商务合作
动脉网APP
可切换为仅中文
Abstract
摘要
The efficacy of 2D turbo gradient- and spin-echo diffusion-weighted imaging with non-Cartesian BLADE trajectory (TGSE-BLADE DWI) has not been well studied for acute stroke due to its long acquisition time. This study was performed to compare distortion, artifacts and image quality between single-shot echo planar imaging (SS-EPI) DWI and TGSE-BLADE DWI with acquisition time reduced to 1 min by simultaneous multi-slice (SMS) imaging, and to evaluate the diagnostic performance of TGSE-BLADE DWI for acute infarctions.
由于采集时间较长,二维涡轮梯度和自旋回波扩散加权成像结合非笛卡尔BLADE轨迹(TGSE-BLADE DWI)在急性卒中中的效果尚未得到充分研究。本研究旨在比较单次激发平面回波成像(SS-EPI)DWI与通过同时多层(SMS)成像将采集时间缩短至1分钟的TGSE-BLADE DWI之间的畸变、伪影和图像质量,并评估TGSE-BLADE DWI对急性梗死的诊断性能。
Total 104 patients with a past history of stroke or symptoms suspicious for acute infarction or who had undergone surgery for brain tumor within two days were prospectively enrolled. Ten lesions in 9 patients were diagnosed as acute or subacute infarction and were detectable only in TGSE-BLADE DWI but not in SS-EPI DWI.
共有104名既往有卒中病史或疑似急性梗死症状、或在两天内接受过脑肿瘤手术的患者被前瞻性地纳入研究。其中9名患者的10个病灶被诊断为急性或亚急性梗死,这些病灶仅在TGSE-BLADE DWI上可检测到,而在SS-EPI DWI上未能发现。
Scores for geometric distortion, susceptibility artifacts, overall image quality, lesion conspicuity and diagnostic confidence were lower for SS-EPI DWI than TGSE-BLADE DWI (.
几何畸变、磁敏感伪影、整体图像质量、病灶清晰度和诊断信心的评分,SS-EPI DWI低于TGSE-BLADE DWI。
p
p
≤ .001). Distortion was significantly worse in SS-EPI DWI than TGSE-BLADE DWI (
≤ .001)。SS-EPI DWI的畸变明显比TGSE-BLADE DWI更严重(
p
p
< .001). SNR of centrum semiovale was significantly higher in SS-EPI DWI than TGSE-BLADE DWI (
< .001)。在SS-EPI DWI中,半卵圆中心的信噪比显著高于TGSE-BLADE DWI (
p
p
< .001). One-minute TGSE-BLADE DWI showed better image quality than SS-EPI DWI in terms of distortion and artifacts, and higher diagnostic performance for acute infarctions.
< .001)。一分钟的TGSE-BLADE DWI在失真和伪影方面比SS-EPI DWI显示出更好的图像质量,并且对急性梗死具有更高的诊断性能。
Introduction
简介
Diffusion-weighted magnetic resonance imaging (DWI) is the most important MR sequence for diagnosing acute stroke
磁共振扩散加权成像(DWI)是诊断急性卒中最重要磁共振序列。
1
1
,
,
2
2
. Single-shot echo-planar imaging (SS-EPI) is the most widely used DWI technique; however, EPI-based DWI techniques are prone to susceptibility artifacts where the magnetic field is inhomogeneous, such as near air–bone interfaces
单次回波平面成像(SS-EPI)是最广泛使用的DWI技术;然而,基于EPI的DWI技术容易在磁场不均匀的地方产生磁敏感伪影,例如在空气-骨界面附近。
3
3
. In contrast, two-dimensional (2D) turbo gradient- and spin-echo diffusion-weighted imaging with non-Cartesian BLADE trajectory (TGSE-BLADE DWI) is insensitive to B
相比之下,具有非笛卡尔BLADE轨迹的二维(2D)涡轮梯度和自旋回波扩散加权成像(TGSE-BLADE DWI)对B不敏感。
0
0
-related artifacts, and thus has reduced geometric distortion and susceptibility artifacts
相关的伪影,因此减少了几何畸变和磁敏感性伪影
4
4
. Although several studies have reported the clinical usefulness of TGSE-BLADE DWI for cholesteatomas, orbital tumors, cerebellopontine angle tumors, sinonasal lesions, and aneurysm clips
尽管已有几项研究报告了TGSE-BLADE DWI在胆脂瘤、眶内肿瘤、小脑桥脑角肿瘤、鼻窦病变和动脉瘤夹等方面的临床应用价值,
5
5
,
,
6
6
,
,
7
7
,
,
8
8
,
,
9
9
,
,
10
10
, none has evaluated its use for acute stroke. TGSE-BLADE DWI features a multi-blade k-space filling strategy that has a shorter acquisition time compared to PROPELLER DWI, which is based on a turbo spin-echo sequence with non-Cartesian BLADE trajectory
,但尚未有研究评估其在急性卒中中的应用。TGSE-BLADE DWI采用多叶片k空间填充策略,与基于涡轮自旋回波序列和非笛卡尔BLADE轨迹的PROPELLER DWI相比,采集时间更短。
11
11
,
,
12
12
,
,
13
13
. However, the acquisition time for TGSE-BLADE DWI has been reported to be as long as 4–5 min
然而,据报道,TGSE-BLADE DWI 的采集时间长达 4 到 5 分钟。
4
4
,
,
5
5
,
,
6
6
,
,
7
7
,
,
8
8
,
,
9
9
,
,
10
10
, which has prevented its clinical application.
,这阻碍了它的临床应用。
To overcome this shortcoming, we used a slice acceleration technique termed simultaneous multi-slice (SMS) imaging in TGSE-BLADE DWI. SMS has been incorporated into both TSE and EPI sequences, and applied to most anatomical regions
为了克服这一缺点,我们在TGSE-BLADE DWI中使用了一种称为同时多层(SMS)成像的切片加速技术。SMS已被整合到TSE和EPI序列中,并应用于大多数解剖区域。
14
14
,
,
15
15
,
,
16
16
,
,
17
17
. As SMS offers a substantial acceleration in data acquisition according to the number of slices excited simultaneously, it has emerged as a significant imaging technique
由于SMS根据同时激发的切片数量提供了实质性的数据采集加速,它已经成为一种重要的成像技术。
18
18
. In contrast to in-plane parallel imaging, SMS incurs only a minimal intrinsic signal-to-noise ratio penalty, allowing for full acceleration while maintaining a fixed echo time
与平面内并行成像相比,SMS仅产生最小的固有信噪比损失,从而允许在保持固定回波时间的同时实现全加速。
19
19
. In addition, some SMS implementations have the potential to decrease radiofrequency (RF) power deposition
此外,一些短信实现有可能减少射频(RF)功率沉积。
19
19
.
。
MRI is a crucial diagnostic tool for cerebral infarction that enables early detection and prompt formulation and initiation of treatment, which are correlated with enhanced patient prognosis
MRI是脑梗死的关键诊断工具,它能够早期发现并及时制定和开始治疗,这些都与提高患者的预后相关。
20
20
,
,
21
21
. Therefore, reduction of scan time is clinically important for increasing the efficacy of patient care. We achieved a reduction in TGSE-BLADE DWI acquisition time to 1 min by employing SMS. The aim of this study was to compare distortion, artifacts, and image quality between SS-EPI DWI and TGSE-BLADE DWI with SMS (1-min TGSE-BLADE DWI); and to evaluate the diagnostic performance of 1-min TGSE-BLADE DWI for acute or subacute infarction..
因此,减少扫描时间在临床上对提高患者护理效果非常重要。我们通过采用SMS技术,将TGSE-BLADE DWI的采集时间缩短至1分钟。本研究的目的是比较SS-EPI DWI与采用SMS的TGSE-BLADE DWI(1分钟TGSE-BLADE DWI)之间的畸变、伪影和图像质量;并评估1分钟TGSE-BLADE DWI在急性或亚急性梗死中的诊断性能。
Materials and methods
材料与方法
Participants
参与者
This prospective study was performed in accordance with the Declaration of Helsinki and was approved by Kyoto University Graduate School and Faculty of Medicine, Ethics Committee. Written informed consent was obtained from all participants.
本前瞻性研究按照《赫尔辛基宣言》进行,并得到了京都大学研究生院和医学院伦理委员会的批准。所有参与者均提供了书面知情同意书。
We prospectively enrolled 104 patients with a past history of stroke or symptoms suspicious for acute infarction, or who underwent surgery for a brain tumor within two days, and who underwent SS-EPI DWI, TGSE-BLADE DWI, and T2-weighted imaging (T2WI) between November 2021 and March 2022. The exclusion criteria were as follows: (a) insufficient image quality due to motion artifacts; and (b) unavailability of any of SS-EPI DWI, TGSE-BLADE DWI, or T2WI..
我们前瞻性地纳入了104名患者,这些患者有卒中病史或疑似急性梗死的症状,或在两天内接受过脑肿瘤手术,并于2021年11月至2022年3月期间接受了SS-EPI DWI、TGSE-BLADE DWI和T2加权成像(T2WI)。排除标准如下:(a) 因运动伪影导致图像质量不足;(b) SS-EPI DWI、TGSE-BLADE DWI或T2WI中任何一项不可用。
Image acquisition
图像采集
MRI was performed using a 3T scanner (MAGNETOM Prisma or MAGNETOM Skyra; Siemens Healthineers, Erlangen, Germany) with a 64-channel head/neck coil or a 32-channel head coil. T2WI of the brain was acquired in addition to the two DWI sequences (SS-EPI DWI and TGSE-BLADE DWI). SS-EPI DWI is a commercially available product that is used routinely in our institute.
使用3T扫描仪(MAGNETOM Prisma或MAGNETOM Skyra;西门子医疗,埃尔朗根,德国)进行MRI检查,并配备64通道头/颈线圈或32通道头线圈。除了两种DWI序列(SS-EPI DWI和TGSE-BLADE DWI)外,还获取了脑部的T2加权成像。SS-EPI DWI是我们研究所常规使用的商业化产品。
TGSE-BLADE DWI is a prototype sequence covering the whole brain, and a scan time of 59 s was achieved with a total acceleration factor of 4 (2 × in-plane acceleration and 2 × slice acceleration). The pulse sequence parameters are shown in Table .
TGSE-BLADE DWI 是一种覆盖全脑的原型序列,通过4倍的总加速因子(2倍平面内加速和2倍层面加速)实现了59秒的扫描时间。脉冲序列参数如表所示。
1
1
.
。
Table 1 Acquisition protocols.
表1 采集协议。
Full size table
全尺寸表格
Image analysis
图像分析
(a)
(a)
Lesion assessment.
病变评估。
Three board-certified neuroradiologists (A.S., S.Ok., and S.Ot. with 16, 16, and 13 years of experience in neuroradiology, respectively) evaluated patients’ images for acute or subacute infarctions, defined as lesions with high signal intensities on b1000 images and without high values on ADC map. High signal intensities on b1000 images were diagnosed as infarction or artifact based on temporal changes and the findings of other MR sequences; e.g., fluid attenuated inversion recovery (FLAIR).
三位经过委员会认证的神经放射科医生(A.S.、S.Ok. 和 S.Ot.,分别具有16年、16年和13年的神经放射学经验)评估了患者的图像,寻找急性或亚急性梗死,定义为在b1000图像上呈现高信号强度且在ADC图上没有高值的病灶。b1000图像上的高信号强度根据时间变化和其他磁共振序列(如液体衰减反转恢复序列FLAIR)的结果被诊断为梗死或伪影。
In patients who underwent surgery, restricted diffusion due to postoperative changes on images acquired immediately after surgery was diagnosed as acute cerebral infarction or contusion. Any disagreements among the three neuroradiologists were resolved by consensus..
在手术患者中,术后立即获取的影像显示因术后改变导致的扩散受限被诊断为急性脑梗死或脑挫伤。三位神经放射科医生之间的任何分歧均通过共识解决。
(b) Image quality.
(b) 图像质量。
Geometric distortion, susceptibility artifacts, and overall image quality were assessed qualitatively in the b1000 images of all patients using a 4-point Likert scale
使用4分Likert量表对所有患者b1000图像中的几何畸变、磁敏感伪影和整体图像质量进行了定性评估。
7
7
. In patients who had high signal intensities on b1000 images, lesion conspicuity and diagnostic confidence were qualitatively evaluated in b1000 images using a 4-point Likert scale
在b1000图像上具有高信号强度的患者中,使用4点Likert量表对b1000图像中的病灶显著性和诊断信心进行了定性评估。
7
7
. In the case of multiple lesions, a comprehensive assessment was performed. The image assessment criteria are listed in Supplementary Table 1. Image quality was evaluated by the same three neuroradiologists who performed lesion assessment. Each reader was blinded to the type of DWI sequence. The majority opinion of the raters was designated as the final score.
如果有多个病灶,则进行综合评估。图像评估标准列于补充表1中。图像质量由进行病灶评估的同三位神经放射科医生评估。每位阅片者均不知道DWI序列的类型。评审者的多数意见被指定为最终得分。
If the three opinions differed, a resolution was obtained by consensus..
如果三个意见不同,那么通过协商达成决议。
(c) Quantitative analysis.
(c)定量分析。
Distortion was examined quantitatively by measuring the displacement between T2WI and each DWI sequence in three parts of the brain: frontal lobe near frontal sinus, temporal tip, and pons
通过测量T2WI与每个DWI序列在大脑三个部位(额窦附近的额叶、颞叶尖端和脑桥)之间的位移,定量检查了畸变。
9
9
.
。
Regions-of-interest (ROIs) were placed on high-signal-intensity lesions, centrum semiovale (CSO), and the pons in the b1000 images of each DWI sequence. If multiple lesions were present, the ROI was placed in the slice that contained the greatest area of the largest lesion. In all patients, signal-to-noise ratio (SNR) was calculated as SNR = SI.
感兴趣区域(ROIs)放置在高信号强度病灶、半卵圆中心(CSO)和每个DWI序列的b1000图像中的脑桥。如果存在多个病灶,则将ROI放置在包含最大病灶最大面积的切片上。在所有患者中,信噪比(SNR)计算为SNR = SI。
cso or pons
脑干或桥脑
/ SD
/ SD
cso or pons
脑干或脑桥
22
22
. SI
. 是
cso or pons
首席安全官或pons
and SD
和SD
cso or pons
首席安全官或pons
are the mean and standard deviation of signal intensities of CSO or pons. Contrast-to-noise ratio (CNR) was calculated as CNR = (SI
是CSO或脑桥信号强度的平均值和标准差。对比噪声比(CNR)计算为CNR = (SI
lesion
病变
– SI
– 是
cso
首席安全官
) / SD
`) / 标准差`
cso
首席安全官
in patients with acute or subacute infarction
在急性或亚急性梗死患者中
22
22
. SI
. 如果
lesion
病变
, SI
,硅
cso
首席安全官
, and SI
,以及SI
pons
脑桥
are the mean signal intensities of lesions of acute or subacute infarction, CSO, and pons, respectively; and SD
分别是急性或亚急性梗死、脑室周围白质和脑桥病灶的平均信号强度;以及标准差
cso
首席安全官
is the standard deviation of CSO. The same ROIs were then placed in the ADC maps of each DWI sequence. ROI area was 60–99 mm
是CSO的标准偏差。然后将相同的ROI放置在每个DWI序列的ADC图上。ROI面积为60-99毫米。
2
2
in CSO and pons, and 4–69 mm
在脑脊液和脑桥中,以及4-69毫米
2
2
in lesions. Evaluation of distortion and ROI measurements was performed by a board-certified radiologist (S.Ok.) using ImageJ software version 1.53e (
在病灶中。畸变和感兴趣区域(ROI)测量的评估由一位获得认证的放射科医生(S.Ok.)使用ImageJ软件版本1.53e进行(
https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/
) and was approved by another board-certified radiologist (Y.F. with 25 years of experience in neuroradiology).
)并由另一名获得委员会认证的放射科医生(Y.F.,拥有25年的神经放射学经验)批准。
SNR maps
信噪比图
SNR maps were created using SS-EPI DWI and TGSE-BLADE DWI acquired in one healthy volunteer. Each DWI sequence was scanned 10 times, and an SNR map of each DWI was created as the mean map divided by the SD map, using Image Calculator in SPM12 (
使用SS-EPI DWI和TGSE-BLADE DWI在一名健康志愿者中获取的数据创建了SNR图。每个DWI序列扫描了10次,并使用SPM12中的图像计算器将SNR图创建为平均图除以标准差图。
https://www.fil.ion.ucl.ac.uk/spm/software/
https://www.fil.ion.ucl.ac.uk/spm/software/
).
)。
Phantom study
幻影研究
A phantom study was performed using Mini Diffusion phantom (CaliberMRI, Inc., Boulder, CO, United States) at MAGNETOM Prisma. The phantom contains three high-performance liquid chromatography water vials (reference) and 10 PVP vials (two each 10%, 20%, 30%, 40%, and 50% PVP). TGSE-BLADE DWI with SMS and TGSE-BLADE DWI without SMS were each scanned 10 times, respectively.
使用Mini Diffusion幻影(CaliberMRI公司,美国科罗拉多州博尔德)在MAGNETOM Prisma上进行了幻影研究。该幻影包含三个高效液相色谱水瓶(参考)和10个PVP瓶(每种浓度10%、20%、30%、40%和50%的PVP各两个)。分别对使用SMS的TGSE-BLADE DWI和不使用SMS的TGSE-BLADE DWI各进行了10次扫描。
The acquisition parameters for both TGSE-BLADE DWI methods were set to a Repetition Time (TR) of 4300 ms, differing from the TR used in the patient study, to enable comparison under the same TR condition. ROIs were placed in the b1000 image and subsequently applied to the ADC maps. The accuracy of each DWI was evaluated by comparison between measured ADC values and theoretical ADC values corresponding to the temperature of the phantom.
两种TGSE-BLADE DWI方法的采集参数均设置为4300毫秒的重复时间(TR),与患者研究中使用的TR不同,以便在相同的TR条件下进行比较。感兴趣区域(ROI)放置在b1000图像上,并随后应用到ADC图上。通过测量的ADC值与对应于体模温度的理论ADC值之间的比较,评估每种DWI的准确性。
The SNR map of each DWI was created as the mean map of b1000 images divided by the SD map. The same ROIs were also placed on the SNR map..
每个DWI的信噪比图是通过将b1000图像的平均图除以标准差图创建的。相同的ROI也被放置在信噪比图上。
Statistical analysis
统计分析
Interrater reliability for the image quality scores measured independently by the three radiologists was evaluated using Fleiss’ kappa statistics using RStudio Software version 2022.12.0 (RStudio PBC, Boston, USA)
三位放射科医生独立测量的图像质量评分的评分者间信度使用Fleiss’ kappa统计方法进行评估,所用软件为RStudio版本2022.12.0(RStudio PBC,波士顿,美国)。
23
23
. The calculated κ statistic was interpreted as follows: 0.20 or less, slight agreement; 0.21–0.40, fair agreement; 0.41–0.60, moderate agreement; 0.61–0.80, substantial agreement; and 0.81–1.00, almost perfect agreement.
κ统计量的解释如下:0.20或更低,一致性较弱;0.21-0.40,一致性一般;0.41-0.60,中等一致性;0.61-0.80,高度一致性;0.81-1.00,几乎完全一致。
Lengths of displacement and image quality scores were compared between the two DWI sequences using Wilcoxon signed-rank test because the data distribution was not normal. SNR, CNR, and ADC values were compared between the two DWI sequences using paired t-tests because the data distribution was normal.
由于数据分布不正常,使用Wilcoxon符号秩检验比较了两种DWI序列的位移长度和图像质量评分。由于数据分布正常,使用配对t检验比较了两种DWI序列的SNR、CNR和ADC值。
.
。
p
p
values less than 0.05 were considered statistically significant. The correlation coefficient was calculated to evaluate correlations of ADC values from the two DWI sequences, and Bland–Altman analysis was also performed. Statistical analyses were performed using MedCalc version 20 (MedCalc Software, Ostend, Belgium)..
小于0.05的值被认为具有统计学显著性。计算相关系数以评估来自两个DWI序列的ADC值之间的相关性,并进行了Bland-Altman分析。统计分析使用MedCalc 20版本(MedCalc软件,比利时奥斯坦德)进行。
Results
结果
Participants
参与者
No participant was excluded from the study. In total, 104 patients were included (mean age, 67.1 ± 16.7; age range, 23–93 years; 64 males, 40 females) (Supplementary Fig. 1). Of 82 patients with a past history of stroke or symptoms suspicious for acute infarction, 37 had high signal intensities indicative of acute or subacute cerebral infarction.
没有参与者被排除在研究之外。总共纳入了104名患者(平均年龄67.1±16.7岁;年龄范围23-93岁;64名男性,40名女性)(补充图1)。在82名既往有卒中病史或疑似急性梗死症状的患者中,37名患者出现了提示急性或亚急性脑梗死的高信号强度。
Forty-one patients had no high signal intensities on b1000 images, and 4 patients had a high signal intensity on b1000 images that also showed high signal on ADC maps. Twenty-two patients underwent surgery within two days and had high signal intensity lesions indicative of postoperative contusion or acute infarction on b1000 images.
四十一名患者在b1000图像上没有高信号强度,四名患者在b1000图像上有高信号强度,并且在ADC图上也显示出高信号。二十二名患者在两天内接受了手术,在b1000图像上有表明术后挫伤或急性梗死的高信号强度病灶。
Table .
表格。
2
2
lists the demographic data of all participants.
列出了所有参与者的人口统计数据。
Table 2 Patient demographics.
表2 患者人口统计信息。
Full size table
全尺寸表格
Lesion assessment
病变评估
Ten lesions in 9 patients were diagnosed as acute/subacute infarction or postoperative contusion and were detectable on TGSE-BLADE DWI but not on SS-EPI DWI. These lesions were confirmed to be true lesions, excluding false positive findings clearly, through FLAIR imaging or follow-up DWI on a different day..
9例患者的10处病灶诊断为急性/亚急性梗死或术后挫伤,这些病灶在TGSE-BLADE DWI上可检测到,但在SS-EPI DWI上未能发现。通过FLAIR成像或不同日期的随访DWI确认这些病灶为真性病灶,排除了明显的假阳性结果。
Six of the 10 acute or subacute infarct lesions were in the cerebellar hemisphere near the cerebellar tentorium, frontal cortex, parietal cortex, putamen, and globus pallidus (Fig.
10个急性或亚急性梗死病灶中有6个位于小脑半球靠近小脑幕、额叶皮层、顶叶皮层、壳核和苍白球(图。
1
1
). All these lesions were very small and located in regions prone to artifacts or near areas of hemosiderin deposition. Additionally, two cases were asymptomatic, while the duration after symptom onset in the remaining four cases ranged from 1 to 4 days, indicating that most lesions were shortly after the onset of infarction..
)。所有病灶均很小,位于容易出现伪影的区域或含铁血黄素沉积区附近。此外,2例无症状,其余4例自症状出现后的时间范围为1-4天,表明大多数病灶处于脑梗死后不久。。
Fig. 1
图1
Representative images in patients with acute or subacute infarction. The white arrows indicate infarctions in the cerebellar hemisphere near the cerebellar tentorium (
急性或亚急性梗死患者的代表性图像。白色箭头表示靠近小脑幕的小脑半球梗死(
a
a
,
,
b
b
), left frontal cortex (
),左额叶皮层(
c
c
,
,
d
d
), right parietal lobe (
),右顶叶(
e
e
,
,
f
f
), left putamen (
),左侧壳核(
g
g
,
,
h
h
), right globus pallidus (
),右侧苍白球(
i
i
,
,
j
j
), and right frontal cortex (
),以及右侧额叶皮层(
k
k
,
,
l
l
). SS-EPI DWI (
). SS-EPI DWI (
a
a
,
,
c
c
,
,
e
e
,
,
g
g
,
,
i
i
and
和
k
k
); TGSE-BLADE DWI (
);TGSE-BLADE DWI (
b
b
,
,
d
d
,
,
f
f
,
,
h
h
,
,
j
j
and
和
l
l
). The lesions are detectable only on TGSE-BLADE DWI but are unclear on SS-EPI DWI due to proximity to cortex, cerebellar tentorium, or hemosiderin deposition in the basal ganglia.
)。病变仅在TGSE-BLADE DWI上可检测到,但由于靠近皮层、小脑幕或基底节区含铁血黄素沉积,在SS-EPI DWI上显示不清。
Full size image
全尺寸图像
Four of the 10 acute infarct lesions or postoperative contusions were observed in patients immediately after surgery, and were difficult to find on SS-EPI DWI because of susceptibility artifacts due to air or hemorrhage (Fig.
在手术后立即观察到 10 例急性梗死灶或术后挫伤中有 4 例,由于空气或出血引起的磁敏感伪影,在 SS-EPI DWI 上很难发现(图。
2
2
). No lesion was detectable on SS-EPI DWI but not on TGSE-BLADE DWI. Lesions visualized only on TGSE-BLADE DWI were verified by pixel-to-pixel comparison in FLAIR images obtained at the same time or in FLAIR images obtained at follow-up MRI.
)。在SS-EPI DWI上未检测到病变,但在TGSE-BLADE DWI上可见。仅在TGSE-BLADE DWI上可视化的病变通过同时获得的FLAIR图像或随访MRI中获得的FLAIR图像进行了像素对比验证。
Fig. 2
图2
Representative images obtained in patients who underwent surgery for brain tumor show postoperative changes related to acute cerebral infarction or postoperative contusion on postoperative day 1. It is difficult to determine whether the postoperative changes are due to acute cerebral infarction or to postoperative contusion (white arrows) and susceptibility artifact (arrowheads) in SS-EPI DWI (.
在接受脑肿瘤手术的患者中获得的代表性图像显示术后第一天与急性脑梗死或术后挫伤相关的术后变化。很难确定术后变化是由于急性脑梗死还是术后挫伤(白箭头)以及在SS-EPI DWI中的磁敏感伪影(箭头)。
a
a
,
,
c
c
,
,
e
e
, and
,以及
g
g
). Postoperative changes are clearly differentiated as acute cerebral infarction or postoperative contusion on TGSE-BLADE DWI (
)。术后改变在TGSE-BLADE DWI上可明确区分为急性脑梗死或术后挫伤(
b
b
,
,
d
d
,
,
f
f
, and
,以及
h
h
).
)。
Full size image
全尺寸图像
Image quality
图像质量
The kappa values of inter-rater agreement for the image quality scores of geometric distortion, susceptibility artifacts, overall image quality, lesion conspicuity, and diagnostic confidence were 0.67, 0.63, 0.69, 0.49, and 0.54, respectively, showing fair agreement or moderate agreement.
几何畸变、磁敏感伪影、整体图像质量、病灶明显度和诊断信心的图像质量评分的评估者间一致性 kappa 值分别为 0.67、0.63、0.69、0.49 和 0.54,显示出一般或中等程度的一致性。
Table
表格
3
3
lists the image quality scores for each DWI sequence. Scores for geometric distortion, susceptibility artifacts, and overall image quality were lower in SS-EPI DWI than TGSE-BLADE DWI (all
列出了每个DWI序列的图像质量评分。SS-EPI DWI在几何畸变、磁敏感伪影和整体图像质量方面的评分低于TGSE-BLADE DWI(全部
p
p
< .001). Scores for lesion conspicuity and diagnostic confidence were lower in SS-EPI DWI than TGSE-BLADE DWI in patients with acute infarction and in patients immediately after surgery (
< .001)。在急性梗死患者和术后即刻患者中,SS-EPI DWI的病灶显著性和诊断信心评分低于TGSE-BLADE DWI(
p
p
≤ .001 and
≤ .001 且
p
p
< .001, respectively).
< .001,分别)。
Table 3 Results of image quality for SS-EPI DWI and TGSE-BLADE DWI.
表3 SS-EPI DWI和TGSE-BLADE DWI的图像质量结果。
Full size table
全尺寸表格
Quantitative analysis
定量分析
Example images and the measured distortion values are shown in Fig.
图中显示了示例图像和测得的失真值。
3
3
. Distortion values were significantly higher in SS-EPI DWI than TGSE-BLADE DWI in frontal lobe, temporal tip, and pons (
。在额叶、颞尖和脑桥,SS-EPI DWI的畸变值显著高于TGSE-BLADE DWI(
p
p
< .001).
< .001)。
Fig. 3
图3
A 74-year-old male with acute infarctions in right basal ganglia and corona radiata. Values of distortion seen on SS-EPI DWI (
一名74岁男性,右侧基底节区和放射冠急性梗死。SS-EPI DWI上可见的畸变值 (
a
a
,
,
c
c
) and TGSE-BLADE DWI (
`) 和 TGSE-BLADE DWI (`
b
b
,
,
d
d
) are shown in boxplots (
`) 如箱线图所示 (`
e
e
–
–
g
g
) for the regions of frontal lobe near frontal sinus (
) 靠近额窦的额叶区域 (
e
e
), temporal tip (
),时间提示(
f
f
), and pons (
),以及脑桥(
g
g
). In all three regions, distortion was less pronounced in TGSE-BLADE DWI than SS-EPI DWI.
)。在所有三个区域中,TGSE-BLADE DWI 的变形比 SS-EPI DWI 更不明显。
Full size image
全尺寸图像
Mean SNR in CSO was significantly higher in SS-EPI DWI (26.3 ± 7.0) than TGSE-BLADE DWI (22.0 ± 5.5) (
CSO中的平均SNR在SS-EPI DWI(26.3±7.0)中显著高于TGSE-BLADE DWI(22.0±5.5)(
p
p
< .001), but showed no significant difference in pons (SS-EPI DWI, 9.7 ± 3.0; TGSE-BLADE DWI, 9.5 ± 1.8) (
< .001),但在脑桥未见显著差异(SS-EPI DWI,9.7 ± 3.0;TGSE-BLADE DWI,9.5 ± 1.8)(
p
p
= .40). Mean SNR values were higher at the periphery and lower at the center of the brain in the SNR maps for both DWI sequences due to the characteristics of the 32-channel phased array coil (Fig.
= 0.40)。由于32通道相控阵线圈的特性,在两种DWI序列的SNR图中,大脑边缘的平均SNR值较高,而中心较低(图。
4
4
). Mean SNR in CSO was higher in SS-EPI DWI than TGSE-BLADE DWI; however, SNR in temporal lobe was higher in TGSE-BLADE DWI, probably because this sequence is less prone to susceptibility artifacts. Mean CNR was significantly higher in SS-EPI DWI (20.5 ± 12.1) than TGSE-BLADE DWI (15.5 ± 11.1) (
). CSO中的平均SNR在SS-EPI DWI中高于TGSE-BLADE DWI;然而,颞叶中的SNR在TGSE-BLADE DWI中更高,可能是因为该序列不易受到磁敏感伪影的影响。平均CNR在SS-EPI DWI(20.5±12.1)中显著高于TGSE-BLADE DWI(15.5±11.1)(
p
p
< .001).
< .001)。
Fig. 4
图4
Representative b1000 images (
代表性 b1000 图像 (
a
a
,
,
b
b
) and SNR maps (
)和SNR地图(
c
c
,
,
d
d
) of SS-EPI DWI (
) SS-EPI DWI 的 (
a
a
,
,
c
c
) and TGSE-BLADE DWI (
`) 和 TGSE-BLADE DWI (`
b
b
,
,
d
d
) are shown in a healthy volunteer.
)显示在健康志愿者中。
Full size image
全尺寸图像
Mean ADC values for each DWI are shown in Table
表中显示了每个DWI的平均ADC值
4
4
. There was no significant difference in ADC values in CSO or pons. In lesions, mean ADC values were significantly lower in SS-EPI DWI than TGSE-BLADE DWI (
在CSO或脑桥中,ADC值没有显著差异。在病灶中,SS-EPI DWI的平均ADC值显著低于TGSE-BLADE DWI (
p
p
= .004). There was a linear correlation between SS-EPI DWI and TGSE-BLADE DWI for ADC values in lesions (
=.004)。SS-EPI DWI 和 TGSE-BLADE DWI 在病灶的 ADC 值之间存在线性相关关系(
r
r
= .80) (Supplementary Fig. 2a). Bland–Altman analysis of the ADC measurements of SS-EPI DWI and TGSE-BLADE DWI revealed that most data were distributed between ± 1.96 SD (Supplementary Fig. 2b).
= 0.80)(补充图2a)。对SS-EPI DWI和TGSE-BLADE DWI的ADC测量值进行Bland-Altman分析显示,大多数数据分布在±1.96标准差之间(补充图2b)。
Table 4 ADC values in centrum semiovale, pons, and lesions for SS-EPI DWI and TGSE-BLADE DWI.
表4 SS-EPI DWI和TGSE-BLADE DWI在半卵圆中心、脑桥和病灶中的ADC值。
Full size table
全尺寸表格
Phantom study
幻影研究
The SNR maps are presented in Supplementary Fig. 3, and the Measured ADC, theoretical ADC, and SNR values are summarized in Supplementary Table 2. The temperature was 24.0℃. The mean SNR value showed minimal difference between scans performed with and without SMS. Additionally, the ADC values obtained from TGSE-BLADE DWI without SMS were closer to the theoretical values compared to those obtained with SMS..
信噪比(SNR)图见补充图3,测量的ADC值、理论ADC值和SNR值汇总在补充表2中。温度为24.0℃。平均SNR值在使用和不使用SMS的情况下扫描差异极小。此外,与使用SMS相比,未使用SMS的TGSE-BLADE DWI获得的ADC值更接近理论值。
Discussion
讨论
The major findings of the present study are that some acute infarctions were detectable only by TGSE-BLADE DWI whereas no lesions were detectable only by SS-EPI DWI, and that scores for geometric distortion, susceptibility artifacts, overall image quality, lesion conspicuity, and diagnostic confidence were higher for TGSE-BLADE DWI.
本研究的主要发现是,一些急性梗死灶仅通过TGSE-BLADE DWI可检测到,而没有病变仅通过SS-EPI DWI可检测到,并且在几何失真、磁敏感伪影、整体图像质量、病灶清晰度和诊断信心方面的评分,TGSE-BLADE DWI更高。
Taken together, these imaging image characteristics indicate the potential utility of TGSE-BLADE DWI with SMS for diagnosis of acute infarction. In previous studies with TGSE-BLADE DWI, scan time was consistently 4 to 5 min.
综合来看,这些成像特征表明TGSE-BLADE DWI结合SMS在急性梗死诊断中具有潜在的应用价值。在之前使用TGSE-BLADE DWI的研究中,扫描时间始终为4到5分钟。
4
4
,
,
5
5
,
,
6
6
,
,
7
7
,
,
8
8
,
,
9
9
. The present study reports the first attempt to significantly reduce acquisition time to approximately 1 min. The ability to scan images within this shortened timeframe, coupled with enhanced diagnostic capabilities for acute cerebral infarction compared to SS-EPI DWI, renders it highly valuable for routine clinical application..
本研究首次尝试将采集时间显著减少到大约1分钟。在这一缩短的时间范围内扫描图像的能力,加上与SS-EPI DWI相比对急性脑梗死增强的诊断能力,使其在常规临床应用中具有很高的价值。
Lesions that could not be identified after surgery as acute infarction on SS-EPI DWI were located near the cerebellar tentorium, cortex, hemorrhage, or pneumocephalus. A previous study has reported sensitivity of 81.1% and a false-negative rate of 5.6% for detecting infratentorial infarctions using 5 mm SS-EPI DWI, and lesions in false-negative cases were small.
手术后在SS-EPI DWI上未能被识别为急性梗死的病灶位于小脑幕附近、皮层、出血处或气颅区域。此前有研究报道,使用5毫米SS-EPI DWI检测幕下梗死的敏感性为81.1%,假阴性率为5.6%,且假阴性病例中的病灶较小。
24
24
. Another study noted that most patients with false-negative lesions had infratentorial infarction or transient ischemic attack
另一项研究指出,大多数假阴性病变患者存在幕下梗死或短暂性脑缺血发作。
25
25
. To mitigate false negatives, several reports have suggested that incorporating coronal sections or thin slice DWI can enhance diagnostic capabilities with SS-EPI DWI
为了减少假阴性,一些报告建议结合冠状位切片或薄层DWI可以增强SS-EPI DWI的诊断能力。
26
26
,
,
27
27
. However, it might be possible to diagnose acute cerebral infarctions prone to false negatives using TGSE-BLADE DWI alone, and achieve diagnostic accuracy similar to that of additional imaging (such as coronal sections or thin slices) without acquiring additional scans.
然而,仅使用TGSE-BLADE DWI可能足以诊断容易出现假阴性的急性脑梗死,并在不进行额外扫描的情况下达到与附加成像(如冠状位或薄层扫描)相似的诊断准确性。
Median scores for geometric distortion and susceptibility artifacts were 3.0 for SS-EPI DWI and 4.0 for TGSE-BLADE DWI. Distortion was also quantitatively less near the air-bone interfaces (e.g., frontal lobe, temporal tip, and pons) in TGSE-BLADE-DWI with SMS. These findings align with those of a prior study that used TGSE-BLADE DWI without acceleration technique.
几何畸变和磁敏感伪影的中位评分在SS-EPI DWI为3.0,在TGSE-BLADE DWI为4.0。在使用SMS技术的TGSE-BLADE-DWI中,靠近气骨交界面(如额叶、颞叶尖端和脑桥)的畸变也定量减少。这些发现与之前一项未使用加速技术的TGSE-BLADE DWI研究结果一致。
9
9
. Their scores for lesion conspicuity and diagnostic confidence in patients with acute or subacute infarction were lower in SS-EPI DWI than TGSE-BLADE DWI; however, median score was 4.0 for each sequence. In contrast, median score in post-surgery patients was 3.0 for SS-EPI DWI and 4.0 for TGSE-BLADE DWI.
他们对急性或亚急性梗死患者病变显著性和诊断信心的评分在SS-EPI DWI中低于TGSE-BLADE DWI;然而,每种序列的中位评分均为4.0。相反,在术后患者中,SS-EPI DWI的中位评分为3.0,而TGSE-BLADE DWI为4.0。
We consider that there is greater susceptibility postoperatively to artifacts due to air or hemorrhage, in which case TGSE-BLADE DWI is more beneficial..
我们认为,术后由于空气或出血更容易产生伪影,在这种情况下,TGSE-BLADE DWI更有益。
SNR values were lower for TGSE-BLADE DWI than SS-EPI DWI in CSO. In SNR maps for temporal lobe, however, values were higher for TGSE-BLADE DWI than for SS-EPI DWI. TGSE-BLADE DWI showed less SNR degradation in areas prone to distortion, such as near air–bone interfaces, whereas SS-EPI DWI demonstrated superior SNR in other regions, primarily because only half of the signals are used in this sequence due to the non-CPMG (Carr-Purcell-Meiboom-Gill) problem.
在脑室周围白质区(CSO),TGSE-BLADE DWI的信噪比(SNR)值低于SS-EPI DWI。然而,在颞叶的SNR图中,TGSE-BLADE DWI的值高于SS-EPI DWI。TGSE-BLADE DWI在容易发生畸变的区域(如靠近空气-骨界面处)表现出较少的SNR下降,而SS-EPI DWI在其他区域表现出更高的SNR,这主要是因为在此序列中由于非CPMG(Carr-Purcell-Meiboom-Gill)问题仅使用了一半的信号。
Another reason for the lower SNR values is that positioning the gradient echo with T2* decay effects at the center of k-space diminishes the image quality of TGSE-BLADE DWI.
另一个导致信噪比值较低的原因是,将具有T2*衰减效应的梯度回波定位在k空间中心会降低TGSE-BLADE DWI的图像质量。
5
5
. Despite these disadvantages of 1-min TGSE-BLADE DWI, its ability to detect lesions located near susceptibility artifacts is a strong advantage.
尽管1分钟TGSE-BLADE DWI存在这些缺点,其检测靠近磁敏感伪影的病灶的能力是一个显著的优势。
There was no significant difference between the sequences in terms of ADC values in CSO or pons. In lesions, however, ADC values were significantly higher for TGSE-BLADE DWI than SS-EPI DWI, consistent with the findings of a previous study
在CSO或脑桥的ADC值方面,序列之间没有显著差异。然而,在病灶中,TGSE-BLADE DWI的ADC值显著高于SS-EPI DWI,这与之前的一项研究结果一致。
6
6
. This discrepancy might have been due to the substantial differences in SNR and T1 values between normal tissue and lesions
。这种差异可能是由于正常组织和病灶之间SNR和T1值存在显著差异所致
28
28
, but the cause remains unclear because no study has investigated cerebral infarction using TGSE-BLADE DWI. Moreover, differences in diffusion time or echo time (TE) between sequences might have contributed to the observed ADC differences, as a previous report suggests these parameters can influence ADC measurements.
,但原因尚不清楚,因为没有研究使用TGSE-BLADE DWI来调查脑梗死。此外,序列之间扩散时间或回波时间(TE)的差异可能促成了观察到的ADC差异,因为之前的报告表明这些参数会影响ADC测量值。
29
29
. These differences might also have contributed to the lower CNR observed in TGSE-BLADE DWI. Whereas there was a strong correlation in ADC values for lesions between SS-EPI DWI and TGSE-BLADE DWI. Therefore, we consider that there should be few issues in clinical diagnosis.
这些差异也可能导致了TGSE-BLADE DWI中观察到的较低CNR。而SS-EPI DWI和TGSE-BLADE DWI之间病变的ADC值存在很强的相关性。因此,我们认为在临床诊断中应该问题不大。
There are several limitations in this study. Firstly, the sample size was small. A larger sample size might facilitate a more comprehensive investigation of lesions that could not be visualized by SS-EPI DWI. However, we prospectively enrolled over 100 patients, and believe that the number of cases was sufficient to demonstrate the utility of TGSE-BLADE DWI.
本研究有几个局限性。首先,样本量较小。较大的样本量可能有助于更全面地研究SS-EPI DWI无法显示的病灶。然而,我们前瞻性地招募了100多名患者,认为病例数量足以证明TGSE-BLADE DWI的实用性。
Second, subacute infarct was diagnosed most commonly, and there were relatively few hyperacute infarcts. Due to the prospective nature of the study in which two types of DWI were acquired, it was challenging to perform these imaging examinations in patients with hyperacute stroke who require urgent treatment decisions.
其次,最常见的是亚急性梗死,超急性梗死相对较少。由于本研究为前瞻性研究,需要获取两种类型的DWI,在需要紧急治疗决策的超急性卒中患者中进行这些影像学检查具有挑战性。
A previous study reported that some lesions were not depicted on SS-EPI DWI in the hyperacute stage.
先前的一项研究报告称,在超急性期,某些病灶在SS-EPI DWI上未显示出来。
30
30
, indicating the need for further investigation in the future. Third, SMS imaging was not applied for SS-EPI DWI because we compared TGSE-BLADE DWI with SS-EPI DWI acquired with the protocol used at our institution. Although it is feasible to implement SMS for SS-EPI DWI, there is limited advantage because the shorter TR used has the effect of reducing SNR.
,表明未来需要进一步研究。第三,未对SS-EPI DWI应用SMS成像,因为我们比较的是在本机构使用的协议下获取的TGSE-BLADE DWI与SS-EPI DWI。尽管可以为SS-EPI DWI实施SMS,但由于使用了较短的TR,其降低信噪比的效果使得优势有限。
Finally, in making the score judgments, the neuroradiologists noted that it was easy to distinguish the SS-EPI DWI and TGSE-BLADE DWI sequences based on the presence or absence of signal pile-up and geometric distortion..
最后,在进行评分判断时,神经放射科医生指出,基于信号堆积和几何畸变的存在与否,很容易区分SS-EPI DWI和TGSE-BLADE DWI序列。
Conclusion
结论
Compared with SS-EPI DWI, one-minute TGSE-BLADE DWI has better image quality in terms of distortion and artifacts, higher diagnostic performance for identifying acute infarctions, and its acquisition time is similar to that of SS-EPI DWI. One-minute TGSE-BLADE DWI is therefore clinically acceptable and shows promise as a diagnostic tool for identifying acute infarctions in acute stroke patients and postoperative patients..
与SS-EPI DWI相比,一分钟TGSE-BLADE DWI在图像失真和伪影方面具有更好的图像质量,对急性梗死的诊断性能更高,且采集时间与SS-EPI DWI相似。因此,一分钟TGSE-BLADE DWI在临床上是可接受的,并有望成为识别急性卒中患者和术后患者急性梗死的诊断工具。
Data availability
数据可用性
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
当前研究中使用和/或分析的数据集可根据合理要求从通讯作者处获取。
References
参考文献
Drake-Pérez, M., Boto, J., Fitsiori, A., Lovblad, K. & Vargas, M. I. Clinical applications of diffusion weighted imaging in neuroradiology.
德雷克-佩雷斯,M.,博托,J.,菲茨奥里,A.,洛夫布拉德,K.,& 瓦尔加斯,M. I. 弥散加权成像在神经放射学中的临床应用。
Insights Imaging
洞察成像
.
。
9
9
, 535–547.
,535-547。
https://doi.org/10.1007/s13244-018-0624-3
https://doi.org/10.1007/s13244-018-0624-3
(2018).
(2018)。
Article
文章
PubMed
PubMed
PubMed Central
PubMed Central
Google Scholar
谷歌学术
Nagaraja, N. Diffusion weighted imaging in acute ischemic stroke: a review of its interpretation pitfalls and advanced diffusion imaging application.
Nagaraja, N. 急性缺血性卒中的扩散加权成像:解读误区及高级扩散成像应用综述。
J. Neurol. Sci.
神经科学杂志
425
425
, 117435.
,117435。
https://doi.org/10.1016/j.jns.2021.117435
https://doi.org/10.1016/j.jns.2021.117435
(2021).
(2021)。
Article
文章
PubMed
PubMed
MATH
数学
Google Scholar
谷歌学术索
Morelli, J. N. et al. An image-based approach to understanding the physics of MR artifacts.
莫雷利,J. N. 等。一种基于图像的MR伪影物理理解方法。
Radiographics
放射影像学
31
31
, 849–866.
,849-866。
https://doi.org/10.1148/rg.313105115
https://doi.org/10.1148/rg.313105115
(2011).
(2011)。
Article
文章
PubMed
PubMed
MATH
数学
Google Scholar
谷歌学术
Hu, H. H. et al. Comparison of 2D BLADE Turbo gradient- and spin-Echo and 2D spin-Echo Echo-Planar Diffusion-Weighted Brain MRI at 3 T: preliminary experience in children.
胡,H. H. 等。3T下2D BLADE Turbo梯度回波和自旋回波与2D自旋回波平面回波扩散加权脑MRI的比较:儿童初步经验。
Acad. Radiol.
学术放射学。
26
26
, 1597–1604.
,1597-1604。
https://doi.org/10.1016/j.acra.2019.02.002
https://doi.org/10.1016/j.acra.2019.02.002
(2019).
(2019)。
Article
文章
PubMed
PubMed
MATH
数学
Google Scholar
谷歌学术
Sheng, Y. et al. Performance of TGSE BLADE DWI compared with RESOLVE DWI in the diagnosis of cholesteatoma.
盛宇等。TGSE BLADE DWI与RESOLVE DWI在胆脂瘤诊断中的性能比较。
BMC Med. Imaging
BMC医学影像
.
。
20
20
, 40.
,40。
https://doi.org/10.1186/s12880-020-00438-7
https://doi.org/10.1186/s12880-020-00438-7
(2020).
(2020)。
Article
文章
PubMed
PubMed
PubMed Central
PubMed Central
MATH
数学
Google Scholar
谷歌学术索
Fu, Q. et al. Turbo Gradient and spin Echo PROPELLER-Diffusion Weighted Imaging for Orbital tumors: a comparative study with readout-segmented Echo-Planar Imaging.
傅琦等。涡轮梯度与自旋回波PROPELLER扩散加权成像在眼眶肿瘤中的应用:与读出分段回波平面成像的对比研究。
Front. Neurosci.
神经科学前沿
15
15
, 755327.
,755327。
https://doi.org/10.3389/fnins.2021.755327
https://doi.org/10.3389/fnins.2021.755327
(2021).
(2021)。
Article
文章
PubMed
PubMed
PubMed Central
PubMed Central
Google Scholar
谷歌学术索
Fu, Q. et al. Clinical comparison of single-shot EPI, readout-segmented EPI and TGSE-BLADE for diffusion-weighted imaging of cerebellopontine angle tumors on 3 tesla.
傅琦等。单次激发EPI、读出分割EPI和TGSE-BLADE在3特斯拉磁共振上对小脑桥脑角肿瘤扩散加权成像的临床比较。
Magn. Reson. Imaging
磁共振成像
.
。
84
84
, 76–83.
,76-83。
https://doi.org/10.1016/j.mri.2021.09.009
https://doi.org/10.1016/j.mri.2021.09.009
(2021).
(2021)。
Article
文章
CAS
中国科学院
PubMed
PubMed
Google Scholar
谷歌学术搜索
Geng, Y. et al. BLADE turbo gradient- and spin-echo in the assessment of sinonasal lesions: a comprehensive comparison of image quality in readout-segmented echo-planar imaging.
耿, Y. 等。BLADE 涡轮梯度回波和自旋回波在鼻窦病变评估中的应用:读出分割回波平面成像图像质量的综合比较。
Acta Radiol.
放射学报
2841851211041820
2841851211041820
https://doi.org/10.1177/02841851211041820
https://doi.org/10.1177/02841851211041820
(2021).
(2021)。
Okuchi, S. et al. Comparison of TGSE-BLADE DWI, RESOLVE DWI, and SS-EPI DWI in healthy volunteers and patients after cerebral aneurysm clipping.
Okuchi, S. 等人。健康志愿者及脑动脉瘤夹闭术后患者中TGSE-BLADE DWI、RESOLVE DWI和SS-EPI DWI的比较。
Sci. Rep.
科学报告
12
12
, 17689.
,17689。
https://doi.org/10.1038/s41598-022-22760-6
https://doi.org/10.1038/s41598-022-22760-6
(2022).
(2022)。
Lin, M., Geng, Y., Sha, Y., Zhang, Z. & Zhou, K. Performance of 2D BLADE turbo gradient- and spin-echo diffusion-weighted imaging in the quantitative diagnosis of recurrent temporal bone cholesteatoma.
林,M.,耿,Y.,沙,Y.,张,Z.,周,K. 二维BLADE涡轮梯度和自旋回波扩散加权成像在复发性颞骨胆脂瘤定量诊断中的表现。
BMC Med. Imaging
BMC医学影像
.
。
22
22
, 132.
,132。
https://doi.org/10.1186/s12880-022-00860-z
https://doi.org/10.1186/s12880-022-00860-z
(2022).
(2022)。
Article
文章
PubMed
PubMed
PubMed Central
PubMed Central
MATH
数学
Google Scholar
谷歌学术索
Kim, T. H. et al. Comparison of DWI methods in the Pediatric Brain: PROPELLER Turbo Spin-Echo Imaging Versus Readout-Segmented Echo-Planar Imaging Versus single-shot Echo-Planar Imaging.
金,T. H. 等。儿科脑部DWI方法的比较:PROPELLER涡轮自旋回波成像与读出分段回波平面成像与单次回波平面成像的比较。
AJR Am. J. Roentgenol.
AJR 美国放射学杂志
210
210
, 1352–1358.
,1352-1358。
https://doi.org/10.2214/AJR.17.18796
https://doi.org/10.2214/AJR.17.18796
(2018).
(2018)。
Article
文章
PubMed
PubMed
MATH
数学
Google Scholar
谷歌学术搜索
Li, Z. et al. X-PROP: a fast and robust diffusion-weighted propeller technique.
李,Z. 等。X-PROP:一种快速且鲁棒的扩散加权螺旋桨技术。
Magn. Reson. Med.
磁共振医学
66
66
, 341–347.
,341-347。
https://doi.org/10.1002/mrm.23033
https://doi.org/10.1002/mrm.23033
(2011).
(2011)。
Article
文章
ADS
广告
PubMed
PubMed
MATH
数学
Google Scholar
谷歌学术搜索
Zhou, K., Liu, W. & Cheng, S. Non-CMPG PROPELLER diffusion imaging: comparison of phase insensitive preparation with split acquisition.
周,K.,刘,W.,程,S. 非CMPG PROPELLER扩散成像:相位不敏感准备与分裂采集的比较。
in Proceedings of the Annual Meeting of the International Society for Magnetic Resonance in Medicine
在国际医学磁共振学会年会论文集
, 5320 (2018).
,5320(2018)。
Ahn, H. S., Kim, S. H., Kim, J. Y., Hong, M. J. & Lee, H. S. Accelerating acquisition of readout-segmented echo planar imaging (rs-EPI) with a simultaneous multislice (SMS) technique for diffusion-weighted (DW) breast MRI: evaluation of image quality factors.
安,H. S.,金,S. H.,金,J. Y.,洪,M. J.,李,H. S. 使用同时多层(SMS)技术加速读出分段回波平面成像(rs-EPI)在扩散加权(DW)乳腺磁共振成像中的采集:图像质量因素的评估。
Eur. J. Radiol.
欧洲放射学杂志
170
170
, 111251.
,111251。
https://doi.org/10.1016/j.ejrad.2023.111251
https://doi.org/10.1016/j.ejrad.2023.111251
(2023).
(2023)。
Article
文章
PubMed
PubMed
MATH
数学
Google Scholar
谷歌学术
Rata, M. et al. Evaluation of simultaneous multi-slice acquisition with advanced processing for free-breathing diffusion-weighted imaging in patients with liver metastasis.
Rata, M. 等人。使用先进处理技术评估肝转移患者自由呼吸扩散加权成像的同步多层采集。
Eur. Radiol.
欧洲放射学杂志
https://doi.org/10.1007/s00330-023-10234-w
https://doi.org/10.1007/s00330-023-10234-w
(2023).
(2023)。
Article
文章
PubMed
PubMed
PubMed Central
PubMed Central
MATH
数学
Google Scholar
谷歌学术搜索
Yang, L. et al. Effectiveness of simultaneous multislice accelerated readout-segmented echo planar imaging for the assessment of rectal cancer.
杨,L. 等。同时多层加速读出分段回波平面成像在直肠癌评估中的有效性。
Eur. J. Radiol.
欧洲放射学杂志
159
159
, 110649.
,110649。
https://doi.org/10.1016/j.ejrad.2022.110649
https://doi.org/10.1016/j.ejrad.2022.110649
(2023).
(2023)。
Article
文章
PubMed
PubMed
MATH
数学
Google Scholar
谷歌学术
Gao, F. et al. High-resolution simultaneous multi-slice accelerated Turbo Spin-Echo Musculoskeletal Imaging: a Head-to-Head Comparison with Routine Turbo Spin-Echo Imaging.
高,F. 等。高分辨率同时多层加速涡轮自旋回波肌肉骨骼成像:与常规涡轮自旋回波成像的正面比较。
Front. Physiol.
生理学前沿
12
12
, 759888.
,759888。
https://doi.org/10.3389/fphys.2021.759888
https://doi.org/10.3389/fphys.2021.759888
(2021).
(2021)。
Article
文章
PubMed
PubMed
PubMed Central
PubMed Central
Google Scholar
谷歌学术
Feinberg, D. A. & Setsompop, K. Ultra-fast MRI of the human brain with simultaneous multi-slice imaging.
Feinberg, D. A. & Setsompop, K. 使用同时多层成像的超快人脑MRI。
J. Magn. Reson.
磁共振杂志
229
229
, 90–100.
,90-100。
https://doi.org/10.1016/j.jmr.2013.02.002
https://doi.org/10.1016/j.jmr.2013.02.002
(2013).
(2013)。
Article
文章
ADS
广告
CAS
中国科学院
PubMed
PubMed
PubMed Central
PubMed Central
MATH
数学
Google Scholar
谷歌学术索
Barth, M., Breuer, F., Koopmans, P. J., Norris, D. G. & Poser, B. A. Simultaneous multislice (SMS) imaging techniques.
Barth, M., Breuer, F., Koopmans, P. J., Norris, D. G. 和 Poser, B. A. 同时多层(SMS)成像技术。
Magn. Reson. Med.
磁共振医学
75
75
, 63–81.
,63-81。
https://doi.org/10.1002/mrm.25897
https://doi.org/10.1002/mrm.25897
(2016).
(2016)。
Article
文章
PubMed
PubMed
Google Scholar
谷歌学术搜索
Nogueira, R. G. et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between Deficit and Infarct.
诺盖拉,R. G. 等。卒中后6至24小时存在缺陷与梗死不匹配的血栓切除术。
N Engl. J. Med.
新英格兰医学杂志
378
378
, 11–21.
,11-21。
https://doi.org/10.1056/NEJMoa1706442
https://doi.org/10.1056/NEJMoa1706442
(2018).
(2018)。
Article
文章
PubMed
PubMed
MATH
数学
Google Scholar
谷歌学术搜索
Berkhemer, O. A. et al. A randomized trial of intraarterial treatment for acute ischemic stroke.
伯克赫默,O. A. 等。急性缺血性卒中动脉内治疗的随机试验。
N Engl. J. Med.
新英格兰医学杂志
372
372
, 11–20.
,11-20。
https://doi.org/10.1056/NEJMoa1411587
https://doi.org/10.1056/NEJMoa1411587
(2015).
(2015)。
Article
文章
CAS
中国科学院
PubMed
PubMed
Google Scholar
谷歌学术索
Ito, S. et al. Thin-slice reverse encoding distortion correction DWI facilitates visualization of non-functioning pituitary neuroendocrine tumor (PitNET)/pituitary adenoma and surrounding normal structures.
伊藤等人。薄层反转编码失真校正DWI有助于可视化无功能垂体神经内分泌肿瘤(PitNET)/垂体腺瘤及其周围正常结构。
Eur. Radiol. Exp.
欧洲放射学实验
8
8
, 28.
,28。
https://doi.org/10.1186/s41747-024-00430-8
https://doi.org/10.1186/s41747-024-00430-8
(2024).
(2024)。
Article
文章
PubMed
PubMed
PubMed Central
PubMed Central
MATH
数学
Google Scholar
谷歌学术搜索
Fleiss, J. L. Measuring nominal scale agreement among many raters.
Fleiss, J. L. 测量多个评分者之间的名义尺度一致性。
Psychol. Bull.
心理学公报
76
76
, 378–382.
,378-382。
https://doi.org/10.1037/h0031619
https://doi.org/10.1037/h0031619
(1971).
(1971)。
Article
文章
MATH
数学
Google Scholar
谷歌学术搜索
Entwisle, T., Perchyonok, Y. & Fitt, G. Thin section magnetic resonance diffusion-weighted imaging in the detection of acute infratentorial stroke.
恩特威斯尔,T.,佩尔乔诺克,Y. & 菲特,G. 薄层磁共振扩散加权成像在急性幕下卒中检测中的应用。
J. Med. Imaging Radiat. Oncol.
医学影像与放射肿瘤学杂志
60
60
, 616–623.
,616-623。
https://doi.org/10.1111/1754-9485.12490
https://doi.org/10.1111/1754-9485.12490
(2016).
(2016)。
Article
文章
PubMed
PubMed
MATH
数学
Google Scholar
谷歌学术
Sorimachi, T., Ito, Y., Morita, K. & Fujii, Y. Thin-section diffusion-weighted imaging of the infratentorium in patients with acute cerebral ischemia without apparent lesion on conventional diffusion-weighted imaging.
曾我内,T.,伊藤,Y.,森田,K. & 藤井,Y. 急性脑缺血患者在常规弥散加权成像上无明显病灶的幕下薄层弥散加权成像。
Neurol. Med. Chir. (Tokyo)
神经病学与医学杂志(东京)
.
。
48
48
, 108–113.
,108-113。
https://doi.org/10.2176/nmc.48.108
https://doi.org/10.2176/nmc.48.108
(2008).
(2008)。
Article
文章
PubMed
PubMed
Google Scholar
谷歌学术
Baggett, M., Helmy, D., Chang, J., Bobinski, M. & Assadsangabi, R. Added value in stroke imaging: accuracy and utility of additional coronal diffusion-weighted imaging.
巴吉特,M.,赫尔米,D.,张,J.,博宾斯基,M.,阿萨桑加比,R。中风影像的附加值:额外冠状扩散加权成像的准确性和实用性。
Clin. Radiol.
临床放射学
76
76
, 785e781. 785.e787 (2021).
,785e781。785.e787(2021)。
Article
文章
Google Scholar
谷歌学术索
Nakamura, H. et al. Effect of thin-section diffusion-weighted MR imaging on stroke diagnosis.
中村,H. 等。薄层扩散加权磁共振成像对中风诊断的影响。
AJNR Am. J. Neuroradiol.
美国神经放射学杂志
26
26
, 560–565 (2005).
,560-565页(2005年)。
PubMed
PubMed
PubMed Central
PubMed Central
MATH
数学
Google Scholar
谷歌学术搜索
Mazaheri, Y. et al. Diffusion-weighted MRI of the prostate at 3.0 T: comparison of endorectal coil (ERC) MRI and phased-array coil (PAC) MRI-The impact of SNR on ADC measurement.
Mazaheri, Y. 等。3.0 T前列腺扩散加权MRI:比较腔内线圈(ERC)MRI与相控阵线圈(PAC)MRI——信噪比对ADC测量的影响。
Eur. J. Radiol.
欧洲放射学杂志
82
82
, e515–520.
,e515–520。
https://doi.org/10.1016/j.ejrad.2013.04.041
https://doi.org/10.1016/j.ejrad.2013.04.041
(2013).
(2013)。
Article
文章
PubMed
PubMed
Google Scholar
谷歌学术索
Johansson, J. et al. Normal brain and brain tumor ADC: changes resulting from variation of Diffusion Time and/or Echo Time in pulsed-gradient spin Echo Diffusion Imaging.
约翰松,J. 等。正常脑组织和脑肿瘤ADC:在脉冲梯度自旋回波扩散成像中因扩散时间及/或回波时间变化导致的变化。
Invest. Radiol.
投资。放射学。
59
59
, 727–736.
,727-736。
https://doi.org/10.1097/RLI.0000000000001081
https://doi.org/10.1097/RLI.0000000000001081
(2024).
(2024)。
Article
文章
CAS
中国科学院
PubMed
PubMed
PubMed Central
PubMed Central
MATH
数学
Google Scholar
谷歌学术
Oppenheim, C. et al. False-negative diffusion-weighted MR findings in acute ischemic stroke.
Oppenheim, C. 等。急性缺血性卒中磁共振弥散加权成像假阴性结果。
AJNR Am. J. Neuroradiol.
AJNR 美国神经放射学杂志
21
21
, 1434–1440 (2000).
,1434-1440(2000)。
CAS
中国科学院
PubMed
PubMed
PubMed Central
PubMed Central
MATH
数学
Google Scholar
谷歌学术索
Download references
下载参考文献
Funding
资金
This work was supported by JSPS KAKENHI Grant Numbers JP22K07746, JP24K18796, ISHIZUE 2023 of Kyoto University, and The Kyoto University Foundation.
本研究得到了日本学术振兴会(JSPS)KAKENHI(项目编号:JP22K07746、JP24K18796)、京都大学ISHIZUE 2023计划以及京都大学基金会的支持。
Author information
作者信息
Authors and Affiliations
作者与所属机构
Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
京都大学医学研究生院诊断影像与核医学系,日本京都府京都市左京区圣护院川原町54号,邮编606-8507
Sachi Okuchi, Yasutaka Fushimi, Akihiko Sakata, Sayo Otani, Satoshi Nakajima, Satoshi Ikeda, Shuichi Ito & Yuji Nakamoto
大久保幸子、伏见康孝、坂田明彦、大谷纱代、中岛聪、池田聪、伊藤修一、中本裕治
Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
日本京都大学医学研究生院神经内科
Takakuni Maki
牧高高载
Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
京都大学医学研究生院神经外科系,日本京都
Masahiro Tanji, Noritaka Sano & Yoshiki Arakawa
田辺雅裕、佐野典孝、荒川良树
Siemens Healthcare K.K, Tokyo, Japan
西门子医疗保健株式会社,东京,日本
Yuta Urushibata
漆原裕太
Siemens Shenzhen Magnetic Resonance Ltd, Shenzhen, China
西门子深圳磁共振有限公司,中国深圳
Kun Zhou
周坤
Authors
作者
Sachi Okuchi
樱井幸子
View author publications
查看作者的出版物
You can also search for this author in
您还可以搜索此作者在
PubMed
PubMed
Google Scholar
谷歌学术搜索
Yasutaka Fushimi
福住靖高
View author publications
查看作者的出版物
You can also search for this author in
您还可以搜索该作者在
PubMed
PubMed
Google Scholar
谷歌学术索
Akihiko Sakata
秋彦坂田
View author publications
查看作者的出版物
You can also search for this author in
您还可以搜索此作者在
PubMed
PubMed
Google Scholar
谷歌学术搜索
Sayo Otani
大谷沙由
View author publications
查看作者的出版物
You can also search for this author in
您还可以搜索此作者在
PubMed
PubMed
Google Scholar
谷歌学术
Satoshi Nakajima
中本聪
View author publications
查看作者的出版物
You can also search for this author in
您还可以搜索此作者在
PubMed
PubMed
Google Scholar
谷歌学术搜索
Takakuni Maki
牧高专纪
View author publications
查看作者的出版物
You can also search for this author in
您还可以搜索此作者在
PubMed
PubMed
Google Scholar
谷歌学术搜索
Masahiro Tanji
谷地正弘
View author publications
查看作者的出版物
You can also search for this author in
您还可以搜索此作者在
PubMed
PubMed
Google Scholar
谷歌学术索
Noritaka Sano
诺利塔卡·萨诺
View author publications
查看作者的出版物
You can also search for this author in
您还可以搜索此作者在
PubMed
PubMed
Google Scholar
谷歌学术
Satoshi Ikeda
池田聪
View author publications
查看作者的出版物
You can also search for this author in
您还可以搜索此作者在
PubMed
PubMed
Google Scholar
谷歌学术索
Shuichi Ito
伊藤修一
View author publications
查看作者的出版物
You can also search for this author in
您还可以搜索此作者在
PubMed
PubMed
Google Scholar
谷歌学术索
Yuta Urushibata
漆原裕太
View author publications
查看作者的出版物
You can also search for this author in
您还可以搜索此作者在
PubMed
PubMed
Google Scholar
谷歌学术
Kun Zhou
周坤
View author publications
查看作者的出版物
You can also search for this author in
您还可以搜索此作者在
PubMed
PubMed
Google Scholar
谷歌学术
Yoshiki Arakawa
荒川义熙
View author publications
查看作者的出版物
You can also search for this author in
您还可以搜索此作者在
PubMed
PubMed
Google Scholar
谷歌学术搜索
Yuji Nakamoto
中本悠二
View author publications
查看作者出版物
You can also search for this author in
您还可以搜索该作者在
PubMed
PubMed
Google Scholar
谷歌学术索
Contributions
贡献
Y.U., K.Z. and Y.A. conceived and designed the analysis. T.N. , N.S., S.Ik and S.I. Collected the data.T.M. and Y.O. Contributed data or analysis tools. A.S. , S.Ot and S.N. performed the analysis. S.Ok . and Y.F. wrote the main manuscript text. All authors reviewed the manuscript.
Y.U.、K.Z. 和 Y.A. 构思并设计了分析。T.N.、N.S.、S.Ik 和 S.I. 收集了数据。T.M. 和 Y.O. 提供了数据或分析工具。A.S.、S.Ot 和 S.N. 进行了分析。S.Ok. 和 Y.F. 撰写了主要的手稿文本。所有作者都审阅了手稿。
Corresponding author
通讯作者
Correspondence to
对应到
Yasutaka Fushimi
福住靖高
.
。
Ethics declarations
伦理声明
Competing interests
竞争利益
Yuta Urushibata is an employee of Siemens Healthcare K. K., Japan.Kun Zhou is an employee of Siemens Shenzhen Magnetic Resonance Ltd., China.The other authors have no competing interests.
漆原裕太是日本西门子医疗保健株式会社的员工。周坤是中国西门子深圳磁共振有限公司的员工。其他作者没有竞争利益。
Yuta Urushibata MSci
漆原裕太 理学硕士
Yuta Urushibata is an employee of Siemens Healthcare K. K., Japan.
漆原裕太是西门子医疗保健股份公司日本分公司的员工。
Additional information
附加信息
Publisher’s note
出版商说明
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Springer Nature 对已发布地图中的管辖权声明和机构隶属关系保持中立。
Electronic supplementary material
电子补充材料
Below is the link to the electronic supplementary material.
以下是电子补充材料的链接。
Supplementary Material 1
补充材料1
Rights and permissions
权利与权限
Open Access
开放获取
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
本文根据知识共享署名4.0国际许可证获得许可,该许可证允许在任何媒介或格式中使用、分享、改编、分发和复制,只要您对原作者和来源给予适当的署名,提供指向知识共享许可证的链接,并说明是否进行了修改即可。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的Creative Commons许可中,除非在材料的署名行中另有说明。如果材料未包含在文章的Creative Commons许可中,并且您打算的使用方式不被法律法规允许或超出了允许的使用范围,您需要直接从版权持有人处获得许可。
To view a copy of this licence, visit .
要查看此许可证的副本,请访问。
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
.
。
Reprints and permissions
重印和权限
About this article
关于本文
Cite this article
引用这篇文章
Okuchi, S., Fushimi, Y., Sakata, A.
大口,S.,伏见,Y.,坂田,A.
et al.
等人
Comparison of SS-EPI DWI and one-minute TGSE-BLADE DWI for diagnosis of acute infarction.
急性梗死诊断中SS-EPI DWI与一分钟TGSE-BLADE DWI的比较。
Sci Rep
科学报告
15
15
, 6512 (2025). https://doi.org/10.1038/s41598-025-90413-5
,6512(2025)。https://doi.org/10.1038/s41598-025-90413-5
Download citation
下载引用
Received
已收到
:
:
02 May 2024
2024年5月2日
Accepted
已接受
:
:
12 February 2025
2025年2月12日
Published
已发布
:
:
22 February 2025
2025年2月22日
DOI
数字对象标识符
:
:
https://doi.org/10.1038/s41598-025-90413-5
https://doi.org/10.1038/s41598-025-90413-5
Share this article
分享这篇文章
Anyone you share the following link with will be able to read this content:
任何你分享以下链接的人都将能够阅读此内容:
Get shareable link
获取可共享链接
Sorry, a shareable link is not currently available for this article.
抱歉,这篇文章目前没有可共享的链接。
Copy to clipboard
复制到剪贴板
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
Keywords
关键词
Diffusion-weighted imaging
扩散加权成像
Single-shot echo-planar imaging
单次回波平面成像
TGSE-BLADE
TGSE-BLADE
Acute cerebral infarction
急性脑梗死
Stroke
中风