效快、环境安全等优点。根据联合国粮食及农业组织(FAO)数据库(

https://www.fao.org/home/zh

https://www.fao.org/home/zh

), in 2020, sweet cherry was the main product or one of the main products, with a global cultivation area of 451,000 hectares, and the total output reached 2.687 million tons. Given China’s booming economy in recent years, the cultivation area has reached 11,000 hectares. In 2020, with an annual output of 44,000 tons of cherries, China was the world’s largest producer and importer of cherries, with an annual import volume of more than 40,000 tons.

), 2020年甜樱桃为主要产物或主要产物之一,全球栽培面积达45.1万公顷,总产量达268.7万吨。鉴于中国近年来经济的蓬勃发展,栽培面积已达1.1万公顷。2020年中国樱桃年产量达4.4万吨,是世界上最大的樱桃生产国和进口国,年进口量超过4万吨。

Cherries have become an important and lucrative tree species for farmers. However, despite the rapid development of the sweet cherry industry, several factors limit its growth. For example, the maturity of the fruit of a single tree is not consistent during the production of sweet cherry, making it difficult to pick fruit, as the fruits need to be picked individually, resulting in an increase in harvesting costs.

樱桃已成为果农重要的经济树种,然而,虽然甜樱桃产业快速发展,但一些因素限制了其发展。例如,在甜樱桃生产中,单株果实成熟期不一致,使得采收困难,因为果实需要单个采摘,导致采收费用增加。

Therefore, plant growth regulators are widely used to regulate the ripening of sweet cherry and achieve the greatest economic benefits.

因此,植物生长调节剂被广泛应用于调控甜樱桃的成熟,以获得最大的经济效益。

3

3

,

4

4

,

5

5

.

Physiological changes occur during fruit ripening, starting with changes in the respiration rate. Changes in the respiration rate play a decisive role in fruit ripening and aging

果实成熟期间会发生生理变化,首先是呼吸速率的变化。呼吸速率的变化在果实成熟和衰老过程中起决定性作用。

6

6

, and fruits can be classified as climacteric fruits (such as tomatoes, apples and bananas) or non-climacteric fruits (such as grapes, strawberries and cherries). These processes differ in terms of ethylene production and respiration patterns at the beginning of the maturation process

,果实可以分为跃变型果实(如番茄、苹果和香蕉)或非跃变型果实(如葡萄、草莓和樱桃)。这些过程在成熟过程开始时的乙烯产生和呼吸模式方面有所不同。

7

7

,

8

8

,

9

9

. Climacteric fruits exhibit a respiratory burst at the onset of ripening, accompanied by a large increase in ethylene production, which regulates chloroplast pigment differentiation and carotenoid accumulation, and fruit ripening can also be initiated by exposure to exogenous ethylene

跃变型果实会在成熟开始时出现呼吸爆发,并伴有乙烯产量的大幅增加,乙烯调控叶绿体色素分化和类胡萝卜素积累,果实成熟也可以通过暴露于外源乙烯来启动。

10

10

,

11

11

. In non-climacteric fruits, in which increased respiration does not occur, abscisic acid (ABA), but not ethylene, appears to be the key factor affecting the ripening process. Because the activity of biosynthetic enzymes was inhibited, the activity of ABA-degrading enzymes (CYP and UGT) was relatively high, and the level of ABA was low in strawberry during the early stage of development.

在非跃变型果实中,呼吸作用不会增加,脱落酸(ABA)而不是乙烯似乎是影响成熟过程的关键因素。由于生物合成酶的活性受到抑制,ABA降解酶(CYP和UGT)的活性相对较高,草莓在发育早期阶段ABA的水平较低。

With continuous ripening, the ABA level gradually increased with the upregulation of the .

随着持续成熟,ABA水平逐渐增加,并且上调了。

FvNCED1

FvNCED1

and

FvABA2

FvABA2

genes. It peaked at the “full red” stage of strawberry fruits

基因。它在草莓果实的“全红”阶段达到峰值

12

12

,

13

13

. During the ripening of these fruits, ABA is directly associated with reduced fruit acidity, changes in peel color (mainly by promoting anthocyanin production), increased vacuolar hexose concentrations, and cell wall modifications that contribute to fruit softening

在这些果实成熟过程中,ABA 与果实酸度降低、果皮颜色变化(主要通过促进花青素生成)、液泡己糖浓度增加以及导致果实软化的细胞壁修饰直接相关。

14

14

,

15

15

. Exogenous ABA treatment of figs has been shown to regulate the expression of endogenous ABA synthesis genes (

外源ABA处理无花果已被证明可以调节内源ABA合成基因的表达 (

FcNCED2

FcNCED2

, etc.) and ethylene synthesis genes (

,等等)和乙烯合成基因(

FcACO2

FcACO2

,

FcACS4

FcACS4

, etc.), thereby affecting the secretion of endogenous ABA and ethylene and promoting the ripening of fig fruit

,等等),从而影响内源ABA和乙烯的分泌,促进无花果果实的成熟。

14

14

. In tomato, banana and other fruits, the phenomena associated with fruit ripening, such as deepening of the color, increased softening, and an increased soluble sugar content, were found to occur earlier after ABA application

在番茄、香蕉和其他水果中,发现与果实成熟相关的现象(如颜色加深、软化程度增加和可溶性糖含量升高)在施用ABA后更早出现。

16

16

,

17

17

,

18

18

. Sweet cherry is also a type of non-climacteric fruit. Studies have shown that the application of ABA can promote the ripening of cherry fruits and make the ripening stage of cherry fruits more consistent, which is conducive to one-time harvesting and reduces harvesting costs

甜樱桃也是一种非跃变型果实。研究表明,施用ABA可以促进樱桃果实的成熟,使樱桃果实的成熟期更一致,有利于一次性采收,降低采收成本。

19

19

,

20

20

,

21

21

. However, studies of the effects of exogenous ABA treatment on fruit ripening in sweet cherry have been limited to in vitro shoots or harvested fruits

然而,关于外源ABA处理对甜樱桃果实成熟影响的研究仅限于体外枝条或采后果实。

19

19

,

22

22

, and further research is needed to investigate the maternal manifestations. Therefore, in this study, a cherry variety (‘Luying 3’) was treated with 400 mg L

,需要进一步研究来调查母体的表现。因此,在本研究中,一种樱桃品种(‘鲁樱3号’)接受了400 mg L的处理。

−1

−1

ABA to observe the changes in the appearance and internal quality of sweet cherry fruit, and the differentially expressed genes (DEGs) after ABA treatment were analyzed to identify the key genes that are regulated by ABA treatment. This study aimed to explore the effects of ABA treatment on the ripening of sweet cherry fruit at the physiological and molecular levels and to provide a theoretical basis for the rational use of ABA in the production and cultivation of sweet cherry fruit..

ABA观察甜樱桃果实外观和内在品质的变化,并分析ABA处理后的差异表达基因(DEGs),以鉴定受ABA调控的关键基因。本研究旨在从生理和分子水平探讨ABA处理对甜樱桃果实成熟的影响,为ABA在甜樱桃果实生产与栽培中的合理应用提供理论依据。

Materials and methods

材料与方法

Test material

测试材料

The sweet cherry variety ‘Luying 3’ which was a new variety independently bred by our team was selected as the experimental material, and its father and mother were ‘Tieton’ and ‘Summit’, respectively. It was approved by the Shandong Forest Tree Varieties Examination and Approval Committee in 2018, and the approval number is’ Lu S-SV-CA-016-2018’.

本试验材料甜樱桃品种‘鲁樱3号’为团队自主培育的新品种,其父本和母本分别为‘提顿’和‘萨米特’,2018年通过山东省林木品种审定委员会审定,审定编号为鲁S-SV-CA-016-2018。

The test site is located in our own test base, -the Jinniushan Test Demonstration Base, Daiyue District, Tai ‘an City, Shandong Province, China. Forty days after flowering, the fruit entered the color transition period. Six new trees of the cherry variety ‘Luying 3’ with more orderly tree growth and a uniform fruit size were selected and divided into a control (CK) group and a treatment (T) group, with 3 trees in each group.

试验地点位于我国自有试验基地——山东省泰安市岱岳区金牛山试验示范基地。花后40天,果实进入转色期,选择树体生长较整齐、果实大小较均匀的6株‘鲁樱3号’甜樱桃树,分为对照(CK)组和处理(T)组,每组各3株。

The fruits were sprayed 40 d after flowering (May 27) with water in the control group and 400 mg L.

开花后40天(5月27日),对照组的果实喷洒了水,浓度为400毫克/升。

−1

−1

ABA in the treatment group, with a total of approximately 150 ml applied to all the fruits of each tree. The criterion for fruit maturity was that the size of the fruit did not change further, the fruit turned completely red, and the soluble solid content was stable.

治疗组使用ABA,每棵树的所有果实总共施用约150毫升。果实成熟的判定标准是果实大小不再变化,果实完全变红,可溶性固形物含量稳定。

The fruits were first collected 40 d after flowering and labeled OG. Each tree was treated as a biological replicate with 3 replicates and 20 fruits were collected from each replicate. After full mixing, 10 fruits were randomly selected, and their pulp was chopped, placed in a centrifuge tube and quickly frozen with liquid nitrogen.

果实于花后40天首次采收并标记为OG。每棵树作为一个生物重复,设3个重复,每个重复采收20个果实。充分混合后,随机选取10个果实,将其果肉切碎,放入离心管中,并用液氮快速冷冻。

The samples were stored at -80℃ for RNA extraction, transcriptome sequencing, and the determination of endogenous hormone contents. The other 50 fruits were placed in an ice box and brought back to the laboratory for imaging and determinations of the single-fruit weight, transverse diameter, longitudinal diameter, soluble solid (TSS) content and titratable acid content (TA).

样品保存在-80℃用于RNA提取、转录组测序和内源激素含量测定。另外50个果实放置在冰盒中带回实验室,进行图像采集,并测定单果重、横径、纵径、可溶性固形物(TSS)含量和可滴定酸含量(TA)。

Afterward, samples from the control group and treatment group were collected every 7 days (i.e., 47 days and 54 days after flowering, respectively)..

之后,分别在开花后47天和54天每隔7天收集对照组和处理组的样本。

Test methods

测试方法

Determination of the fruit appearance quality

果实外观质量的测定

The single-fruit weight, transverse diameter and longitudinal stems were measured. Ten fruits were randomly selected from each treatment group and weighed with an electronic scale, and the average single-fruit weight was calculated. The transverse diameter of the fruit was measured along the largest transverse section of the fruit with Vernier calipers, and the longitudinal stem of the fruit was measured along the ventral suture of the fruit..

测量单果重、横径和纵径。每处理组随机选取10个果实,用电子秤称重,计算平均单果重。用游标卡尺沿果实最大横截面测量果实横径,并沿果实腹缝线测量果实纵径。

For the examination of fruit color, twenty fruits from each treatment group were randomly selected, arranged in order of color and photographed to record their color. Five samples were randomly selected form each treatment groups, and the color parameters of lightness (L), red-green value (a) and yellow-blue value (b) were measured using a Konica Minolta portable color difference meter (CR-400)..

对于果实颜色的检测,从每个处理组中随机选取二十个果实,按颜色顺序排列并拍照记录其颜色。每个处理组随机选取五个样品,使用柯尼卡美能达便携式色差计(CR-400)测量亮度(L)、红绿色值(a)和黄蓝色值(b)的颜色参数。

Fruit TSS and TA contents and sugar-acid ratio (TSS/TA)

果实可溶性固形物(TSS)和可滴定酸(TA)含量及糖酸比(TSS/TA)

A PAL-BX丨ACID 16 cherry sugar acidity meter was used for determination to measure these parameters.

使用PAL-BX丨ACID 16樱桃糖酸计进行测定,以测量这些参数。

Determination of endogenous hormone contents

内源激素含量的测定

ABA, gibberellin (GA3), ethylene (ACC), and salicylic acid (SA) levels in sweet cherry pulp samples were determined via liquid chromatography

通过液相色谱法测定甜樱桃果肉样品中的ABA、赤霉素(GA3)、乙烯(ACC)和水杨酸(SA)水平。

23

二十三

.

Transcriptome sequencing

转录组测序

RNA was extracted from the samples using the polysaccharide and polyphenol plant total RNA extraction kit from Tiangen. The A260, A260/A230, A260/A280 and RNA concentrations (µg µL

使用天根公司的多糖多酚植物总RNA提取试剂盒从样品中提取RNA。A260、A260/A230、A260/A280和RNA浓度(µg/µL)

−1

−1

) of the RNA samples were measured with an IMPLEN Ultramicro UV spectrophotometer. RNA integrity was assessed using a Fragment Analyzer 5400 (Agilent Technologies, CA, USA).

)的RNA样品使用IMPLEN超微量紫外分光光度计进行测量。RNA完整性使用Fragment Analyzer 5400(安捷伦科技,加利福尼亚州,美国)进行评估。

After the extracted RNA samples were qualified, the total RNA was used as the input material for RNA sample preparation, sequencing libraries were generated using the Illumina® NEBNext®UltraTM RNA Library Preparation Kit, and index codes were added to attribute sequences to each sample. Fastp software (v0.19.7) was used for basic statistics and quality control of the raw sequencing data..

在提取的RNA样品合格后,使用总RNA作为RNA样品制备的输入材料,采用Illumina® NEBNext®UltraTM RNA Library Preparation Kit生成测序文库,并添加索引码以将序列归属到每个样品。使用Fastp软件(v0.19.7)对原始测序数据进行基本统计和质量控制。

The fragments per kilobase per million mapped reads (FPKM) value was used to calculate gene expression. Then, TCC-GUI was used to screen DEGs between samples receiving different treatments, and the screening criterion was as a P value < 0.05. Gene heatmaps were generated using Cluster3.0. The false discovery rate (FDR) (Benjamini and Hochberg (BH)) method was used to ccorrect the results for multiple testing.

每千碱基每百万映射读取片段(FPKM)值用于计算基因表达。然后,使用TCC-GUI筛选接受不同处理的样本之间的差异表达基因(DEGs),筛选标准为P值<0.05。基因热图使用Cluster3.0生成。错误发现率(FDR)(Benjamini和Hochberg(BH)方法)用于校正多重检验的结果。

KEGG pathways with corrected p values less than 0.05 were considered significantly enriched pathways..

校正后的p值小于0.05的KEGG通路被认为是显著富集的通路。

iTAK software was used to predict the transcription factors (TFs) of ‘Luying 3’, and the TFs in the samples were identified based on the TFs and rules that had been classified and defined in the database.

使用iTAK软件预测了‘陆英3号’的转录因子(TFs),并根据数据库中已分类和定义的转录因子及其规则鉴定了样品中的转录因子。

qRT-PCR

实时荧光定量PCR

Beacon Designer software was used to design the qRT‒PCR primers (Supplementary Table

使用 Beacon Designer 软件设计 qRT-PCR 引物(补充表

S1

S1

), which were synthesized by Shanghai Bioengineering Co., Ltd. qRT‒PCR was performed and amplified using the cDNA samples of the constructed RNA-seq library with

),由上海生物工程有限公司合成。使用构建的RNA-seq文库的cDNA样品进行qRT-PCR扩增。

CYP2

CYP2

(GenBank search number: TC1916) as the internal reference gene according to the instructions of the SuperReal PreMix Plus (SYBR Green) Kit.

(GenBank检索号:TC1916)作为内参基因,按照SuperReal PreMix Plus (SYBR Green)试剂盒说明书进行操作。

Result and analysis

结果与分析

Effects of exogenous ABA on the external morphology of sweet cherry fruits

外源ABA对甜樱桃果实外部形态的影响

Exogenous ABA promotes fruit coloration in sweet cherry

外源ABA促进甜樱桃果实着色

As shown in Fig.

如图所示。

1

1

A,B, the application of exogenous ABA at 400 mg L

A、B,外源ABA在400 mg L的应用

−1

−1

clearly promoted the coloration of the ‘Luying 3’ fruit and made its maturity stage more consistent in terms of appearance. Forty days after flowering, the fruits of ‘Luying 3’ were in the green‒green stage, and at 47 d after flowering, the fruits of the treatment group were more uniform than those of the control group.

明显促进了‘鲁樱3号’果实的着色,使其成熟阶段在外观上更加一致。开花后40天,‘鲁樱3号’的果实处于绿‒绿阶段,而在开花后47天,处理组的果实比对照组更加均匀。

Most of the fruits in the control group were green-red (25, 50%), a small portion of the fruits were light-red (15, 30%), and the number of fruits in the red stage was the lowest (10, 20%), while the fruits in the treatment group were not green-red, but were light red or red, accounting for 40% and 60%, respectively.

对照组中的大部分果实为绿红相间(25,50%),少部分果实为浅红色(15,30%),处于红色阶段的果实数量最少(10,20%),而处理组中的果实没有绿红相间的,而是浅红色或红色,分别占40%和60%。

At 54 d after flowering, the fruits in the treatment group were nearly ripe and turned dark red (50, 100%), whereas those in the control group were still red (20, 40%)..

在开花后54天,处理组的果实几乎成熟并变成深红色(50%,100%),而对照组的果实仍为红色(20%,40%)。

Moreover, the results of the colorimeter measurements (Fig.

此外,比色计测量的结果(图。

1

1

C–E) also revealed that the standard deviations of the L, a and b values among individuals in the treatment group were significantly lower than those in the control group at 47 and 54 days after flowering; the L value was significantly lower than that in the control group, and the a and b values were significantly higher than those in the control group, indicating that the color in the treatment group was more uniform and that fruit maturity was more consistent..

C–E)还显示,处理组个体在开花后47天和54天的L、a、b值的标准差显著低于对照组;L值显著低于对照组,而a和b值显著高于对照组,表明处理组的颜色更加均匀,果实成熟度更加一致。

Fig. 1

图1

Effects of ABA on fruit coloration in sweet cherry. (

ABA对甜樱桃果实着色的影响。

A

A

) color difference; (

`) 色差;(`

B

B

) color distribution; (

) 颜色分布; (

C

C

) L value; (

) 左值;(

D

D

) a value; (

)一个值;(

E

E

) b value.

) b 值。

Full size image

全尺寸图像

Effects of exogenous ABA on fruit morphology during fruit development

外源ABA对果实发育过程中果实形态的影响

After the 400 mg L

在400毫克/升之后

−1

−1

ABA treatment, the fruit size and weight of ‘Luying 3’ changed during its growth and development. Under the influence of exogenous ABA, the average transverse diameter of the fruit in the treatment group (T) at 47 d after flowering increased by approximately 7.50%, the average vertical diameter of the fruit increased by approximately 6.37%, and the average single-fruit weight increased by approximately 5.98% compared with that of the control group (CK).

ABA处理对‘鲁樱3号’果实大小和重量在生长发育过程中产生了影响。外源ABA作用下,盛花后47 d处理组(T)的果实平均横径较对照组(CK)增加了约7.50%,果实平均纵径增加了约6.37%,平均单果重量增加了约5.98%。

At 54 d after flowering, the average transverse diameters of fruits in the treatment group (T) and the control group (CK) were 31.143 mm and 31.491 mm, respectively; the average vertical diameters of the fruits were 25.283 mm and 25.918 mm, respectively, and the average single-fruit weights were 11.411 g and 11.200 g, respectively (Fig. .

在开花后54天,处理组(T)和对照组(CK)果实的平均横向直径分别为31.143毫米和31.491毫米;果实的平均纵向直径分别为25.283毫米和25.918毫米,平均单果重分别为11.411克和11.200克(图。

2

2

A–C). A significant difference was not observed between the two groups. In conclusion, ABA spraying at 400 mg L

A–C)。两组之间未观察到显著差异。总之,400 mg L的ABA喷洒

−1

−1

did not affect the fruit shape or size of ‘Luying 3’.

没有影响‘绿莹3号’的果实形状或大小。

Effects of exogenous ABA on the intrinsic quality of fruits at maturity

外源ABA对成熟期果实内在品质的影响

The taste attributes of sweet cherry fruit strongly affect consumer acceptance. Sweetness can be reported as the soluble solid content, acidity can be reported as the titratable acidity, and the sugar-acid ratio is considered an overall taste attribute. By measuring the TA content, soluble solid content and sugar-acid ratio of the fruits of the control group (CK) and the treatment group (T) at the mature stage at 54 d after flowering, we observed (Fig. .

甜樱桃果实的风味属性强烈影响消费者的接受程度。甜度可以表示为可溶性固形物含量,酸度可以表示为可滴定酸度,而糖酸比被认为是一个总体的风味属性。通过在开花后54天的成熟阶段,测量对照组(CK)和处理组(T)果实的可滴定酸含量、可溶性固形物含量和糖酸比,我们观察到(图。

2

2

D–F) that the average soluble solid contents were 20.99% and 20.72%, the average TA contents were 1.335% and 1.348%, and the sugar-acid ratios were 15.72 and 15.37, respectively. No significant differences in the TSS content, TA content and sugar-acid ratio between the control group and the treatment group.

D-F)可溶性固形物平均含量分别为20.99%和20.72%,平均TA含量分别为1.335%和1.348%,糖酸比分别为15.72和15.37。对照组与处理组之间的TSS含量、TA含量及糖酸比均无显著差异。

Our results indicated that spraying exogenous ABA at 400 mg L.

我们的结果表明,在400 mg L的浓度下喷施外源ABA。

−1

−1

had little effect on the intrinsic quality of the fruits of ‘Luying 3’.

对‘鲁樱3号’果实内在品质影响较小。

Fig. 2

图2

Effects of ABA on fruit morphology and intrinsic quality. (

ABA对果实形态和内在品质的影响。

A

A

) average transverse diameters at different developmental stages; (

) 不同发育阶段的平均横向直径;(

B

B

) average vertical diameters at different developmental stages; (

) 不同发育阶段的平均垂直直径;(

C

C

) average single-fruit weights at different developmental stages; (

不同发育阶段的平均单果重;

D

D

) TSS content at 54 d after flowering (

开花后54天的TSS含量 (

E

E

) TA content at 54 d after flowering (

开花后54天的TA含量

F

F

) sugar-acid ratio at 54 d after flowering.

开花后54天的糖酸比。

Full size image

全尺寸图像

Effects of exogenous ABA on the endogenous hormone contents in fruits

外源ABA对果实内源激素含量的影响

According to the determination of the endogenous hormone contents in the control group and the treatment group at 40 d, 47 d and 54 d after flowering (Fig.

根据开花后40天、47天和54天对照组和处理组内源激素含量的测定结果(图。

3

3

), the levels of IAA and ABA tended to increase during the fruit ripening process of ‘Luying 3’ from 40 d to 54 d after flowering. The levels of GA3 and SA decreased gradually, indicating that IAA and ABA played major roles in the ripening process of sweet cherry fruit after the developmental stage.

),‘鲁樱3号’在花后40 d到54 d的果实成熟过程中,IAA和ABA含量呈现增加趋势,而GA3和SA含量逐渐降低,表明IAA和ABA在甜樱桃果实发育阶段后的成熟过程中起主要作用。

Under the influence of exogenous ABA, the IAA content in ‘Luying 3’ was reduced by 42.77% and 45.34% at 47 d and 54 d after flowering, respectively. The endogenous ABA content increased by 70.34% at 47 d after flowering but decreased by 20.94% at 54 d after flowering. The endogenous GA3 content increased by 601.37% at 47 d after flowering and decreased by 19.64% at 54 d after flowering.

在外源ABA的影响下,‘鲁樱3号’在花后47 d和54 d的IAA含量分别降低了42.77%和45.34%。内源ABA含量在花后47 d增加了70.34%,但在花后54 d减少了20.94%。内源GA3含量在花后47 d增加了601.37%,而在花后54 d减少了19.64%。

The endogenous SA content increased by 7.88% and 24.45% at 47 d and 54 d after flowering, respectively. In summary, ABA treatment promoted the secretion of endogenous ABA, GA and SA but inhibited the secretion of IAA..

开花后 47 d 和 54 d 分别提高 7.88%和 24.45%;综上,ABA 处理促进了内源 ABA、GA 和 SA 的分泌,抑制了 IAA 的分泌。

Fig. 3

图3

Levels of different endogenous hormones in sweet cherry fruits at different maturation stages. (

不同成熟阶段甜樱桃果实中不同内源激素的水平。

A

A

) Endogenous IAA content; (

) 内源IAA含量;(

B

B

) Endogenous ABA content; (

) 内源ABA含量;(

C

C

) Endogenous GA3 content; (

) 内源GA3含量;(

D

D

) Endogenous SA content. *

)内源性SA含量。*

P

P

< 0.05, **

< 0.05, **

P

P

< 0.01, and ***

小于0.01,且***

P

P

< 0.001.

< 0.001。

Full size image

全尺寸图像

Transcriptome sequencing analysis of sweet cherry fruits treated with exogenous ABA

甜樱桃果实外源ABA处理的转录组测序分析

Statistical analysis of the sequencing results

测序结果的统计分析

A total of 213.94 G of raw data were generated by sequencing, and these raw data were submitted to the NCBI SRA database. After strict quality assessment and data filtering, 206.01 G of clean data were obtained. A total of 42,394,486 to 47,864,488 clean reads were obtained from each library, and the average base sequencing accuracy was greater than 94.92%.

测序共获得213.94 G的原始数据量,这些原始数据已递交到NCBI SRA数据库。经过严格的质量评估和数据过滤,共获得206.01 G的干净数据。每个文库获得42,394,486~47,864,488条干净读段,平均碱基测序准确率大于94.92%。

The Q20 rate, Q30 rate and GC content of the clean reads from each sample were greater than 96.67%, 91.68% and 45.38%, respectively (Supplementary Table .

每个样本的clean reads的Q20、Q30和GC含量分别大于96.67%、91.68%和45.38%(补充表 。

S2

S2

). The results revealed that the clean reads obtained by sequencing were of good quality and could be used for subsequent research.

)。结果表明,测序获得的干净读段质量良好,可用于后续研究。

Transcriptome changes during the ripening of ABA-treated sweet cherry fruits

ABA处理的甜樱桃果实成熟过程中的转录组变化

Gene expression in fruit was analyzed at 40 d, 47 d and 54 d after flowering and the results are shown in a heatmap (Supplementary Fig.

在开花后40天、47天和54天分析了果实中的基因表达,并在热图中展示了结果(补充图)。

S1

S1

), the gene expression levels at different ripening stages were clearly divided into three categories. At 40 d, 47 d and 54 d after flowering, gene expression in the control group and the treatment group was also basically divided into two categories. These results indicated that although ABA treatment affected gene expression in the fruits of ‘Luying 3’, the degree of similarity during the same period was still high..

),不同成熟阶段的基因表达水平明显分为三类。在花后40 d、47 d和54 d时,对照组和处理组的基因表达也基本分为两类。这些结果表明,虽然ABA处理影响了‘鲁樱3号’果实的基因表达,但同期的相似度仍然较高。

Analysis of differentially expressed genes at different maturation stages

不同成熟阶段差异表达基因的分析

A total of 7357 DEGs were identified in the control group (OG vs. CK-47 and CK-47 vs. CK-54) at different developmental stages, 919 of which were differentially expressed in both groups. A total of 8938 DEGs were identified in the treatment group at different developmental stages (OG vs. T-47 and T-47 vs.

在对照组(OG vs. CK-47 和 CK-47 vs. CK-54)的不同发育阶段共鉴定出 7357 个差异表达基因(DEGs),其中 919 个在两组中均差异表达。在处理组(OG vs. T-47 和 T-47 vs.

T-54), among which 1488 genes were differentially expressed in both groups. The expression of 766 different genes differed between the treatment and control groups (CK-47 vs. T-47 and CK-54 vs. T54) during the same period, 24 of which were differentially expressed in both groups (Supplementary Fig. .

T-54),其中1488个基因在两组中差异表达。在同一时期,766个不同基因的表达在处理组和对照组之间存在差异(CK-47 vs. T-47 和 CK-54 vs. T-54),其中24个基因在两组中均差异表达(补充图。

S2

S2

A).

A).

From 40 d to 47 d after flowering in ‘Luying 3’, the number of DEGs in the control group (OG vs. CK-47) was approximately the same as that in the treatment group (OG vs. T-47), and the number of upregulated and downregulated genes was also approximately the same. From 47 d to 54 d after flowering, the number of DEGs in the treatment group (T-47 vs.

从‘鲁樱3号’花后40天到47天,对照组(OG vs. CK-47)与处理组(OG vs. T-47)的差异表达基因数量大致相同,上调和下调基因的数量也大致相同。从花后47天到54天,处理组(T-47 vs.

T-54) increased compared with that in the control group (CK-47 vs. CK-54), and the number of downregulated genes increased to a greater extent than the number of upregulated genes. The number of DEGs detected at 54 d after flowering (T-54 vs. CK-54) was greater than that at 47 d after flowering (T-47 vs.

T-54)与对照组相比有所增加 (CK-47 vs. CK-54),且下调基因的数量增加幅度大于上调基因的数量。开花后54天检测到的差异表达基因数量 (T-54 vs. CK-54) 多于开花后47天检测到的数量 (T-47 vs.

CK-47) between the control group and the treatment group (Supplementary Fig. .

CK-47)在对照组和治疗组之间(补充图 。

S2

S2

B).

B).

KEGG functional annotation and metabolic pathway enrichment analysis of DEGs

KEGG功能注释和DEGs的代谢通路富集分析

A total of 766 DEGs between the control group and the treatment group at 47 d and 54 d after flowering of ‘Luying 3’ were analyzed by determining enriched KEGG pathway, and different pathways of DEGs enriched in ‘Luying 3’ under the influence of 400 mg L

在‘鲁樱3号’花后47天和54天的对照组与处理组之间,共分析了766个差异表达基因(DEGs),并通过确定富集的KEGG通路,研究了在400 mg L影响下‘鲁樱3号’中DEGs富集的不同通路。

−1

−1

exogenous ABA were obtained (Supplementary Table

外源ABA的数据见(补充表

S3

S3

). A total of 452 unigenes were annotated against the KEGG database, and the KEGG pathways of 452 sequences were enriched mainly in metabolic pathways, genetic information processing pathways and environmental information processing pathways. Among them, metabolic pathways contained the most unigenes (271), followed by environmental information processing pathways.

)。共有452个单基因在KEGG数据库中得到注释,452条序列的KEGG通路主要富集在代谢通路、遗传信息处理通路和环境信息处理通路。其中,代谢通路包含的单基因最多(271个),其次是环境信息处理通路。

A total of 32 terms were included. By analyzing 766 DEGs, some genes that may be affected by exogenous ABA and regulate sweet cherry fruit ripening, such as .

共包含32个术语。通过分析766个差异表达基因,发现一些可能受外源ABA影响并调控甜樱桃果实成熟的基因,如。

PavABF2

PavABF2

(FUN_007552-T1),

(FUN_007552-T1),

PavPR1

PavPR1

(FUN_030157-T1),

(FUN_030157-T1),

PavETR

PavETR

(FUN_039903-T1),

(FUN_039903-T1),

PavTCH4

PavTCH4

(FUN_000946-T1),

(FUN_000946-T1),

PavPP2C

PavPP2C

(FUN_039354-T1),

(FUN_039354-T1),

PavEBF1_2

PavEBF1_2

(FUN_006443-T1),

(FUN_006443-T1),

PavADH1

PavADH1

(FUN_027523-T1),

(FUN_027523-T1),

PavADH5

PavADH5

(FUN_027515-T1),

(FUN_027515-T1),

PavALDH

PavALDH

(FUN_035255-T2), and

(FUN_035255-T2),以及

PavALDO

帕瓦尔多

(FUN_038194-T1), were screened.

(FUN_038194-T1) 已被筛选。

Among them, ‘Luying 3’ bloomed 47 d later, and the upregulated genes were enriched mainly in fatty acid biosynthesis, tyrosine metabolism, alpha-linolenic acid metabolism, glycolysis/gluconeogenesis, and biosynthesis of secondary metabolites (Fig.

其中,‘鲁樱3号’在47天后开花,上调基因主要富集于脂肪酸合成、酪氨酸代谢、α-亚麻酸代谢、糖酵解/糖异生以及次生代谢产物的生物合成(图。

4

4

A). The downregulated genes were enriched mainly in the MAPK signaling pathway-plant, galactose metabolism, phosphatidylinositol signaling system, leucine and isoleucine biosynthesis (valine, leucine and isoleucine biosynthesis), pantothenate and CoA biosynthesis, and other pathways (Fig.

A). 下调基因主要富集在植物MAPK信号通路、半乳糖代谢、磷脂酰肌醇信号系统、亮氨酸和异亮氨酸生物合成(缬氨酸、亮氨酸和异亮氨酸生物合成)、泛酸和CoA生物合成以及其他通路中(图)。

4

4

B).

B).

Fig. 4

图4

Bubble plot of the enriched KEGG pathways of the DEGs. (

差异表达基因(DEGs)的KEGG通路富集气泡图。

A

A

) KEGG pathways of upregulated DEGs at 47 d; (

) 47天时上调DEGs的KEGG通路;(

B

B

) KEGG pathways of downregulated DEGs at 47 d; (

) 47天时下调DEGs的KEGG通路;(

C

C

) KEGG pathways of upregulated DEGs at 54 d; (

) 54天时上调DEGs的KEGG通路;(

D

D

) KEGG pathways of downregulated genes at 54 d.

54天时下调基因的KEGG通路。

Full size image

全尺寸图像

Fifty-four days after ‘Luying 3’ blossomed, the upregulated genes were enriched mainly in protein processing in the endoplasmic reticulum, glycolysis/gluconeogenesis and metabolic pathways, plant hormone signal transduction, sulfur metabolism, photosynthesis, the photosynthesis-antenna protein pathway, carbon metabolism, fructose and mannose metabolism, and purine metabolism (Fig. .

‘绿英3号’开花后54天,上调基因主要富集在内质网中的蛋白质加工、糖酵解/糖异生和代谢途径、植物激素信号转导、硫代谢、光合作用、光合作用天线蛋白途径、碳代谢、果糖和甘露糖代谢以及嘌呤代谢中(图。

4

4

C). The downregulated genes were enriched mainly in phenylalanine, tyrosine and tryptophan biosynthesis, base excision repair, peroxisome, sesquiterpenoid and triterpenoid biosynthesis, plant hormone signal transduction, and other pathways (Fig.

C). 下调基因主要富集在苯丙氨酸、酪氨酸和色氨酸的生物合成、碱基切除修复、过氧化物酶体、倍半萜类和三萜类生物合成、植物激素信号转导以及其他通路中(图)。

4

4

D).

D)。

Analysis of environmental information processing pathways in ‘Luying 3’ in response to ABA treatment

‘鲁樱3号’响应ABA处理的环境信息处理途径分析

Analysis of DEGs related to the plant hormone signaling pathway

植物激素信号通路相关差异表达基因分析

Through the KEGG enrichment analysis of the plant hormone signal transduction pathways in the KEGG database (Fig.

通过KEGG数据库中植物激素信号转导通路的KEGG富集分析(图。

5

5

), exogenous ABA was shown to affect the IAA, ABA, ethylene (ETH), brassinolide (BR) and SA signaling pathways in the fruits of ‘Luying 3’. Downregulation of the AUX cotransporter in the IAA signaling pathway and upregulation of the IAA-responsive gene SAUR increased cell size and fruit growth. The downregulation of PP2C, a negative regulator of the ABA signaling pathway, and the upregulation of SnRK2 protein kinase and ABA response element binding factor (ABF) promoted stomatal closure and fruit ripening.

),外源ABA被证明会影响‘鲁樱3号’果实中的IAA、ABA、乙烯(ETH)、油菜素内酯(BR)和水杨酸(SA)信号通路。IAA信号通路中AUX共转运蛋白的下调以及IAA响应基因SAUR的上调增加了细胞大小和果实生长。ABA信号通路中负调控因子PP2C的下调以及SnRK2蛋白激酶和ABA响应元件结合因子(ABF)的上调促进了气孔关闭和果实成熟。

The expression of the ethylene receptor ETR on the endoplasmic reticulum was upregulated in the ethylene signaling pathway, and EBF1_2, which plays an important role in regulating the ethylene signaling pathway by regulating EIN3 protein degradation, was upregulated. The expression of TCH4 in the BR signaling pathway, which promotes cell elongation, was upregulated and ultimately promoted fruit ripening and senescence.

乙烯信号通路中内质网上乙烯受体ETR的表达上调,EBF1_2通过调控EIN3蛋白降解从而在乙烯信号通路调控中起重要作用,其表达也上调;BR信号通路中促进细胞伸长的TCH4表达上调,最终促进了果实成熟与衰老。

PR-1 was upregulated in the SA signaling pathway. Since this pathway is involved in the fruit ripening process, the .

PR-1 在SA信号通路中被上调。由于该通路参与果实成熟过程,因此。

PavABF2

PavABF2

(FUN_007552-T1),

(FUN_007552-T1),

PavPR1

PavPR1

(FUN_030157-T1),

(FUN_030157-T1),

PavETR

PavETR

(FUN_039903-T1),

(FUN_039903-T1),

PavTCH4

PavTCH4

(FUN_000946-T1),

(FUN_000946-T1),

PavPP2C

PavPP2C

(FUN_039354-T1), and

(FUN_039354-T1),以及

PavEBF1_2

PavEBF1_2

(FUN_006443-T1) genes, which are predicted to be the key genes affecting fruit ripening in this pathway, were screened according to changes in gene expression. Among them, the

(FUN_006443-T1) 基因被预测为该途径中影响果实成熟的关键基因,是根据基因表达变化筛选出来的。其中,

PavABF2

PavABF2

,

PavPR1

PavPR1

,

PavETR

PavETR

,

PavTCH4

PavTCH4

, and

,以及

PavEBF1_2

PavEBF1_2

genes were upregulated, and

基因被上调,而且

PavPP2C

PavPP2C

was downregulated.

被下调了。

Fig. 5

图5

Plant hormone signal transduction pathways.

植物激素信号转导途径。

Full size image

全尺寸图像

Analysis of DEGs related to the MAPK signal transduction pathway in plants

植物中与MAPK信号转导途径相关的差异表达基因分析

Through the KEGG enrichment analysis of MAPK plant signal transduction pathways in the KEGG database (Fig.

通过KEGG数据库中MAPK植物信号转导通路的KEGG富集分析(图。

6

6

), we found that pathogen infection, pathogen attack, plant hormones, and salt/drought/osmotic stress pathways were affected by exogenous ABA treatment. The expression of PR-1, which can be used for pathogen defense in the pathogen infection and pathogen attack pathways, was upregulated. The expression of the ethylene receptors ETR and EBF1_2 in the ethylene signaling pathway in the plant hormone pathway increased, the expression of the negative regulator PP2C in the ABA signaling pathway in the salt/drought/osmotic stress pathway was downregulated, and the expression of the mitogen-activated protein kinase MAPKKK17_18 decreased.

我们发现,外源ABA处理影响了病原体感染、病原体攻击、植物激素以及盐/干旱/渗透胁迫通路。在病原体感染和病原体攻击通路中,可用于病原体防御的PR-1表达上调。在植物激素通路中的乙烯信号通路中,乙烯受体ETR和EBF1_2的表达增加,在盐/干旱/渗透胁迫通路中的ABA信号通路中,负调控因子PP2C的表达下调,并且丝裂原活化蛋白激酶MAPKKK17_18的表达减少。

Therefore, we screened .

因此,我们进行了筛选。

PavPR1

PavPR1

(FUN_030157-T1),

(FUN_030157-T1),

PavETR

PavETR

(FUN_039903-T1),

(FUN_039903-T1),

PavTCH4

PavTCH4

(FUN_000946-T1),

(FUN_000946-T1),

PavPP2C

PavPP2C

(FUN_039354-T1), and

(FUN_039354-T1),以及

PavEBF1_2

PavEBF1_2

(FUN_006443-T1) as the key genes affecting fruit ripening in this pathway according to the changes in gene expression, and all of the genes were upregulated.

根据基因表达的变化,将(FUN_006443-T1)作为影响该途径中果实成熟的关键基因,所有基因均被上调。

Fig. 6

图6

MAPK signal transduction pathways in plants.

植物中的MAPK信号转导途径。

Full size image

全尺寸图像

Analysis of DEGs related to the glycolytic metabolic pathway in ‘Luying 3’ in response to ABA treatment

‘鲁樱3号’响应ABA处理的糖酵解代谢通路相关差异表达基因分析

By annotating of glycolytic metabolic pathways via KEGG (Fig.

通过KEGG标注糖酵解代谢途径(图)。

7

7

), we found that both 6-phosphofructokinase (PFK) and fructose diphosphate aldolase (ALDO) were upregulated, which promoted the production of β-D-fructose-1,6-diphosphate through the pentose phosphate pathway. The expression of glyceraldehyde-3-phosphate dehydrogenase (gapN) was downregulated, and the expression of phosphoglycerate mutase (gpmI) was upregulated.

), 我们发现6-磷酸果糖激酶(PFK)和果糖二磷酸醛缩酶(ALDO)均上调,这通过戊糖磷酸途径促进了β-D-果糖-1,6-二磷酸的产生。3-磷酸甘油醛脱氢酶(gapN)的表达下调,而磷酸甘油酸变位酶(gpmI)的表达上调。

These two enzymes are associated with light and carbon fixation in organisms. The expression of pyruvate kinase (PK) was upregulated, which can promote the production of pyruvate. The expression of pyruvate decarboxylase (PDC), aldehyde dehydrogenase (ALDH), alcohol dehydrogenase-1 (ADH1) and alcohol dehydrogenase-5 (ADH5) was upregulated, which could promote pyruvate metabolism, and this process is also connected to the tricarboxylic acid cycle.

这两种酶与生物体中的光和碳固定有关。丙酮酸激酶(PK)的表达上调,可以促进丙酮酸的产生。丙酮酸脱羧酶(PDC)、醛脱氢酶(ALDH)、醇脱氢酶-1(ADH1)和醇脱氢酶-5(ADH5)的表达上调,能够促进丙酮酸代谢,此过程也与三羧酸循环相关。

Among them, alcohol dehydrogenase-1 (ADH1) and alcohol dehydrogenase-5 (ADH5) can also promote aromatic biosynthesis. We screened the .

其中,醇脱氢酶1(ADH1)和醇脱氢酶5(ADH5)也能促进芳香生物合成。我们筛选了。

PavADH1

PavADH1

(FUN_027523-T1),

(FUN_027523-T1),

PavADH5

PavADH5

(FUN_027515-T1),

(FUN_027515-T1),

PavALDH

PavALDH

(FUN_035255-T2), and

(FUN_035255-T2),以及

PavALDO

帕瓦尔多

(FUN_038194-T1) genes related to this pathway based on the changes in gene expression; these genes were predicted to be the key genes promoting sweet cherry fruit ripening in this pathway, and all the genes were upregulated.

(FUN_038194-T1) 基于基因表达变化与此途径相关的基因;这些基因被预测为该途径中促进甜樱桃果实成熟的关键基因,并且所有基因均被上调。

Fig. 7

图7

Glycolytic metabolic pathway.

糖酵解代谢途径。

Full size image

全尺寸图像

TF analysis

TF分析

iTAK software was used to predict TFs in the whole genome of ‘Luying 3’, and 1610 genes were predicted to encode TFs; these genes were further divided into 69 categories. Among them, the

使用iTAK软件对‘陆英3号’全基因组中的转录因子进行了预测,共预测到1610个编码转录因子的基因;这些基因进一步被分为69类。其中,

FAR1

远1

was the most common (140, 8.69%), followed by the

是最常见的(140,8.69%),其次是

MYB

MYB

(119, 7.39%),

(119, 7.39%),

AP2/ERF

AP2/ERF

(110, 6.83%),

(110, 6.83%),

NAC

网络访问控制

(108, 6.71%),

(108, 6.71%),

bHLH

bHLH

(104, 6.46%). We selected eight

(104, 6.46%)。我们选择了八个

AP2/ERF

AP2/ERF

(Supplementary Table

(补充表

S4

S4

) for a gene expression analysis by annotating gene functions and analyzing metabolic pathways combined with a transcriptomic assessment of the effect of the 400 mg L

) 通过注释基因功能和结合转录组学评估400 mg L对基因表达分析的影响来分析代谢途径

−1

−1

exogenous ABA treatment on gene expression.

外源ABA处理对基因表达的影响。

As shown in Fig.

如图所示。

8

8

, the expression patterns of

,表达模式

PavAP2-1

PavAP2-1

,

PavAP2-2

PavAP2-2

,

PavAP2-3

PavAP2-3

and

PavAP2-4

PavAP2-4

were the same in the fruit ripening process of ‘Luying 3’ from 40 d to 54 d after flowering. Therefore, the expression levels of these four genes increased with the continuous ripening of ‘Luying 3’ fruit. The expression levels of all four genes were higher at 54 d after flowering. After ABA treatment, the expression levels of the .

在‘鲁樱3号’果实开花后40天至54天的成熟过程中保持一致。因此,这四个基因的表达水平随着‘鲁樱3号’果实的不断成熟而增加。这四个基因的表达水平在开花后54天时较高。经ABA处理后,这些基因的表达水平。

PavAP2-1

PavAP2-1

,

PavAP2-2

PavAP2-2

,

PavAP2-3

PavAP2-3

and

PavAP2-4

PavAP2-4

TFs were significantly different between the control group and the treatment group. Among them, the

对照组和治疗组之间的TFs存在显著差异。其中,

PavAP2-1

PavAP2-1

and

PavAP2-4

PavAP2-4

TFs were not affected by ABA at 47 d after flowering. However, the gene expression level increased at 54 d after flowering. ABA inhibited the expression of the

转录因子在开花后47天不受ABA影响。然而,在开花后54天基因表达水平上升。ABA抑制了

PavAP2-2

PavAP2-2

transcription factor, at 47 d and 54 d after flowering. Exogenous ABA delayed the expression of the

转录因子,在开花后47天和54天。外源ABA延迟了表达

PavAP2-3

PavAP2-3

gene, repressing it at 47 d but no longer inhibiting it at 54 d after flowering, restoring the normal gene expression level. In general, exogenous ABA promoted the expression of the

基因,在开花后47天抑制它,但在54天后不再抑制,恢复正常的基因表达水平。总的来说,外源ABA促进了

PavAP2-1

PavAP2-1

and

PavAP2-4

PavAP2-4

TFs while inhibiting the expression of the

TFs同时抑制了

PavAP2-2

PavAP2-2

and

PavAP2-3

PavAP2-3

TFs.

转录因子。

The expression patterns of the

表达模式

PavAP2-5

PavAP2-5

and

PavAP2-6

PavAP2-6

genes during the fruit ripening process of ‘Luying 3’ from 40 d to 54 d after flowering showed an “up-down” trend, and the trend for

‘绿英3号’果实从开花后40天到54天的成熟过程中,基因呈现“上升-下降”的趋势,且该趋势对于

PavAP2-6

PavAP2-6

was more obvious. The expression of these two genes first increased but then decreased with the continuous ripening of the fruit, and the expression level was higher in the fruit at 47 d after flowering, suggesting that these two genes play important roles in fruit ripening in ‘Luying 3’ at 47 d after flowering.

更为明显。这2个基因的表达量随着果实的不断成熟呈现先升高后降低的趋势,并且在盛花后47 d的果实中表达量较高,说明这2个基因在‘鲁樱3号’盛花后47 d的果实成熟过程中发挥着重要的作用。

The expression of .

表达。

PavAP2-5

PavAP2-5

increased significantly at 47 and 54 d after ABA treatment. The effects of

在ABA处理后47天和54天显著增加。

PavAP2-6

PavAP2-6

were not obvious at 47 d after flowering, but the expression of

在开花后47天不明显,但表达

PavAP2-6

PavAP2-6

was significantly inhibited by exogenous ABA at 54 d after flowering.

在开花后54天,外源ABA显著抑制了该过程。

The expression patterns of

表达模式

PavAP2-7

PavAP2-7

and

PavAP2-8

PavAP2-8

were the same during the fruit ripening process of ‘Luying 3’ from 40 d to 54 d after flowering, and both showed a decreasing trend. Therefore, the expression levels of these two genes decreased with the continuous ripening of the ‘Luying 3’ fruit. We speculated that the regulatory effects of these two genes on the ripening of ‘Luying 3’ fruit mainly occurred before 40 d after flowering.

在‘鲁樱3号’果实花后40 d到54 d的成熟过程中,这两个基因的变化趋势相同,均呈现下降趋势。因此,这两个基因的表达量随着‘鲁樱3号’果实的不断成熟而降低。我们推测这两个基因对‘鲁樱3号’果实成熟的调控作用主要发生在花后40 d之前。

Exogenous ABA had little effect on the .

外源ABA对影响不大。

PavAP2-7

PavAP2-7

TFs at 47 d after flowering but promoted their expression at 54 d after flowering, and for the

开花后47天抑制了TFs的表达,但在开花后54天促进了它们的表达,并且对于

PavAP2-8

PavAP2-8

TFs, exogenous ABA promoted expression at both 47 d and 54 d after flowering.

开花后47天和54天,外源ABA促进了转录因子的表达。

Fig. 8

图8

Effects of ABA treatment on the expression levels of AP2/ERF transcription factors.

ABA处理对AP2/ERF转录因子表达水平的影响。

Full size image

全尺寸图像

Real-time quantitative PCR

实时定量PCR

Ten DEGs related to the plant hormone signal transduction pathway, MAPK plant signal transduction pathway and glycolysis metabolism pathway and 8 AP2/ERF TFs related to sweet cherry fruit ripening were selected from the RNA-seq data, and the selected genes were tested via qRT-PCR, as shown in Fig.

从RNA-seq数据中筛选出与植物激素信号转导途径、MAPK植物信号转导途径和糖酵解代谢途径相关的10个差异表达基因(DEGs),以及与甜樱桃果实成熟相关的8个AP2/ERF转录因子(TFs),并通过qRT-PCR对所选基因进行验证,如图所示。

9

. The relative expression levels of 18 genes were similar to the results of the RNA-seq analysis.

18个基因的相对表达水平与RNA-seq分析结果相似。

The

The

PavABF2

PavABF2

gene is involved in the plant hormone signal transduction pathway, and its expression was significantly promoted by exogenous ABA at 54 d after flowering. The

基因参与植物激素信号转导途径,并且在开花后54天时,其表达受到外源ABA的显著促进。

PavPR1

PavPR1

gene is involved in the plant hormone signal transduction pathway and the MAPK signal transduction pathway. ABA inhibited

基因参与植物激素信号转导途径和MAPK信号转导途径。ABA抑制

PavPR1

PavPR1

expression at 47 d after flowering but promoted

开花后47天表达但促进

PavPR1

PavPR1

expression at 54 d after flowering. The

开花后54天的表达。The

PavETR

PavETR

gene is involved in the plant hormone signal transduction pathway and MAPK signal transduction pathway, and its expression was promoted by ABA at 54 d after flowering. The

基因参与植物激素信号转导途径和MAPK信号转导途径,并且在开花后54天受到ABA的表达促进。

PavTCH4

PavTCH4

gene is involved in the plant hormone signal transduction pathway, and its expression level was increased nearly 10-fold by ABA treatment at 54 d after flowering.

基因参与植物激素信号转导途径,其表达水平在开花后54天经ABA处理后增加了近10倍。

PavPP2C

PavPP2C

is involved in the plant hormone signal transduction pathway and the MAPK signal transduction pathway. ABA inhibited

参与植物激素信号转导途径和MAPK信号转导途径。ABA抑制了

PavPP2C

PavPP2C

expression at 47 d and 54 d after flowering. The

开花后47天和54天的表达。

PavEBF1_2

PavEBF1_2

gene is involved in the plant hormone signal transduction pathway and MAPK signal transduction pathway, and its expression was significantly promoted by ABA at 54 d after flowering. The

基因参与植物激素信号转导途径和MAPK信号转导途径,并且在开花后54天时其表达受到ABA的显著促进。

PavADH1

PavADH1

and

PavADH5

PavADH5

genes are involved in the glycolytic metabolic pathway and were stimulated by ABA at 47 d and 54 d after flowering. The

基因参与了糖酵解代谢途径,并在开花后47天和54天受到ABA的刺激。

PavALDH

PavALDH

gene is involved in the glycolytic metabolic pathway, and its expression was inhibited at 47 d after anthesis and promoted at 54 d after anthesis by ABA. The expression of the

基因参与了糖酵解代谢途径,其表达在开花后47天被ABA抑制,在开花后54天被ABA促进。

PavALDO

帕瓦尔多

gene increased at both 47 d and 54 d after flowering, and its expression increased nearly 6-fold at 54 d after flowering under the influence of exogenous ABA.

基因在开花后47天和54天均增加,在外源ABA的影响下,开花后54天其表达量增加了近6倍。

Fig. 9

图 9

Plots of trends in the real-time fluorescence quantitative PCR expression and transcriptomic.

实时荧光定量PCR表达和转录组学趋势图。

Full size image

全尺寸图像

Discussion

讨论

Effects of exogenous ABA on fruit shape and endogenous hormone levels in sweet cherry

外源ABA对甜樱桃果实形状和内源激素水平的影响

The ripening process of sweet cherry involves changes in skin color, softening of the fruit texture, fructose and glucose accumulation in the pulp, and darkening of the pulp color. In sweet cherry, ABA is associated with the regulation of anthocyanin synthesis and sensory properties (TSS/TA ratio)

甜樱桃的成熟过程涉及果皮颜色的变化、果实质地的软化、果肉中果糖和葡萄糖的积累以及果肉颜色的加深。在甜樱桃中,ABA与花青素合成和感官特性(TSS/TA比率)的调节有关。

15

15

. Time et al.‘s

. Time 等人的

21

21

canopy spraying test on 4 cherry varieties with 400 mg/l ABA revealed that the treatment 1) enhanced sweet cherry fruit color in the ‘Glenred’, ‘Lapins’ and ‘Bing’ cultivars, but not in the ‘Royal Rainier’ cultivar (a bi-colored cultivar), and 2) decreased fruit size and firmness in the ‘Lapins, ‘Bing’ and ‘Royal Rainier’ cultivars and increased Lapins’ fruit color without reducing size.

对4个樱桃品种进行400 mg/l ABA的冠层喷洒测试显示,该处理1)增强了‘Glenred’、‘Lapins’和‘Bing’品种的甜樱桃果实颜色,但对双色品种‘Royal Rainier’没有效果;2)降低了‘Lapins’、‘Bing’和‘Royal Rainier’品种的果实大小和硬度,同时增加了‘Lapins’的果实颜色且未减少其大小。

Moreover, in addition to ABA, cytokinins, JA, GA, and IAA play roles in the ripening of sweet cherry fruit.

此外,除了ABA,细胞分裂素、茉莉酸、赤霉素和生长素也参与甜樱桃果实的成熟过程。

4

4

,

5

5

. In this study, the effects of exogenous ABA on sweet cherry fruits were studied. Based on appearance, exogenous ABA significantly enhanced the color of ‘Luying 3’ fruit during the development stage but had no significant effects on the transverse diameter, vertical stem, and single-fruit weight at the mature stage.

本研究探讨了外源ABA对甜樱桃果实的影响。在外形上,外源ABA显著增强了‘鲁樱3号’果实发育阶段的颜色,但对成熟阶段的横径、纵径和单果重无显著影响。

By measuring the soluble sugar content, soluble acid content and sugar-acid ratio of ‘Luying 3’ fruit in the mature stage, exogenous ABA had no significant effect on the taste attributes of ‘Luying 3’ fruit after reaching full maturity. In addition, the effects of exogenous ABA on the levels of endogenous hormones in sweet cherry fruit of ‘Luying 3’ were measured during the development period were measured.

通过测定‘鲁樱3号’果实成熟期可溶性糖、可滴定酸及糖酸比等指标,外源ABA对完全成熟后的‘鲁樱3号’果实口感品质无显著影响;此外,还测定了外源ABA对‘鲁樱3号’甜樱桃果实发育期间内源激素水平的影响。

Exogenous ABA treatment promoted the secretion of endogenous ABA, GA and SA in sweet cherry, which was consistent with previous results.

外源ABA处理促进了甜樱桃内源ABA、GA和SA的分泌,这与之前的结果一致。

14

14

. In summary, exogenous ABA spraying accelerated the ripening of ‘Luying 3’ fruit during the developmental period, resulting in more consistent fruit maturity stages but having little effect on the final fruit size, weight, and taste attributes.

总之,外源ABA喷施加速了‘鲁樱3号’果实发育期间的成熟进程,使果实成熟度更加一致,但对最终果实大小、重量和口感属性影响较小。

Analysis of ripening pathways associated with exogenous ABA treatment in sweet cherry

甜樱桃外源ABA处理相关的成熟途径分析

The DEGs associated with the response to ABA in ‘Luying 3’ were enriched mainly in the plant hormone signal transduction pathway, the MAPK plant signal transduction pathway and the glycolysis metabolism pathway, and these three pathways are related to the ripening process of cherry fruit

与‘鲁樱3号’中ABA反应相关的差异表达基因主要富集在植物激素信号转导途径、MAPK植物信号转导途径和糖酵解代谢途径,这三条途径都与樱桃果实的成熟过程有关。

24

24

,

25

25

. In the plant hormone signal transduction pathway, exogenous ABA affected the IAA, ABA, ETH, BR and SA signaling pathways in ‘Luying 3’ fruit. We found that

在植物激素信号转导途径中,外源ABA影响了‘绿盈3号’果实中IAA、ABA、ETH、BR和SA的信号传导途径。我们发现

PavABF2

PavABF2

(FUN_007552-T1),

(FUN_007552-T1),

PavPR1

PavPR1

(FUN_030157-T1),

(FUN_030157-T1),

PavETR

PavETR

(FUN_039903-T1),

(FUN_039903-T1),

PavTCH4

PavTCH4

(FUN_000946-T1),

(FUN_000946-T1),

PavPP2C

PavPP2C

(FUN_039354-T1), and

(FUN_039354-T1),以及

PavEBF1_2

PavEBF1_2

(FUN_006443-T1) were strongly affected by ABA and regulated endogenous hormone secretion in fruit, thereby affecting fruit ripening. The expression of

(FUN_006443-T1) 受ABA强烈影响,并调控果实内源激素分泌,从而影响果实成熟。表达

PavABF2

PavABF2

,

PavPR1

PavPR1

,

PavETR

PavETR

,

PavTCH4

PavTCH4

and

PavEBF1_2

PavEBF1_2

was upregulated, whereas that of

被上调,而

PavPP2C

PavPP2C

was downregulated. The MAPK signal transduction pathway, pathogen infection, pathogen attack, plant hormones, and salt/drought/osmotic stress pathways were affected by exogenous ABA, and the plant hormone pathway was the main pathway affected. The

被下调。MAPK信号转导途径、病原体感染、病原体攻击、植物激素以及盐/干旱/渗透胁迫途径都受到外源ABA的影响,其中植物激素途径是受影响的主要途径。

PavPR1

PavPR1

(FUN_030157-T1),

(FUN_030157-T1),

PavETR

PavETR

(FUN_039903-T1),

(FUN_039903-T1),

PavTCH4

PavTCH4

(FUN_000946-T1),

(FUN_000946-T1),

PavPP2C

PavPP2C

(FUN_039354-T1), and

(FUN_039354-T1),以及

PavEBF1_2

PavEBF1_2

(FUN_006443-T1) genes were significantly upregulated by ABA, which caused a stress response and changes in endogenous hormone secretion and subsequently affected fruit ripening. In the glycolytic pathway, the

(FUN_006443-T1) 基因被ABA显著上调,这引起了胁迫反应和内源激素分泌的变化,进而影响果实成熟。在糖酵解途径中,

PavADH1

PavADH1

(FUN_027523-T1),

(FUN_027523-T1),

PavADH5

PavADH5

(FUN_027515-T1),

(FUN_027515-T1),

PavALDH

PavALDH

(FUN_035255-T2) and

(FUN_035255-T2) 且

PavALDO

帕瓦尔多

(FUN_038194-T1) genes were significantly upregulated following ABA treatment. ABA can accelerate respiratory metabolism in sweet cherry fruit and subsequently promote the ripening of sweet cherry fruit. Our results suggested that exogenous ABA promoted the ripening of sweet cherry fruit mainly by affecting endogenous hormone secretion and the metabolic rate in the plants..

(FUN_038194-T1) 基因在ABA处理后显著上调。ABA可以加速甜樱桃果实的呼吸代谢,从而促进甜樱桃果实的成熟。我们的研究结果表明,外源ABA主要通过影响内源激素分泌和植物的代谢速率来促进甜樱桃果实的成熟。

Analysis of AP2/ERF TF gene expression levels in response to exogenous ABA treatment

分析AP2/ERF TF基因在外源ABA处理下的表达水平

AP2/ERF transcription factors act as important regulators of many biological and physiological processes, such as hormone signaling, responses to various stresses, plant morphogenesis, and metabolite regulation

AP2/ERF转录因子作为许多生物学和生理学过程的重要调控因子,如激素信号传导、对各种胁迫的响应、植物形态发生和代谢调控。

26

26

,

27

27

, and an increasing number of studies have shown that the AP2/ERF transcription factor family plays a key regulatory role in fruit ripening and is involved in the taste change, pigmentation and flavor formation of fruits by regulating downstream ripening-related genes

,越来越多的研究表明,AP2/ERF转录因子家族在果实成熟过程中起着关键的调控作用,并通过调控下游成熟相关基因参与果实的口感变化、着色和风味形成。

28

28

,

29

29

,

30

30

. In tomato, 55 ERF subfamily members presented a ripening-related expression pattern, of which 27 members were upregulated and 28 members were downregulated. Five AP2-like genes were also identified in tomato, among which SL4P2a was expressed at a low level in green immature fruits and increased at the fruit color transition stage.

在番茄中,55个ERF亚家族成员呈现出与成熟相关的表达模式,其中27个成员上调,28个成员下调。还鉴定了5个AP2样基因,其中SL4P2a在绿色未成熟果实中低水平表达,并在果实颜色转变阶段增加。

The expression level of this gene in the red ripening stage of fruit maintained is high, indicating that it is closely associated with fruit ripening.

该基因在果实红熟期的表达量仍然很高,说明其与果实成熟密切相关。

31

31

. In strawberry,

。在草莓中,

FaRAV1

FaRAV1

(an AP2/ERF transcription factors) activates the expression of

(一个AP2/ERF转录因子)激活了以下基因的表达

FaMYB10

FaMYB10

, a gene important for anthocyanin biosynthesis, by binding to its promoter, which in turn promotes strawberry coloration

通过结合到其启动子上,促进草莓着色的重要花青素生物合成基因

32

32

.

In this study, a total of 8 AP2/ERF TFs affected by exogenous ABA were screened. Among them,

在本研究中,共筛选出8个受外源ABA影响的AP2/ERF转录因子。其中,

PavAP2-1

PavAP2-1

,

PavAP2-2

PavAP2-2

,

PavAP2-3

PavAP2-3

, and

,以及

PavAP2-4

PavAP2-4

exhibited the same expression pattern during the fruit ripening process of ‘Luying 3’ from 40 d to 54 d after flowering, and they all presented an increasing trend. The expression levels of these four genes were higher at 54 d after flowering, suggesting that the effects of these four genes on promoting sweet cherry fruit mainly ripening occurred 54 d after flowering.

在‘鲁樱3号’果实成熟过程中,这4个基因从盛花后40 d到54 d表现出相同的表达模式,均呈上升趋势。这4个基因在盛花后54 d表达量较高,说明这4个基因对促进甜樱桃果实成熟的效应主要发生在盛花后54 d。

The expression patterns of .

表达模式。

PavAP2-5

PavAP2-5

and

PavAP2-6

PavAP2-6

were the same during the fruit ripening process of ‘Luying 3’ from 40 d to 54 d after flowering, with both showing an “up-down” trend, and the expression level was higher in the fruit at 47 d after flowering. We speculated that these genes had a significant effect on the fruit ripening of ‘Luying 3’ fruit at approximately 47 d after flowering.

在‘鲁樱3号’盛花后40 d到54 d的果实发育过程中,这两种基因的变化趋势相同,均呈现“上升-下降”趋势,并且在盛花后47 d的果实中表达量较高。我们推测这些基因在‘鲁樱3号’盛花后大约47 d的果实成熟过程中具有显著作用。

The expression patterns of .

表达模式。

PavAP2-7

PavAP2-7

and

PavAP2-8

PavAP2-8

were the same during the fruit ripening process of ‘Luying 3’ from 40 d to 54 d after flowering, with both showing a decreasing trend. We speculated that the regulatory effects of these two genes on ‘Luying 3’ fruit ripening occurs mainly before 40 d after flowering or that they are not involved in the ripening process of sweet cherry fruit.

在‘鲁樱3号’果实从开花后40天到54天的成熟过程中,这两个基因的表现相同,均呈现下降趋势。我们推测这两个基因对‘鲁樱3号’果实成熟的调控作用主要发生在开花后40天之前,或者它们不参与甜樱桃果实的成熟过程。

An analysis of the gene expression of multiple AP2/ERF TFs following exogenous ABA treatment revealed that exogenous ABA promoted the expression of the .

对多个AP2/ERF转录因子在施加外源ABA后的基因表达分析表明,外源ABA促进了它们的表达。

PavAP2-1

PavAP2-1

,

PavAP2-4

PavAP2-4

,

PavAP2-5

PavAP2-5

,

PavAP2-7

PavAP2-7

and

PavAP2-8

PavAP2-8

TFs. However, the expression of the

TFs。然而,表达式

PavAP2-2

PavAP2-2

,

PavAP2-3

PavAP2-3

and

PavAP2-6

PavAP2-6

TFs was inhibited. Therefore, further exploration, such as via bioinformatics analysis, of genes whose effects differ greatly should be performed.

TFs被抑制。因此,应该进一步探索那些影响差异很大的基因,例如通过生物信息学分析。

Applications and prospects of ABA in the cherry fruit industry

ABA在樱桃果业中的应用与前景

Exogenous ABA also plays a crucial role in regulating plant growth and development, improving fruit quality, and fruit ripening. It promotes fruit ripening by regulating the synthesis of the endogenous hormone ETH and the accumulation of sugars, carotenoids, and anthocyanins

外源ABA在调控植物生长发育、改善果实品质和促进果实成熟等方面也发挥着至关重要的作用,其通过调控内源激素乙烯合成以及糖、类胡萝卜素和花色苷的积累来促进果实成熟。

7

7

,

14

14

,

33

33

,

34

34

. Exogenous ABA can regulate genes related to endogenous ABA synthesis (

外源ABA可以调节与内源ABA合成相关的基因 (

Fc NCED2

Fc NCED2

, etc.) and ETH synthesis (

,等等)和ETH合成(

Fc ACO2

Fc ACO2

,

Fc ACS4

Fc ACS4

, etc.), thereby affecting the secretion of endogenous ABA and ETH and promoting the ripening of fig fruit. In tomato, banana and other fruits, ABA enhances color, softens fruit, and increase the soluble sugar content

,等等),从而影响内源ABA和ETH的分泌,促进无花果果实的成熟。在番茄、香蕉等水果中,ABA增强颜色、软化果实并增加可溶性糖含量。

17

17

,

18

18

. Ren and Leng

任和冷

19

19

reported that exogenous ABA promoted the synthesis of endogenous ABA in light red sweet cherry. By treating ‘Luying 3’ fruit, we also found that exogenous ABA promoted the ripening of sweet cherry fruit by affecting endogenous hormone secretion and the metabolic rate of cherry fruit, making the fruit maturity stage more consistent but having no significant effect on the final size, weight, and taste attributes of the fruit.

据报道,外源ABA促进了浅红色甜樱桃内源ABA的合成。通过对‘鲁樱3号’果实的处理,我们还发现外源ABA通过影响内源激素分泌和樱桃果实的代谢速率,促进甜樱桃果实成熟,使果实成熟期更一致,但对果实最终大小、重量和口感属性没有显著影响。

Therefore, exogenous ABA can be applied as appropriate to promote the consistent maturation of the sweet cherry fruit ‘Luying 3’, reduce labor in the process of fruit picking, and promote the development of the cherry industry. However, further verification of these results in different sweet cherry varieties and the appropriate concentrations for different varieties is needed.

因此,可以适当施用外源ABA来促进甜樱桃品种‘鲁樱3号’果实的均匀成熟,减少采摘过程中的劳动力,并推动樱桃产业的发展。然而,还需要在不同甜樱桃品种中进一步验证这些结果,并确定适合不同品种的浓度。

Moreover, affordable products containing ABA have been developed and applied to the agricultural production of sweet cherry..

此外,含有ABA的经济实惠产品已被开发并应用于甜樱桃的农业生产中。

Conclusion

结论

In this study, exogenous ABA (400 mg L

在本研究中,外源ABA(400 mg L

−1

−1

) promoted the consistency of cherry fruit maturity but had no significant effect on the final size, weight and taste attributes of the fruit. Moreover, the application of ABA promoted the secretion of endogenous ABA, GA and SA. In the analysis of changes in the transcriptome, differentially expressed genes were significantly enriched in the plant hormone signal transduction pathway, MAPK plant signal transduction pathway and glycolysis pathways, and 9 key differentially expressed genes and 8 .

)促进了樱桃果实成熟的一致性,但对果实的最终大小、重量和口感属性没有显著影响。此外,ABA的施用促进了内源ABA、GA和SA的分泌。在转录组变化分析中,差异表达基因显著富集于植物激素信号转导途径、MAPK植物信号转导途径和糖酵解途径,并筛选出9个关键差异表达基因和8个 。

PavAP2

PavAP2

transcription factors were screened and shown to be involved in the effect of exogenous ABA on sweet cherry fruit ripening. This study provides a theoretical foundation for the application of ABA in promoting the consistency of cherry fruit maturity.

筛选到了参与外源ABA调控甜樱桃果实成熟的转录因子,为应用ABA促进樱桃果实成熟的一致性提供了理论依据。

Data availability

数据可用性

Data is provided within the manuscript or supplementary information files.

数据在手稿或补充信息文件中提供。

References

参考文献

Faust, M. & Surányi, D. Origin and dissemination of cherry.

Faust, M. & Surányi, D. 樱桃的起源与传播。

Hortic. Rev.

园艺学评论

19

19

, 263–317.

,263-317。

https://doi.org/10.1002/9780470650622.ch5

https://doi.org/10.1002/9780470650622.ch5

(1997).

(1997)。

Article

文章

Google Scholar

谷歌学术

Jung, S. et al. GDR (Genome Database for Rosaceae): Integrated web-database for Rosaceae genomics and genetics data.

Jung, S. 等。GDR(蔷薇科基因组数据库):整合的蔷薇科基因组学和遗传学数据网络数据库。

Nucleic Acids Res.

核酸研究

36

36

, D1034–D1040.

,D1034–D1040。

https://doi.org/10.1186/1471-2105-5-130

https://doi.org/10.1186/1471-2105-5-130

(2008).

(2008)。

Article

文章

CAS

中国科学院

PubMed

PubMed

Google Scholar

谷歌学术索

Rademacher, W. Plant growth regulators: backgrounds and uses in plant production.

拉德马赫,W. 植物生长调节剂:在植物生产中的背景与应用。

Plant. Growth Regul.

植物生长调节剂

34

34

, 845–872.

,845-872。

https://doi.org/10.1007/s00344-015-9541-6

https://doi.org/10.1007/s00344-015-9541-6

(2015).

(2015)。

Article

文章

CAS

中国科学院

Google Scholar

谷歌学术索

Castro, R. I. et al. Effect of exogenous auxin treatment on cell wall polymers of strawberry fruit.

卡斯特罗,R. I. 等。外源生长素处理对草莓果实细胞壁聚合物的影响。

Int. J. Mol. Sci.

国际分子科学杂志

22

22

(12), 6294.

(12), 6294。

https://doi.org/10.3390/IJMS22126294

https://doi.org/10.3390/IJMS22126294

(2021).

(2021)。

Article

文章

CAS

中国科学院

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术

Liu, C. et al. Exogenous gibberellin treatment improves fruit quality in self-pollinated apple.

刘畅等。外源赤霉素处理提高了自花授粉苹果的果实品质。

Plant. Physiol. Biochem.

植物生理学与生物化学

174

174

, 11–21.

,11-21。

https://doi.org/10.1016/j.plaphy.2022.01.029

https://doi.org/10.1016/j.plaphy.2022.01.029

(2022).

(2022)。

Article

文章

CAS

中国科学院

PubMed

PubMed

Google Scholar

谷歌学术

Perotti, V. E., Moreno, A. S. & Podestá, F. E. Physiological aspects of fruit ripening: the mitochondrial connection.

佩罗蒂,V. E.,莫雷诺,A. S. & 波德斯塔,F. E. 果实成熟的生理方面:线粒体的联系。

Mitochondrion

线粒体

17

17

, 1–6.

,1–6。

https://doi.org/10.1016/j.mito.2014.04.010

https://doi.org/10.1016/j.mito.2014.04.010

(2014).

(2014)。

Article

文章

CAS

中国科学院

PubMed

PubMed

Google Scholar

谷歌学术

Alexander, L. & Grierson, D. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening.

亚历山大,L. & 格里尔森,D. 番茄中的乙烯生物合成与作用:跃变型果实成熟的模型。

J. Exp. Bot.

植物实验杂志

53

53

(377), 2039–2055.

(377), 2039–2055。

https://doi.org/10.1093/jxb/erf072

https://doi.org/10.1093/jxb/erf072

(2002).

(2002)。

Article

文章

CAS

中国科学院

PubMed

PubMed

Google Scholar

谷歌学术

Pandey, P. V. & Srivastava, R. The fading distinctions between classical patterns of ripening in climacteric and non-climacteric fruit and the ubiquity of ethylene-An overview.

潘迪,P. V. & 斯里瓦斯塔瓦,R. 乙烯的普遍性与跃变型和非跃变型果实经典成熟模式之间逐渐模糊的区别 - 概述。

J. Food Sci. Technol.

食品科学与技术杂志

49

49

, 1–21.

,1-21。

https://doi.org/10.1007/s13197-011-0293-4

https://doi.org/10.1007/s13197-011-0293-4

(2012).

(2012)。

Article

文章

CAS

中国科学院

Google Scholar

谷歌学术

Fukano, Y. & Tachiki, Y. Evolutionary ecology of climacteric and non-climacteric fruits.

福卡诺,Y. & 立木,Y. 关于跃变型和非跃变型果实的进化生态学。

Biol. Lett.

生物学快报

17

17

, 20210352.

,20210352。

https://doi.org/10.1098/rsbl.2021.0352

https://doi.org/10.1098/rsbl.2021.0352

(2021).

(2021)。

Article

文章

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术

Giovannoni, J. J. Genetic regulation of fruit development and ripening.

乔万诺尼,J. J. 果实发育和成熟的遗传调控。

Plant. Cell.

植物细胞。

16

16

(Suppl. 1), S170–S180.

(补充 1),S170-S180。

https://doi.org/10.2307/3872309

https://doi.org/10.2307/3872309

(2004).

(2004)。

Article

文章

CAS

中国科学院

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术索

Klee, H. J. & Giovannoni, J. J. Genetics and control of tomato fruit ripening and quality attributes.

克莱,H. J. & 乔凡诺尼,J. J. 番茄果实成熟及品质属性的遗传学与控制。

Annu. Rev. Genet.

年度遗传学评论

45

45

, 41–59.

,41-59。

https://doi.org/10.1146/annurev-genet-110410-132507

https://doi.org/10.1146/annurev-genet-110410-132507

(2011).

(2011)。

Article

文章

CAS

中国科学院

PubMed

PubMed

Google Scholar

谷歌学术索

Li, C., Jia, H., Chai, Y. & Shen, Y. Abscisic acid perception and signaling transduction in strawberry: a model for non-climacteric fruit ripening.

李, C., 贾, H., 柴, Y. & 沈, Y. 草莓中的脱落酸感知与信号转导:非跃变型果实成熟的模型。

Plant. Signal. Behav.

植物信号行为

6

6

(12), 1950–1953.

(12), 1950–1953。

https://doi.org/10.4161/psb.6.12.18024

https://doi.org/10.4161/psb.6.12.18024

(2011).

(2011)。

Article

文章

CAS

中国科学院

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术搜索

Li, B. J., Grierson, D., Shi, Y. & Chen, K. S. Roles of abscisic acid in regulating ripening and quality of strawberry, a model non-climacteric fruit.

李宝金、格里尔森、石莹、陈克松。脱落酸在调控草莓成熟和品质中的作用,草莓作为一种典型的非跃变型果实模型。

Hortic. Res.

园艺研究

9

9

, uhac089.

,uhac089。

https://doi.org/10.1093/hr/uhac089

https://doi.org/10.1093/hr/uhac089

(2022).

(2022)。

Article

文章

CAS

中国科学院

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术索

Qiao, H., Zhang, H., Wang, Z. & Shen, Y. Fig fruit ripening is regulated by the interaction between ethylene and abscisic acid.

乔,何。,张,何。,王,子。& 沈,一。无花果果实成熟受乙烯与脱落酸相互作用的调控。

J. Integr. Plant. Biol.

植物学报

63

六十三

(3), 553–569.

(3), 553–569。

https://doi.org/10.1111/jipb.13065

https://doi.org/10.1111/jipb.13065

(2021).

(2021)。

Article

文章

CAS

中国科学院

PubMed

PubMed

Google Scholar

谷歌学术

Kou, X. et al. Different regulatory mechanisms of plant hormones in the ripening of climacteric and non-climacteric fruits: a review.

Kou, X. 等。植物激素在跃变型和非跃变型果实成熟中的不同调控机制:综述。

Plant. Mol. Biol.

植物分子生物学

107

107

(6), 477–497.

(6), 477–497。

https://doi.org/10.1007/s11103-021-01199-9

https://doi.org/10.1007/s11103-021-01199-9

(2021).

(2021)。

Article

文章

CAS

中国科学院

PubMed

PubMed

Google Scholar

谷歌学术

Jiang, Y., Joyce, D. C. & Macnish, A. J. Effect of abscisic acid on banana fruit ripening in relation to the role of ethylene.

蒋宇,乔伊斯·D.C.,麦克尼斯·A.J. 脱落酸对香蕉果实成熟的影响与乙烯的作用相关。

J. Plant. Growth Regul.

植物生长调节剂杂志

19

19

(1), 106–111.

(1), 106–111。

https://doi.org/10.1007/s003440000011

https://doi.org/10.1007/s003440000011

(2000).

(2000)。

Article

文章

CAS

中国科学院

PubMed

PubMed

Google Scholar

谷歌学术

Jia, H. et al. Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress-ripening transcription factor.

贾,H. 等。脱落酸和蔗糖通过脱落酸-胁迫-成熟转录因子调控番茄和草莓果实的成熟。

Plant. Biotechnol. J.

植物生物技术杂志

14

14

(10), 2045–2065.

(10), 2045–2065。

https://doi.org/10.1111/pbi.12563

https://doi.org/10.1111/pbi.12563

(2016).

(2016)。

Article

文章

CAS

中国科学院

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术索

Tao, X. et al. Effects of exogenous abscisic acid on bioactive components and antioxidant capacity of postharvest tomato during ripening.

陶,X. 等。外源脱落酸对采后番茄成熟过程中生物活性成分及抗氧化能力的影响。

Molecules

分子

25

25

(6), 1346.

(6), 1346。

https://doi.org/10.3390/molecules25061346

https://doi.org/10.3390/molecules25061346

(2020).

(2020)。

Article

文章

CAS

中国科学院

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术搜索

Ren, J. & Leng, P. Role of abscisic acid and ethylene in fruit maturation of sweet cherry.

任杰,冷平。脱落酸和乙烯在甜樱桃果实成熟中的作用。

Act. Hortic. Sin.

园艺学报

37

37

(02), 199–206.

(02), 199–206。

https://doi.org/10.16420/j.issn.0513-353x.2010.02.007

https://doi.org/10.16420/j.issn.0513-353x.2010.02.007

(2010).

(2010)。

Article

文章

CAS

中国科学院

Google Scholar

谷歌学术

Kuhn, N. ABA influences color initiation timing in

库恩,N. ABA影响颜色启动时间在

P. Avium

P. 鸟类

L. fruits by sequentially modulating the transcript levels of ABA and anthocyanin-related genes.

L. 果实通过顺序调节ABA和花青素相关基因的转录水平。

Tree Genet. Genomes

树木遗传学与基因组学

.

https://doi.org/10.1007/s11295-021-01502-1

https://doi.org/10.1007/s11295-021-01502-1

(2021).

(2021)。

Time, A. et al. Canopy spraying of abscisic acid to improve fruit quality of different sweet cherry cultivars.

时间,A. 等。喷洒脱落酸以改善不同甜樱桃品种的果实品质。

Agronomy

农学

11

11

, 1947.

,1947年。

https://doi.org/10.3390/agronomy11101947

https://doi.org/10.3390/agronomy11101947

(2021).

(2021)。

Article

文章

CAS

中国科学院

Google Scholar

谷歌学术

Kondo, S. & Gemma, H. Relationship between abscisic acid (ABA) content and maturation of the sweet cherry.

近藤,S. & 玄马,H. 赤霉素(ABA)含量与甜樱桃成熟之间的关系。

Engei Gakkai Zasshi

演艺学院杂志

.

62

62

, 63–68.

,63-68。

https://doi.org/10.2503/jjshs.62.63

https://doi.org/10.2503/jjshs.62.63

(1993).

(1993)。

Article

文章

CAS

中国科学院

Google Scholar

谷歌学术搜索

Blum, F. High performance liquid chromatography.

布鲁姆,F. 高效液相色谱法。

Br. J. Hosp. Med. (Lond)

英国医院医学杂志(伦敦)

75

75

(2), C18–21.

(2), C18–21。

https://doi.org/10.12968/hmed.2014.75.Sup2.C18

https://doi.org/10.12968/hmed.2014.75.Sup2.C18

(2014).

(2014)。

Article

文章

PubMed

PubMed

Google Scholar

谷歌学术搜索

Lunt, S. Y. & Vander Heiden, M. G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation.

伦特,S. Y. 和范德海登,M. G. 有氧糖酵解:满足细胞增殖的代谢需求。

Annu. Rev. Cell. Dev. Biol.

年度细胞发育生物学综述

27

27

, 441–464.

,441-464。

https://doi.org/10.1146/annurev-cellbio-092910-154237

https://doi.org/10.1146/annurev-cellbio-092910-154237

(2011).

(2011)。

Article

文章

CAS

中国科学院

PubMed

PubMed

Google Scholar

谷歌学术

Meng, X. & Zhang, S. MAPK cascades in plant disease resistance signaling.

孟,X. & 张,S. 植物病害抗性信号中的MAPK级联。

Annu. Rev. Phytopathol.

植物病理学年度评论

51

51

, 245–266.

,245-266。

https://doi.org/10.1146/annurev-phyto-082712-102314

https://doi.org/10.1146/annurev-phyto-082712-102314

(2013).

(2013)。

Article

文章

CAS

中国科学院

PubMed

PubMed

Google Scholar

谷歌学术索

Gu, C. et al. Multiple regulatory roles of AP2/ERF transcription factor in angiosperm.

顾,C. 等。AP2/ERF转录因子在被子植物中的多重调控作用。

Bot. Stud.

机器人研究。

58

58

(1), 6.

(1), 6.

https://doi.org/10.1186/s40529-016-0159-1

https://doi.org/10.1186/s40529-016-0159-1

(2017).

(2017)。

Article

文章

CAS

中国科学院

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术搜索

Feng, K. et al. Advances in AP2/ERF super-family transcription factors in plant.

冯克等。植物中AP2/ERF超家族转录因子的研究进展。

Crit. Rev. Biotechnol.

生物技术评论

40

40

(6), 750–776.

(6), 750–776。

https://doi.org/10.1080/07388551.2020.1768509

https://doi.org/10.1080/07388551.2020.1768509

(2020).

(2020)。

Article

文章

CAS

中国科学院

PubMed

PubMed

Google Scholar

谷歌学术索

Liu, M., Diretto, G., Roustan, J. P. & Li, Z. The chimeric repressor version of an ethylene response factor (ERF) family member, sl-erf.b3, shows contrasting effects on tomato fruit ripening.

刘, M., Diretto, G., Roustan, J. P. & 李, Z. 乙烯响应因子 (ERF) 家族成员 sl-erf.b3 的嵌合抑制版本对番茄果实成熟显示出相反的影响。

New Phytol.

新植物学家。

203

203

(1), 206–218.

(1), 206–218。

https://doi.org/10.1111/nph.12771

https://doi.org/10.1111/nph.12771

(2014).

(2014)。

Article

文章

CAS

中国科学院

PubMed

PubMed

Google Scholar

谷歌学术

Zhang, C. & Whiting, M. Plant growth regulators improve sweet cherry fruit quality without reducing endocarp growth.

张,C. & Whiting, M. 植物生长调节剂提高甜樱桃果实品质且不减少内果皮生长。

Sci. Hortic.

园艺科学

150

150

, 73–79 (2013).

,73-79页(2013年)。

Article

文章

CAS

中国科学院

Google Scholar

谷歌学术搜索

Zhang, L. et al. Function analysis of the erf and dreb subfamilies in tomato fruit development and ripening.

张,L. 等。番茄果实发育和成熟过程中 erf 和 dreb 亚家族的功能分析。

Front. Plant. Sci.

植物科学前沿

13

13

, 849048.

,849048。

https://doi.org/10.3389/fpls.2022.849048

https://doi.org/10.3389/fpls.2022.849048

(2022a).

(2022a)。

Article

文章

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术索

Zhang, X. et al. Transcriptome analysis reveals roles of sucrose in anthocyanin accumulation in ‘kuerle xiangli’ (

张晓东等,转录组分析揭示了蔗糖在‘库尔勒香梨’花青素积累中的作用

Pyrus sinkiangensis

新疆梨

Yü).

玉)。

Genes (Basel)

基因(巴塞尔)

13

13

(6), 1064.

(6), 1064。

https://doi.org/10.1016/j.gene.2019.144284

https://doi.org/10.1016/j.gene.2019.144284

(2022).

(2022)。

Zhang, Y. et al. Genome-wide analysis of the erf family and identification of potential genes involved in fruit ripening in octoploid strawberry.

张,Y. 等。八倍体草莓中ERF家族的全基因组分析及参与果实成熟的潜在基因鉴定。

Int. J. Mol. Sci.

国际分子科学杂志

23

二十三

(18), 10550.

(18), 10550。

https://doi.org/10.3390/ijms231810550

https://doi.org/10.3390/ijms231810550

(2022).

(2022)。

Article

文章

CAS

中国科学院

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术

Leng, P. The role of abscisic acid in fruit ripening and responses to abiotic stress.

冷鹏。脱落酸在果实成熟和对非生物胁迫反应中的作用。

J. Exp. Bot.

植物实验生物学杂志

65

65

, 4577–4588.

,4577–4588。

https://doi.org/10.1093/jxb/eru204

https://doi.org/10.1093/jxb/eru204

(2014).

(2014)。

Article

文章

CAS

中文名:化学文摘社

PubMed

PubMed

Google Scholar

谷歌学术索

Bai, Q., Huang, Y. & Shen, Y. The physiological and molecular mechanism of abscisic acid in regulation of fleshy fruit ripening.

白琪,黄颖,沈毅。脱落酸调控肉质果实成熟的生理与分子机制。

Front. Plant. Sci.

植物科学前沿

11

11

, 619953.

,619953。

https://doi.org/10.3389/fpls.2020.619953

https://doi.org/10.3389/fpls.2020.619953

(2021).

(2021)。

Article

文章

Google Scholar

谷歌学术搜索

Download references

下载参考文献

Funding

资金筹集

This study was supported by the Key R&D Program of Shandong Province, China (2022TZXD006 and 2020LGGC008) and the Shandong Provincial Natural Science Foundation (ZR2021MC117), and the Yantai Seed Project ‘Creation of the sweet cherry Breeding Team’.

本研究得到了中国山东省重点研发计划(2022TZXD006和2020LGGC008)、山东省自然科学基金(ZR2021MC117)以及烟台种子项目“甜樱桃育种团队的创建”的支持。

Author information

作者信息

Author notes

作者笔记

These authors jointly supervised this work: Jiawei Wang and Qingzhong Liu.

这些作者共同指导了这项工作:王嘉伟和刘庆忠。

Authors and Affiliations

作者与所属机构

Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Taian, 271000, Shandong, China

山东省果树生物技术育种重点实验室,山东省果树研究所,泰安,271000,山东,中国

Qian Qiao, Bingxue Shen, Dongzi Zhu, Po Hong, Lisi Zhang, Jiazheng Sun, Shan Sun, Jiawei Wang & Qingzhong Liu

乔倩,沈冰雪,朱东子,洪波,张丽思,孙家正,孙珊,王佳伟,刘庆忠

State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China

作物生物学国家重点实验室,山东农业大学,泰安,271018,山东,中国

Bingxue Shen, Yun Gao & Shizhong Zhang

沈冰雪,高云,张世忠

Department of Biology Science and Technology, Taishan University, Taian, 271000, Shandong, China

泰山学院生物科学与技术系,泰安,271000,山东,中国

Ke Lin

柯林

Authors

作者

Qian Qiao

钱桥

View author publications

查看作者的出版物

You can also search for this author in

您还可以搜索该作者在

PubMed

PubMed

Google Scholar

谷歌学术

Bingxue Shen

沈冰雪

View author publications

查看作者的出版物

You can also search for this author in

您还可以搜索此作者在

PubMed

PubMed

Google Scholar

谷歌学术

Ke Lin

柯林

View author publications

查看作者的出版物

You can also search for this author in

您还可以搜索此作者在

PubMed

PubMed

Google Scholar

谷歌学术搜索

Dongzi Zhu

朱冬子

View author publications

查看作者的出版物

You can also search for this author in

您还可以搜索此作者在

PubMed

PubMed

Google Scholar

谷歌学术索

Po Hong

洪波

View author publications

查看作者的出版物

You can also search for this author in

您还可以搜索该作者在

PubMed

PubMed

Google Scholar

谷歌学术索

Lisi Zhang

李四 张

View author publications

查看作者的出版物

You can also search for this author in

您还可以搜索该作者在

PubMed

PubMed

Google Scholar

谷歌学术搜索

Jiazheng Sun

孙家正

View author publications

查看作者的出版物

You can also search for this author in

您还可以搜索此作者在

PubMed

PubMed

Google Scholar

谷歌学术搜索

Shan Sun

山孙

View author publications

查看作者的出版物

You can also search for this author in

您还可以搜索此作者在

PubMed

PubMed

Google Scholar

谷歌学术

Yun Gao

高云

View author publications

查看作者的出版物

You can also search for this author in

您还可以搜索此作者在

PubMed

PubMed

Google Scholar

谷歌学术搜索

Shizhong Zhang

张世钟

View author publications

查看作者的出版物

You can also search for this author in

您还可以搜索此作者在

PubMed

PubMed

Google Scholar

谷歌学术索

Jiawei Wang

王佳伟

View author publications

查看作者的出版物

You can also search for this author in

您还可以搜索此作者在

PubMed

PubMed

Google Scholar

谷歌学术搜索

Qingzhong Liu

刘庆忠

View author publications

查看作者的出版物

You can also search for this author in

您还可以搜索此作者在

PubMed

PubMed

Google Scholar

谷歌学术搜索

Contributions

贡献

JW, QL and QQ conducted the experiments, analyzed the data. QQ and BS wrote the main manuscript text. KL, DZ, PH, LZ, JS, SS, QL, YG and SZ prepared Figs.

JW、QL和QQ进行了实验,分析了数据。QQ和BS撰写了主要的手稿文本。KL、DZ、PH、LZ、JS、SS、QL、YG和SZ准备了图表。

1

1

,

2

2

,

3

3

,

4

4

,

5

5

,

6

6

,

7

7

,

8

8

and

9

9

. QQ, BS, JW and QL revised and checked the manuscript.All authors reviewed the manuscript.

QQ、BS、JW 和 QL 修改并检查了手稿。所有作者都审阅了手稿。

Corresponding authors

通讯作者

Correspondence to

致函

Jiawei Wang

王佳伟

or

Qingzhong Liu

刘庆忠

.

Ethics declarations

伦理声明

Competing interests

竞争利益

The authors declare no competing interests.

作者声明没有竞争性利益。

Additional information

更多信息

Publisher’s note

出版社注

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature 对已发布地图中的管辖权声明和机构隶属关系保持中立。

Electronic supplementary material

电子补充材料

Below is the link to the electronic supplementary material.

以下是电子补充材料的链接。

Supplementary Material 1

补充材料1

Supplementary Material 2

补充材料2

Supplementary Material 3

补充材料3

Supplementary Material 4

补充材料4

Supplementary Material 5

补充材料5

Supplementary Material 6

补充材料6

Rights and permissions

权利与权限

Open Access

开放获取

This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

本文根据知识共享署名-非商业性使用-禁止演绎 4.0 国际许可证获得许可,该许可证允许您在任何媒介或格式中进行任何非商业性使用、分享、分发和复制,只要您对原作者和来源给予适当的署名,提供指向知识共享许可证的链接,并说明是否对授权材料进行了修改。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权分享从本文或其部分内容衍生的改编材料。本文中的图像或其他第三方材料包含在文章的Creative Commons许可中,除非材料的署名行另有说明。如果材料未包含在文章的Creative Commons许可中,并且您的预期用途不被法律规定允许或超出了允许的使用范围,您需要直接从版权所有者处获得许可。

To view a copy of this licence, visit .

要查看此许可证的副本,请访问 。

http://creativecommons.org/licenses/by-nc-nd/4.0/

http://creativecommons.org/licenses/by-nc-nd/4.0/

.

Reprints and permissions

重印和许可

About this article

关于本文

Cite this article

引用本文

Qiao, Q., Shen, B., Lin, K.

乔,Q.,沈,B.,林,K.

et al.

等人

Detecting the physiological and molecular mechanisms by which abscisic acid (ABA) regulates the consistency of sweet cherry fruit maturity.

检测脱落酸(ABA)调节甜樱桃果实成熟一致性的生理和分子机制。

Sci Rep

科学报告

15

15

, 6311 (2025). https://doi.org/10.1038/s41598-025-85821-6

,6311(2025)。https://doi.org/10.1038/s41598-025-85821-6

Download citation

下载引用

Received

已收到

:

10 June 2024

2024年6月10日

Accepted

已接受

:

06 January 2025

2025年1月6日

Published

已发布

:

21 February 2025

2025年2月21日

DOI

数字对象标识符

:

https://doi.org/10.1038/s41598-025-85821-6

https://doi.org/10.1038/s41598-025-85821-6

Share this article

分享这篇文章

Anyone you share the following link with will be able to read this content:

任何你分享以下链接的人都将能够阅读此内容:

Get shareable link

获取可分享的链接

Sorry, a shareable link is not currently available for this article.

抱歉,这篇文章目前没有可共享的链接。

Copy to clipboard

复制到剪贴板

Provided by the Springer Nature SharedIt content-sharing initiative

由 Springer Nature SharedIt 内容共享计划提供

Keywords

关键词

Cherry

樱桃

Abscisic acid

脱落酸

Stage of maturity

成熟阶段

Transcriptome

转录组

AP2/ERF transcription factors

AP2/ERF转录因子