EN
登录

2012年至2018年中国大陆人间布鲁氏菌病的空间插值与时空扫描分析

Spatial interpolation and spatiotemporal scanning analysis of human brucellosis in mainland China from 2012 to 2018

Nature 等信源发布 2025-03-03 17:34

可切换为仅中文


Abstract

摘要

Despite the considerable efforts made to address the issue of brucellosis worldwide, its prevalence in dairy products continues to be difficult to estimate and represents a significant public health concern globally. The aim of the present study was to gain a better understanding of the epidemiology of this disease in mainland China.

尽管已经做出了相当大的努力来应对全球范围内的布病问题,但其在乳制品中的流行率仍然难以估计,并且在全球范围内仍然是一个重要的公共卫生问题。本研究的目的是更好地了解中国大陆地区该疾病的流行病学特征。

We set out to investigate the annual spatial distribution and potential hotspots of the disease. Data on the incidence rate of brucellosis from 2012 to 2018 was obtained from the China Disease Control and Prevention Information System (CDCIS). ArcGIS 10.6 software was employed to perform kriging interpolation analysis and to create a predictive distribution map for brucellosis.

我们着手调查该疾病的年度空间分布及潜在热点。2012年至2018年布鲁氏菌病的发病率数据来源于中国疾病预防控制信息系统(CDCIS)。使用ArcGIS 10.6软件进行克里金插值分析,并绘制布鲁氏菌病的预测分布图。

Additionally, SaTScan software was utilized to conduct spatial-temporal scanning analysis to identify potential spatial-temporal changes in the incidence rate of brucellosis in China. There is a seasonal trend in the incidence of brucellosis in China, with higher rates observed during the warm season, particularly peaking in May.

此外,还利用SaTScan软件进行时空扫描分析,以识别中国布鲁氏菌病发病率潜在的时空变化。中国布鲁氏菌病的发病存在季节性趋势,在温暖季节的发病率较高,尤其是在5月达到高峰。

The results of the exploratory analysis of kriging data indicate that the average incidence map, generated using the second-order Gaussian semi-variance model with log-kriging interpolation, demonstrates the highest accuracy. Spatial and temporal clustering analyses reveal a primary clustering area centered in Heilongjiang, along with three secondary clustering areas located in Tibet, Shanxi, and Hubei.

克里金数据的探索性分析结果表明,使用二阶高斯半变异函数模型结合对数克里金插值生成的平均发生率图具有最高的准确性。时空聚类分析揭示了一个主要聚类区域集中在黑龙江,并在西藏、山西和湖北存在三个次要聚类区域。

Additionally, the predictive distribution map for brucellosis in China, along with the analysis of the scanning statistic, indicates that the high-incidence area is situated in the northwest region of mainland China, although there is a noticeable trend of shifting towards the south. There are distinct spatial patterns of brucellosis in China.

此外,结合扫描统计量分析的中国布鲁氏菌病预测分布图显示,高发区位于中国大陆的西北地区,但有明显向南扩散的趋势。中国布鲁氏菌病存在显著的空间分布模式。

Introduction

简介

Brucellosis is a prevalent and often overlooked disease in both veterinary and human medicine worldwide. It is caused by an infection with the bacteria Brucella and is commonly referred to as brucellosis

布鲁氏菌病是一种在兽医和人类医学中普遍且经常被忽视的疾病。它是由布鲁氏菌感染引起的,通常被称为布鲁氏菌病。

1

1

,

2

2

,

3

3

. With the recovery of the global economy, the rapid expansion of cattle and sheep farming, along with increased tourism, has led to a higher transmission rate of brucellosis. The World Health Organization estimates that there are over 500,000 human cases of brucellosis globally each year

随着全球经济的复苏,牛羊养殖业的快速扩张以及旅游业的增加,导致布鲁氏菌病的传播率上升。世界卫生组织估计,全球每年有超过50万例人类布鲁氏菌病病例。

4

4

,

5

5

. Currently, brucellosis remains a significant infectious disease in Mediterranean countries, North Africa, East Africa, the Middle East, South Asia, Central and South America, and several other regions

目前,布鲁氏菌病仍然是地中海国家、北非、东非、中东、南亚、中南美洲及其他一些地区的重要传染病。

6

6

,

7

7

. This disease is increasingly becoming a major challenge to global public health

这种疾病日益成为全球公共卫生领域的一项重大挑战。

8

8

.

China’s first case of brucellosis was reported in Chongqing in 1905

1905年,中国首次报道了在重庆发生的布鲁氏菌病病例。

9

9

. Subsequently, with the growth of aquaculture, brucellosis was introduced into the country from overseas, exacerbating the domestic brucellosis situation. The most severe outbreak of brucellosis in China occurred between the 1950–1970 s. However, through organized prevention and treatment efforts, the incidence of brucellosis significantly decreased from the late 1970s to the early 1990s, reaching a rate of 0.08 cases per 100,000 people.

随后,随着水产养殖业的增长,布鲁氏菌病从海外传入国内,加剧了国内布鲁氏菌病的形势。中国最严重的布鲁氏菌病爆发发生在1950年至1970年间。然而,通过有组织的预防和治疗工作,布鲁氏菌病的发病率从20世纪70年代末到90年代初显著下降,达到了每10万人0.08例。

10

10

. Unfortunately, the epidemiological situation of brucellosis worsened again, with the incidence rate rising from 0.09 to 1.50 cases per 100,000 from the late 1990s to the early 21st century. This represented a 16.7-fold increase in just ten years. During the same period, provinces with higher incidence rates recorded a staggering rate of 43.66 cases per 100,000, indicating a concerning trend..

不幸的是,布鲁氏菌病的流行情况再次恶化,发病率从20世纪90年代末的每10万人0.09例上升到21世纪初的1.50例,十年间增加了16.7倍。同期,高发病率省份的发病率达到每10万人43.66例,显示出令人担忧的趋势。

Previous studies have shown that the global epidemiology of brucellosis has changed dramatically over the past few decades, particularly in industrialized countries

以往的研究表明,布鲁氏菌病的全球流行病学在过去几十年中发生了显著变化,尤其是在工业化国家。

11

11

. The spatial distribution characteristics of brucellosis outbreaks have also changed significantly

布鲁氏菌病爆发的空间分布特征也发生了显著变化

12

12

. However, whether these changes exhibit temporal and spatial covariance requires further investigation.

然而,这些变化是否表现出时空协变性还需要进一步研究。

The aim of our study was to utilize a spatial distribution model to analyze the characteristics and correlations of human brucellosis in mainland China from 2012 to 2018. This analysis aims to provide theoretical support for the prevention and control of human brucellosis, taking into account local conditions.

本研究旨在利用空间分布模型分析2012-2018年中国大陆人间布鲁氏菌病的特征及其相关性,为因地制宜地开展人间布鲁氏菌病的防控提供理论依据。

13

13

. By leveraging the complementary nature of scan statistics and interpolation analysis, the latter generates predictive surfaces while the former identifies clusters. This approach effectively mitigates the selection bias that can occur when researchers subjectively group disease data by time and space..

通过利用扫描统计和插值分析的互补特性,后者生成预测表面,而前者识别聚类。这种方法有效减轻了研究人员在主观按时间和空间分组疾病数据时可能出现的选择偏差。

Materials and methods

材料与方法

Study area

研究区域

China is located between 3°51′N–53°33′N, 73°33′E–135°05′E, situated in the eastern part of the Eurasian continent. The country’s territory is vast, extending 5,500 km from north to south and 5,200 km from east to west, covering a total land area of approximately 9.6 million square kilometers and a population of about 1.4 billion people.

中国位于北纬3°51′–53°33′,东经73°33′–135°05′之间,地处欧亚大陆的东部。国土广袤,南北纵贯约5500公里,东西横跨约5200公里,总面积约为960万平方公里,人口约14亿。

From south to north, except for the alpine zone of the Tibetan Plateau, China spans six temperature zones: the equatorial zone, the tropical zone, the subtropical zone, the warm temperate zone, the mesothermal zone, and the cold temperate zone. The subtropical, warm, and mesothermal zones together account for 70% of the country’s total area..

自南向北,除青藏高原高寒区外,中国跨越六个温度带:赤道带、热带、亚热带、暖温带、中温带和寒温带。其中亚热带、暖温带和中温带占全国总面积的70%。

Data source

数据源

Human brucellosis cases from 31 provinces, municipalities, and autonomous regions in mainland China were collected between 2012 and 2018 through an internet-based disease reporting system known as the China Information System for Disease Control and Prevention (CISDCP) (URL:

2012年至2018年期间,通过名为中国疾病预防控制信息系统(CISDCP)的互联网疾病报告系统(网址:

https://www.phsciencedata.cn/

https://www.phsciencedata.cn/

). Established in 2004, this system is more integrated, effective, and reliable than the previous case-reporting system

). 该系统始建于2004年,比之前的病例报告系统更综合、有效和可靠。

14

14

. In mainland China, both suspected and confirmed cases of human brucellosis must be reported to local and provincial Centers for Disease Control and Prevention (CDC) and subsequently to the Chinese CDC (CCDC). To meet the case definition, a diagnosis of human brucellosis must be accompanied not only by clinical signs but also confirmed through a serological test or isolation, in accordance with the World Health Organization’s case definition.

在中国大陆,人类布鲁氏菌病的疑似病例和确诊病例都必须上报给当地及省级疾病预防控制中心(CDC),然后上报至中国疾控中心(CCDC)。根据世界卫生组织的病例定义,诊断人类布鲁氏菌病不仅需要临床症状,还必须通过血清学检测或分离确认,以符合病例定义。

15

15

. The base layer of the map of mainland China is sourced from the Standard Map Service website of the Ministry of Natural Resources, People’s Republic of China (

中国地图的底图来源于中华人民共和国自然资源部标准地图服务网站 (

https://www.mnr.gov.cn/

https://www.mnr.gov.cn/

).

)。

Statistical software

统计软件

This study performed descriptive statistical analysis on the temporal characteristics of brucellosis in China. Geographic information software ArcGIS 10.3 (Geographic Information System, URL:

本研究对中国布鲁氏菌病的时间特征进行了描述性统计分析。地理信息软件 ArcGIS 10.3(地理信息系统,网址:

https://developers.arcgis.com/

https://developers.arcgis.com/

) was used for visualizing incidence rate maps, spatial trend surface analysis, and kriging interpolation analysis. SaTScan 9.4 (Software for the spatial, temporal, and space-time scan statistics, URL:

)用于可视化发病率地图、空间趋势面分析和克里金插值分析。SaTScan 9.4(用于空间、时间和时空扫描统计的软件,URL:

https://satscan.co.uk/

https://satscan.co.uk/

) software was used for space-time scan analysis of the incidence of brucellosis in China, exploring temporal ranges and spatial regions of brucellosis clusters. Statistical significance was defined as

)软件用于对中国布鲁氏菌病发病率进行时空扫描分析,探索布鲁氏菌病聚集的时间范围和空间区域。统计学显著性定义为

P

P

< 0.05.

< 0.05。

Statistical methods

统计方法

Three-dimensional trend analysis

三维趋势分析

Both the spatial distribution and incidence trends of human brucellosis were evaluated and visualized through three-dimensional trend analysis using ArcGIS 10.3 (ESRI, Redlands) software

通过使用ArcGIS 10.3(ESRI,Redlands)软件进行的三维趋势分析,评估并可视化了人类布鲁氏菌病的空间分布和发病率趋势。

16

16

. This analysis employs the least squares method to establish a binary polynomial regression model, which accounts for both random and local variations, thereby illustrating the general distribution pattern of the disease in the study area

。该分析采用最小二乘法建立二元多项式回归模型,该模型同时考虑了随机变化和局部变化,从而揭示了研究区域内疾病的总体分布模式。

17

17

. The X-axis and Y-axis represent the geometric center of the specific study region, while the Z-axis indicates the incidence of human brucellosis. A higher Z-axis value corresponds to a higher incidence rate

X轴和Y轴代表特定研究区域的几何中心,而Z轴表示人类布鲁氏菌病的发病率。Z轴值越高,对应发病率越高。

18

18

. This implies that a point in three-dimensional space (X, Y, Z) represents the incidences of human brucellosis in the study region. The points in this three-dimensional space are projected onto both the XZ and YZ planes, respectively. Subsequently, an optimal fitting line is generated based on the scatter plot, fitting a polynomial onto the projection plane, while the curve simulates the spatial trend of the disease.

这意味着三维空间中的一个点(X,Y,Z)代表研究区域内人类布鲁氏菌病的发病率。该三维空间中的点分别投影到XZ平面和YZ平面上。随后,基于散点图生成一条最佳拟合线,在投影平面上拟合多项式,同时曲线模拟疾病的时空趋势。

19

19

.

In this paper, the annual reported incidence rate for each province and city in China is represented as a point (X, Y, Z) in three-dimensional space. Here, X and Y denote the longitudinal and latitudinal coordinates of each province and city, while Z represents the average annual reported incidence rate of brucellosis.

在中国,每个省和市的年报告发病率在三维空间中表示为一个点 (X, Y, Z)。其中,X 和 Y 分别表示每个省和市的经度和纬度坐标,而 Z 表示布鲁氏菌病的年均报告发病率。

Conducting a global trend test allows for a more effective understanding of the spatial distribution of the data. Furthermore, the results of this test are valuable for selecting an appropriate Kriging model..

进行全局趋势检验可以更有效地理解数据的空间分布。此外,该检验的结果对于选择合适的克里金模型非常有价值。

Kriging interpolation

克里金插值

Interpolation analysis is grounded in the principles of regional variable theory. It employs the semi-variance function as a tool and utilizes interpolated prediction maps to examine phenomena that display both random and structured spatial distributions. Numerous interpolation methods are commonly used, among which Kriging interpolation is mathematically established as the optimal, linear, and unbiased estimation technique.

插值分析以区域变量理论为基础,以半方差函数为工具,利用插值预测图来研究具有随机性和结构性空间分布特征的现象。常用的插值方法较多,其中克里金插值在数学上被证明是最优的线性无偏估计方法。

20

20

. Optimal means that the variance of the estimate is minimized, unbiased means that the mathematical expectation of the mean prediction error is equal to 0, and linear means that the estimate is a linear combination of the samples. The variational function is used as an instrumental function for interpolation analysis, and its estimation function equation is as follows:.

最优意味着估计的方差被最小化,无偏意味着平均预测误差的数学期望等于0,线性意味着估计是样本的线性组合。变分函数用作插值分析的工具函数,其估计函数方程如下:

$$r(h) = \frac{1}{2N(h)} \sum\limits_{i=1}^{N(h)} [Z(\chi_{i}) - Z(\chi_{i}+h)]^{2}$$

$$r(h) = \frac{1}{2N(h)} \sum\limits_{i=1}^{N(h)} [Z(\chi_{i}) - Z(\chi_{i}+h)]^{2}$$

where

其中

N

(

(

h

h

) is the number of point pairs at a distance equal to

)是距离等于

h

h

,

Z

Z

(

(

χ

χ

i

i

) is the value at position

)是位置上的值

χ

χ

i

i

, and

,以及

Z

Z

(

(

χ

χ

i

+

+

h

h

) is the value at distance

)是距离处的值

χ

χ

i

+

+

h

h

.

The analysis utilizing kriging interpolation follows a structured, step-by-step process: data organization, data exploration, model fitting, model diagnostics, model comparison, and, finally, the production of a predictive distribution map.

利用克里金插值的分析遵循一个结构化的、逐步的过程:数据组织、数据探索、模型拟合、模型诊断、模型比较,最后生成预测分布图。

The ArcGIS Geostatistical Analysis Wizard module integrates various functions, including the selection of interpolation methods, model selection, and model comparison and diagnosis. By adjusting different parameters within this module, users can obtain various model diagnostic indicators. The reasonableness of the semi-variance function model and its parameter settings are generally evaluated based on the following criteria for comprehensive comparison: The root-mean-square prediction error (RMS) should be minimized and as close as possible to the Average-Standard-Error (ASE).

ArcGIS 地统计分析向导模块集成了多种功能,包括插值方法的选择、模型选择以及模型比较与诊断。通过调整该模块中的不同参数,用户可以获得各种模型诊断指标。半变异函数模型及其参数设置的合理性通常基于以下标准进行综合比较:均方根预测误差 (RMS) 应尽可能最小化并接近平均标准误差 (ASE)。

The absolute value of the standardized mean (Mean Standardized) should be as close to 0 as possible. The Root-Mean-Square Standardized (RMSS) should be as close to 1 as possible. If RMSS < 1, it indicates an overestimation of the predicted value; conversely, if RMSS > 1, it indicates an underestimation of the predicted value..

标准化均值的绝对值(Mean Standardized)应尽可能接近于0。均方根标准化(RMSS)应尽可能接近于1。如果RMSS < 1,表示预测值被高估;反之,如果RMSS > 1,表示预测值被低估。

Spatio-temporal scanning

时空扫描

The Kulldorff scanning statistic, implemented using SaTScan 9.4 software, is used to determine whether brucellosis is randomly distributed in time, space, or both

使用SaTScan 9.4软件实现的Kulldorff扫描统计量用于确定布鲁氏菌病是否在时间、空间或两者中随机分布。

21

21

. It also assesses the statistical significance of the distribution and is now widely employed in infectious disease surveillance

它还评估了分布的统计学显著性,目前已被广泛应用于传染病监测。

22

22

. Scanning statistical methods are classified into three categories: temporal scanning, spatial scanning, and spatio-temporal scanning analyses.

扫描统计方法分为三类:时间扫描、空间扫描和时空扫描分析。

Spatio-temporal scanning is an analytical method that examines two dimensions: time and space. In this approach, the scanning window is shaped like a cylinder, with the base radius representing the spatial dimension and the height representing the temporal dimension. Both the base radius and height of the cylinder gradually increase from zero until they reach the maximum scanning limit.

时空扫描是一种分析方法,它考察两个维度:时间和空间。在这种方法中,扫描窗口呈圆柱形,其底面半径代表空间维度,高度代表时间维度。圆柱的底面半径和高度都从零开始逐渐增加,直到达到最大扫描限制。

A series of log-likelihood ratios (LLR) can be calculated both inside and outside the window, based on the continuous movement of the cylinder. The window with the highest LLR value is identified as the most probable maximal clustering region, while all other statistically significant windows are regarded as the second most probable clustering regions.

基于圆柱体的连续移动,可以在窗口内外计算一系列对数似然比 (LLR)。具有最高 LLR 值的窗口被识别为最可能的最大聚类区域,而所有其他统计显著的窗口被视为次可能的聚类区域。

23

23

. The retrospective spatial analysis method and Poisson distribution model were employed to analyze areas of high-value clustering of brucellosis in China.

采用回顾性空间分析方法和泊松分布模型对中国布鲁氏菌病高值聚集区域进行分析。

The scanning results are highly sensitive to both the maximum radius of the spatial scanning window and the maximum length of the temporal scanning window. Therefore, it is crucial to exercise caution when selecting these parameters

扫描结果对空间扫描窗口的最大半径和时间扫描窗口的最大长度都非常敏感。因此,在选择这些参数时必须谨慎。

24

24

. The default settings for window size and temporal size are typically set at 50%; however, some studies have raised concerns regarding their appropriateness

窗口大小和时间大小的默认设置通常设定为50%;然而,一些研究对其适用性提出了担忧。

25

25

. If the window is too large, there may be an increased rate of false positives, while a window that is too small may lead to a higher rate of false negatives

如果窗口过大,可能会导致假阳性率增加,而窗口过小则可能导致假阴性率升高。

26

26

. Numerous studies have investigated how to select an appropriate scanning window, and the primary conclusion is that the number of regions encompassed by a single clustered region should not exceed 15% of the total number of regions under investigation

众多研究探讨了如何选择合适的扫描窗口,主要结论是单个聚集区域所包含的区域数量不应超过被研究区域总数的15%。

27

27

,

28

28

. Consequently, based on this conclusion, we have opted for a maximum scanning window of 30% of the total population to encompass the entire study period as the spatial window for this research.

因此,基于这一结论,我们选择总人口的30%作为最大扫描窗口,以涵盖整个研究期作为空间窗口。

Both scanning statistics and interpolation analysis can reflect the spatial aggregation of disease, but their applications have different focuses. Interpolation analysis is primarily used to generate predictive surfaces. Unlike ordinary disease thematic maps, interpolation prediction maps rely on a limited amount of data yet can estimate values for all points on the plane, creating a continuous surface.

扫描统计和插值分析均能反映疾病的聚集性,但应用的侧重点有所不同。插值分析主要用于生成预测表面。与普通的疾病专题地图不同,插值预测图依赖有限的数据量,却可以对平面上的所有点进行估计,形成连续的表面。

This approach more effectively captures local and systematic variations, making it a better representation of the epidemiological characteristics of the disease. Conversely, scanning statistics can be employed to localize the scope of aggregation, providing a valuable complement to interpolation analysis.

这种方法能更有效地捕捉局部和系统的变化,使其更好地反映该疾病的流行病学特征。相反,扫描统计可用于定位聚集范围,为插值分析提供了有价值的补充。

Scanning statistics are automatically generated by software to delineate the affected area. This method includes a dynamic window that encompasses every point in the study space and time, thereby avoiding the selection bias that can arise from researchers’ subjective grouping of disease data by time and space..

扫描统计量由软件自动生成,以划定受影响的区域。该方法包含一个动态窗口,涵盖了研究空间和时间中的每个点,从而避免了研究人员因主观按时间和空间分组疾病数据而可能导致的选择偏差。

Results

结果

Descriptive analysis

描述性分析

The incidence rate was calculated for each year, and the trend test did not reveal a statistically significant difference (χ

每年计算发病率,趋势检验未发现统计学显著差异(χ

2

2

= 0.451,

= 0.451,

P

P

= 0.502). Based on the cumulative increase, the incidence rate peaked in 2014 at 4.2225 per 100,000 population. It slightly decreased in 2017 and 2018 compared to 2012, but remained elevated. Please refer to Table

= 0.502)。根据累计增长,发病率在2014年达到高峰,为每10万人中4.2225例。与2012年相比,2017年和2018年略有下降,但仍然保持较高水平。详情请参见表格。

1

1

for further details.

获取更多细节。

Table 1 Development dynamics of human brucellosis incidence in Mainland China, 2012–2018.

表1 2012-2018年中国大陆人间布鲁氏菌病发病率的发展动态。

Full size table

全尺寸表格

When analyzing the temporal distribution of brucellosis incidence rates in the country from 2012 to 2018, a consistent trend was observed. The incidence rate of brucellosis was relatively high during the warm season, peaking in May each year. Specifically, the incidence rates in May from 2012 to 2018 were as follows: 0.4087 per 100,000, 0.4290 per 100,000, 0.5837 per 100,000, 0.5657 per 100,000, 0.4585 per 100,000, 0.3413 per 100,000, and 0.3583 per 100,000, respectively.

在分析该国2012年至2018年布鲁氏菌病发病率的时间分布时,观察到一个一致的趋势。布鲁氏菌病的发病率在温暖季节相对较高,每年五月达到峰值。具体而言,2012年至2018年五月的发病率分别为:每10万人0.4087例、每10万人0.4290例、每10万人0.5837例、每10万人0.5657例、每10万人0.4585例、每10万人0.3413例和每10万人0.3583例。

Please refer to Fig. .

请参见图 。

1

1

for further details.

有关更多详细信息。

Fig. 1

图1

Temporal distribution of monthly incidence of human brucellosis in mainland China, 2012–2018.

2012-2018年中国大陆人间布鲁氏菌病月发病率的时间分布。

Full size image

全尺寸图像

Spatial interpolation analysis

空间插值分析

Normality test

正态性检验

The graphical and computational methods were employed to assess whether the average incidence rate data from 2012 to 2018 in mainland China conformed to a normal distribution. Figures

采用图示法和计算法对2012—2018年中国大陆平均发病率数据进行正态分布检验。图表

2

2

A and

A 和

3

3

A display the histogram and QQ plots of the normality test prior to data transformation. After applying a logarithmic transformation, the skewness and kurtosis values remained greater than 0. However, the shape of the histogram (Fig.

A 显示了数据转换前正态性检验的直方图和QQ图。在应用对数变换后,偏度和峰度值仍然大于0。然而,直方图的形状(图。

2

2

B) and the QQ plot (Fig.

B) 和 QQ 图 (图。

3

3

B) indicate a convergence toward a normal distribution. This suggests that the data follows a lognormal distribution.

B) 表明趋于正态分布的收敛性。这表明数据服从对数正态分布。

Fig. 2

图2

Histogram and normality test results before (

直方图和正态性检验结果之前 (

A

A

) and after (

)和之后(

B

B

) data conversion (X represents the incidence, while Y denotes the frequency).

)数据转换(X代表发生率,而Y表示频率)。

Full size image

全尺寸图像

Fig. 3

图 3

Normal Q-Q plot of data distribution before (

之前数据分布的正态Q-Q图 (

A

A

) and after (

)和之后(

B

B

) logarithmic conversion..

) 对数转换..

Full size image

全尺寸图像

Global trend test

全球趋势测试

In Fig.

图中。

4

4

, the X-axis represents latitude, the Y-axis represents longitude, and the Z-axis represents the incidence of brucellosis. By examining the trends in latitude and longitude, we can gain insights into the overall spatial variation of the disease. Observe whether the entire figure rises or falls along the Z-axis.

,X轴代表纬度,Y轴代表经度,Z轴代表布鲁氏菌病的发病率。通过观察纬度和经度的变化趋势,我们可以了解该疾病的整体空间分布变化。观察整个图形沿Z轴是上升还是下降。

If the Z value gradually increases from one end of the graph to the other, it indicates that the incidence of the disease is rising in the corresponding spatial direction. Conversely, a downward trend suggests a decrease in incidence. The slope of the graph reflects the rate of change in incidence; a steeper slope indicates a more rapid change, while a gentler slope signifies a relatively slow change..

如果Z值从图表的一端到另一端逐渐增加,则表明疾病在相应的空间方向上发病率上升。相反,下降趋势则表示发病率下降。图表的斜率反映了发病率的变化速率;斜率越陡,表示变化越快,而斜率越平缓,则表示变化相对较慢。

Fig. 4

图4

Trend surface analysis of data.

数据的趋势面分析。

Full size image

全尺寸图像

The blue curve represents the north-south direction, while the green curve represents the east-west direction. As illustrated in the figure, the rate of decline from north to south is more pronounced, with the incidence rate in the north significantly higher than in the south. Additionally, the changes in the east-west direction are not as substantial as those observed in the north-south direction.

蓝线代表南北方向,绿线代表东西方向。从图中可以看出,从北到南的下降速率更为明显,北方的发病率显著高于南方,而东西方向的变化不如南北方向显著。

The incidence of brucellosis on the YZ plane demonstrates a downward trend from north to south, whereas the projection curve on the XZ plane exhibits a smooth “concave” shape, characterized by lower values in the middle and higher values on the sides. This suggests a second-order trend in the overall spatial variation of brucellosis incidence.

YZ 平面上的布鲁氏菌病发病率从北到南呈下降趋势,而 XZ 平面上的投影曲线呈现平滑的“凹”形,中间值较低,两侧值较高。这表明布鲁氏菌病发病率的整体空间变化存在二阶趋势。

Consequently, a “second” is selected for the Kriging interpolation decomposition, indicating that a second-order trend surface is utilized..

因此,选择“二次”进行克里金插值分解,这表明使用了二阶趋势面。

Model diagnosis and comparison

模型诊断与比较

The results of the commonly used Spherical Model, Exponential Model, Circular Model, Tetraspherical Model, Pentaspherical Model, Rational Quadratic Model, and Gaussian Model were selected for cross-validation. It was found that the Gaussian Semi-Covariance Function Model exhibited the highest accuracy, as shown in Table .

选择了常用的球状模型、指数模型、圆形模型、四球体模型、五球体模型、有理二次方程模型和高斯模型的结果进行交叉验证。研究发现,高斯半协方差函数模型的精度最高,如表中所示。

2

2

.

Table 2 Comparison of prediction accuracy among different models.

表2 不同模型预测精度的比较。

Full size table

全尺寸表格

Projected distribution of brucellosis

布鲁氏菌病的预测分布

According to Fig.

根据图。

5

5

, the incidence rate of brucellosis in mainland China generally decreases from north to south. The regions with higher incidence rates are primarily situated in the northwestern and northeastern areas of the country. Furthermore, the predicted map is superimposed on the map of administrative divisions of mainland China, demonstrating that the distribution pattern of brucellosis corresponds with the administrative divisions..

,中国大陆布鲁氏菌病的发病率总体上从北向南递减。高发病率地区主要集中在西北和东北地区。此外,将预测图与中国大陆行政区划地图叠加后显示,布鲁氏菌病的分布格局与行政区划相对应。

Fig. 5

图5

Projected distribution of average incidence of human brucellosis in mainland China, 2012–2018 (Approval Number: GS(2019) No. 1671).

2012-2018年中国大陆人间布鲁氏菌病平均发病率预测分布(审图号:GS(2019)第1671号)。

Full size image

全尺寸图像

Scanning analysis

扫描分析

Temporal scanning analysis

时间扫描分析

The temporal distribution of brucellosis in mainland China displays distinct seasonal patterns, with a peak incidence occurring from February to July or from March to August each year. For more detailed information, please refer to Table

中国大陆布鲁氏菌病的时间分布呈现出明显的季节性模式,每年的发病高峰出现在2月至7月或3月至8月之间。更多详细信息,请参阅表格。

3

3

.

Table 3 Temporal scanning of human brucellosis in Mainland China, 2012–2018.

表3 2012-2018年中国大陆人间布鲁氏菌病的时间扫描。

Full size table

全尺寸表格

Spatial scanning analysis

空间扫描分析

A spatial scanning analysis of brucellosis incidence in mainland China revealed a relatively consistent clustering of cases. Although the specific areas of clustering varied from year to year, they were predominantly located in the northern regions, including Xinjiang, Inner Mongolia, Tibet, Gansu, Qinghai, Heilongjiang, Jilin, Liaoning, Shanxi, and Ningxia.

对中国大陆布鲁氏菌病发病率进行的空间扫描分析显示,病例的聚集性相对一致。尽管聚集的具体区域每年有所不同,但主要集中在北方地区,包括新疆、内蒙古、西藏、甘肃、青海、黑龙江、吉林、辽宁、山西和宁夏。

This information is illustrated in Fig. .

该信息在图中进行了说明。

6

6

.

Fig. 6

图6

Spatial scanning of human brucellosis in mainland China, 2012–2018 (Approval Number: GS(2019) No. 1671).

中国大陆地区人类布鲁氏菌病的空间扫描,2012-2018年(批准号:GS(2019) 第1671号)。

Full size image

全尺寸图像

Spatio-temporal scanning analysis

时空扫描分析

Based on the results of the spatio-temporal scanning (see Table

基于时空扫描的结果(见表

4

4

), a significant primary aggregation area was identified in mainland China from 2012 to 2018. The aggregation period spanned from January 1, 2012, to December 31, 2014, with the central area located in Heilongjiang (LLR = 51,239.64,

),2012年至2018年间在中国大陆发现了一个重要的主要聚集区域。聚集期从2012年1月1日持续至2014年12月31日,中心区域位于黑龙江(LLR = 51,239.64,)。

P

P

= 0.000). The coordinates of the center were 47.861°N, 127.764°E, and the area exhibited a circular shape with a radius of 1,146.37 km. This region encompassed Jilin and Liaoning Provinces, as well as parts of the Inner Mongolia Autonomous Region. During the high-risk period, a total of 63,317 cases of brucellosis were reported in this area, resulting in a relative risk (RR) of 5.56..

= 0.000)。中心坐标为北纬47.861°,东经127.764°,该区域呈圆形,半径为1,146.37公里。这一区域涵盖了吉林和辽宁省,以及内蒙古自治区的部分地区。在高风险时期,该地区共报告了63,317例布鲁氏菌病病例,相对风险(RR)为5.56。

Table 4 Spatio-temporal scanning analysis of reported brucellosis cases in Mainland China, 2012–2018.

表4 2012-2018年中国大陆报告的布鲁氏菌病病例时空扫描分析。

Full size table

全尺寸表格

Three sub-aggregation areas were also identified, centered on the Tibet Autonomous Region, Shanxi Province, and Hubei Province. The aggregation periods for these areas were as follows: January 1, 2014, to December 31, 2016; January 1, 2013, to December 31, 2015; and January 1, 2015, to December 31, 2015.

还确定了三个以西藏自治区、山西省和湖北省为中心的子聚集区。这些区域的聚集期如下:2014年1月1日至2016年12月31日;2013年1月1日至2015年12月31日;2015年1月1日至2015年12月31日。

These regions encompassed the Xinjiang Uygur Autonomous Region, Qinghai Province, Hebei Province, and Henan Province. For further details, please refer to Fig. .

这些地区包括新疆维吾尔自治区、青海省、河北省和河南省。更多细节请参见图 。

7

7

.

Fig. 7

图7

Spatio-temporal scanning of human brucellosis in mainland China, 2012–2018 (Approval Number: GS(2019) No. 1671).

中国大陆人类布鲁氏菌病的时空扫描,2012-2018年(批准号:GS(2019) 第1671号)。

Full size image

全尺寸图像

Discussion

讨论

Due to its resurgence in China and around the world, brucellosis remains a significant public health concern. Investigating the spatial distribution of this disease is essential for informing the development and implementation of effective surveillance and control strategies.

由于布鲁氏菌病在中国及世界范围内的再次流行,它仍然是一个重要的公共卫生问题。研究这种疾病的地理分布对于制定和实施有效的监测与控制策略至关重要。

In recent years, the incidence of brucellosis in China has remained consistently high. The peak incidence rate was recorded in 2014, at 4.2225 cases per 100,000 population. Although there was a slight decrease in 2017 and 2018 compared to 2012, the incidence rate continued to be elevated. Furthermore, brucellosis exhibits a higher incidence rate during the warm season compared to the cold season each year.

近年来,中国布鲁氏菌病的发病率一直居高不下。其中,2014年发病率达到高峰,为4.2225例/10万人。虽然2017年和2018年较2012年略有下降,但发病率仍然较高。此外,布鲁氏菌病每年在温暖季节的发病率高于寒冷季节。

For example, in 2014, the incidence rate in May was 3.39 times higher than in December, which is consistent with the findings of previous studies.

例如,2014年5月份的发病率是12月份的3.39倍,这与以往研究结果一致。

29

29

,

30

30

,

31

31

,

32

32

. The primary reasons for this trend are twofold. First, during the spring and summer months, there is an increase in livestock activities such as lambing, shearing, milking, and abortion. This results in a higher contact rate between occupational personnel and the products and secretions of infected animals, thereby increasing the risk of infection.

这一趋势的主要原因有两方面。首先,在春夏季节,牲畜活动如产羔、剪毛、挤奶和流产等增加,导致从业人员与感染动物的产品和分泌物的接触率升高,从而增加了感染风险。

Without effective protective measures, the incidence rate is likely to rise. Second, the elevated temperature and humidity during these seasons create favorable conditions for the proliferation of Brucella. If susceptible individuals lack strong immunity, their likelihood of being infected by Brucella also increases.

若不采取有效的防护措施,发病率可能会上升。其次,这些季节气温升高、湿度增大,为布鲁氏菌的繁殖创造了有利条件。若易感人群免疫力较弱,其感染布鲁氏菌的可能性也会增加。

A weakened immune system in susceptible individuals further heightens the risk of Brucella invasion.

易感个体的免疫系统减弱进一步增加了布鲁氏菌入侵的风险。

33

33

,

34

34

.

Most diseases exhibit distinct patterns in their spatial distribution, which can be attributed to factors such as geography, socio-economic conditions, lifestyle choices, and climate. Several literature reviews have indicated that the occurrence of brucellosis is significantly influenced by these factors and displays specific spatial characteristics.

大多数疾病在其空间分布上表现出明显的模式,这可以归因于地理、社会经济条件、生活方式选择和气候等因素。多项文献综述表明,布鲁氏菌病的发生受这些因素的影响显著,并呈现出特定的空间特征。

35

35

,

36

36

. Therefore, this paper employs the Kriging interpolation method to create a distribution surface representing the average incidence of brucellosis in China.

因此,本文采用克里金插值法创建了一个表示中国布鲁氏菌病平均发病率的分布表面。

According to the interpolation prediction map (Fig.

根据插值预测图(图。

5

5

), the distribution of brucellosis corresponds to the administrative divisions of China, with a higher incidence primarily concentrated in northern China and gradually spreading southward. This finding is consistent with the results of previous surveys on brucellosis in China

),布鲁氏菌病的分布与中国行政区划相对应,高发区主要集中在北方地区,并逐渐向南方扩散。这一发现与之前对中国布鲁氏菌病调查的结果一致。

37

37

,

38

38

.

Additionally, spatio-temporal scanning revealed four statistically significant clusters of brucellosis incidence in China during the study period. This finding indicates that brucellosis is not randomly distributed in space and time; rather, it exhibits distinct clustering patterns. Furthermore, the risk of brucellosis incidence is higher in these clustered regions and during the periods of clustering compared to other areas and years.

此外,时空扫描显示,在研究期间中国境内发现了四个统计学上显著的布鲁氏菌病发病率聚集区。这一发现表明,布鲁氏菌病在空间和时间上并非随机分布,而是呈现出明显的聚集模式。此外,与其它地区和年份相比,这些聚集区域和聚集时间段内的布鲁氏菌病发病风险更高。

Therefore, these clustered regions should be prioritized for monitoring and controlling brucellosis in China. The primary clustering areas are located in Jilin, Liaoning, Heilongjiang, and parts of Inner Mongolia, with clustering occurring from January 2012 to December 2014. Both now and in the future, these regions should enhance their prevention and control measures for brucellosis.

因此,这些聚集区域应作为中国布病监测和防控的优先地区。主要的聚集区位于吉林、辽宁、黑龙江和内蒙古部分地区,聚集时间从2012年1月持续到2014年12月。这些地区现在和未来都应加强布病的预防和控制措施。

Additional sub-aggregation areas have been identified in northwestern China and certain regions in the central part of the country, suggesting that brucellosis in China is gradually migrating from north to south..

在中国西北部和中部某些地区已确定了更多的次聚集区域,这表明中国的布鲁氏菌病正逐渐从北向南迁移。

The formation of this distribution pattern is influenced by various factors. Notably, the high-incidence areas of brucellosis are located in northern China, where the livestock industry is more developed compared to the south. The primary reasons for the recent resurgence of brucellosis epidemics include the rapid expansion of the livestock industry and the inadequate implementation of prevention and control measures.

这种分布格局的形成受多种因素影响。值得注意的是,布鲁氏菌病的高发区位于中国北方,与南方相比,北方的畜牧业更为发达。近年来布鲁氏菌病疫情回升的主要原因包括畜牧业的快速扩展以及防控措施落实不到位。

34

34

. Therefore, it is essential to allocate control efforts strategically based on the severity of the epidemic. This approach will help maximize the effectiveness of limited health resources.

因此,根据疫情的严重程度战略性地分配防控努力是至关重要的。这种方法将有助于最大限度地提高有限卫生资源的有效性。

In summary, given the growth of China’s animal husbandry industry, there is an urgent need to enhance the prevention and detection of brucellosis. Conducting spatial analysis of brucellosis can help identify high-risk areas for the disease and provide a foundation for decision-making by relevant authorities.

总之,随着我国畜牧业的快速发展,加强布病防控与检测刻不容缓。开展布病空间分析,有助于识别疾病高风险区域,为相关部门决策提供依据。

Based on the distribution characteristics of brucellosis incidence observed in this study, it is recommended to further strengthen detection efforts in the northern region. Additionally, in certain central regions, it is essential to promptly raise awareness and implement measures for prevention and control.

根据本研究观察到的布鲁氏菌病发病分布特点,建议进一步加强北方地区的检测力度。此外,在某些中部地区,必须及时提高意识并实施预防和控制措施。

Furthermore, in high-incidence areas, it is crucial to allocate additional resources for prevention and control to effectively curb the spread of brucellosis. In low-incidence areas, it is important to quickly identify favorable factors that can help reduce the occurrence of brucellosis..

此外,在高发地区,分配额外的资源用于预防和控制以有效遏制布鲁氏菌病的传播至关重要。在低发地区,快速识别有助于减少布鲁氏菌病发生的有利因素非常重要。

Limitations

限制条件

Our study is not without limitations. Firstly, the incidence of human brucellosis was somewhat underestimated, as our data was passively collected through a monitoring system. The quality of the surveillance data was influenced by various factors, including the capacity of local health workers, the availability of laboratory diagnostics, and the level of awareness regarding the necessity of visiting healthcare providers.

我们的研究并非没有局限性。首先,由于我们的数据是通过监测系统被动收集的,人类布鲁氏菌病的发病率在一定程度上被低估了。监测数据的质量受到多种因素的影响,包括当地卫生工作者的能力、实验室诊断的可用性以及对就医必要性的认知水平。

All of these factors may have affected the accuracy of the study. Secondly, our analysis was based on provincial-level data; smaller spatial units may provide more location-specific information regarding the design and implementation stages of public health programs. Thirdly, at the time of writing, the latest data from the data extraction website had only been updated to 2018, resulting in a certain lag in the data presented in this article.

所有这些因素可能影响了研究的准确性。其次,我们的分析基于省级数据;更小的空间单元可能会在公共卫生项目的规划和实施阶段提供更具地点针对性的信息。第三,在撰写本文时,数据提取网站的最新数据仅更新至2018年,导致本文中提供的数据存在一定的滞后性。

Finally, this study only explored the areas of brucellosis clustering and did not analyze the factors influencing the distribution of these clusters, thereby neglecting the impact of both human and environmental factors. In the future, we will further investigate the temporal and spatial distribution of brucellosis, as well as the factors affecting its distribution..

最后,本研究仅探讨了布鲁氏菌病的聚集区域,并未分析影响这些聚集区分布的因素,从而忽视了人类和环境因素的影响。未来,我们将进一步调查布鲁氏菌病的时间和空间分布,以及影响其分布的因素。

Conclusions

结论

It can be concluded that human brucellosis continues to pose a significant challenge in China, with a higher incidence reported in the northern regions. Spatial interpolation and spatiotemporal scanning analyses have revealed a gradual migration trend of brucellosis from northern to southern China. Therefore, it is essential to enhance public awareness regarding the prevention of brucellosis.

可以得出结论,人类布鲁氏菌病在中国仍然是一个重大挑战,北方地区的发病率较高。空间插值和时空扫描分析显示,布鲁氏菌病正逐渐从中国北方向南方迁移。因此,提高公众对布鲁氏菌病预防的意识至关重要。

Farmers should be reminded that infected animals must be culled and kept in isolation, and all necessary measures should be fully implemented. Efforts should be made to improve the coverage of inter-animal immunization, enhance group immunization levels, and halt the rapid spread of inter-animal epidemics to prevent further transmission.

农民们应该被提醒,受感染的动物必须被淘汰并隔离,并且所有必要的措施都应该得到充分实施。应努力提高动物间免疫的覆盖率,增强群体免疫水平,阻止动物间疫情的快速扩散,防止进一步传播。

Additionally, strict adherence to the quarantine system is crucial..

此外,严格遵守隔离制度至关重要。

Data availability

数据可用性

Data were collected through an internet-based disease-reporting system (the China Information System for Disease Control and Prevention, CISDCP, https://www.phsciencedata.cn/). Data is provided within the manuscript.

通过基于互联网的疾病报告系统(中国疾病预防控制信息系统,CISDCP,https://www.phsciencedata.cn/)收集数据。数据在手稿中提供。

References

参考文献

Ariza, J. et al. Perspectives for the treatment of brucellosis in the 21st century: the Ioannina recommendations.

阿里扎,J. 等。21世纪布鲁氏菌病治疗的前景:伊奥尼纳建议。

PLoS Med.

PLoS医学。

4

4

, e317 (2007).

,e317(2007)。

Article

文章

PubMed

PubMed

PubMed Central

PubMed Central

MATH

数学

Google Scholar

谷歌学术搜索

Dean, A. S., Crump, L., Greter, H., Schelling, E. & Zinsstag, J. Global burden of human brucellosis: a systematic review of disease frequency.

Dean, A. S., Crump, L., Greter, H., Schelling, E. & Zinsstag, J. 全球人类布鲁氏菌病负担:疾病频率的系统评价。

PLoS Negl. Trop. Dis.

PLoS被忽视的热带病。

6

6

, e1865 (2012).

,e1865(2012)。

Article

文章

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术索

Pappas, G., Papadimitriou, P., Akritidis, N., Christou, L. & Tsianos, E. V. The new global map of human brucellosis.

帕帕斯,G.,帕帕季米特里奥,P.,阿克里蒂迪斯,N.,克里斯图,L.,& 西亚诺斯,E. V. 人类布鲁氏菌病的新全球地图。

Lancet Infect. Dis.

柳叶刀传染病

6

6

, 91–99 (2006).

,91-99页(2006年)。

Article

文章

PubMed

PubMed

Google Scholar

谷歌学术

Musallam, I. I., Abo-Shehada, M., Omar, M. & Guitian, J. Cross-sectional study of brucellosis in Jordan: prevalence, risk factors and Spatial distribution in small ruminants and cattle.

穆萨拉姆,I. I.,阿布-谢哈达,M.,奥马尔,M.,吉蒂安,J. 约旦布鲁氏菌病的横断面研究:小型反刍动物和牛的患病率、风险因素及空间分布。

Prev. Vet. Med.

兽医预防医学

19

19

, 387–396 (2015).

,387-396页(2015年)。

Article

文章

Google Scholar

谷歌学术

Mufinda, F. C., Boinas, F. & Nunes, C. Prevalence and factors associated with human brucellosis in livestock professionals.

穆芬达,F.C.,博伊纳斯,F.,努内斯,C. 与牲畜从业人员相关的人类布鲁氏菌病的患病率及影响因素。

Rev. Saúde Pública

公共卫生杂志

51

51

(2017).

(2017)。

de Alencar Mota, A. L. A. et al. Large-scale study of herd-level risk factors for bovine brucellosis in Brazil.

阿尔恩卡尔·莫塔,A. L. A. 等。巴西牛布鲁氏菌病的群体水平风险因素的大规模研究。

Acta Trop.

热带医学杂志

164

164

, 226–232 (2016).

,226-232页(2016年)。

Article

文章

PubMed

PubMed

Google Scholar

谷歌学术索

Lou, P., Wang, L., Zhang, X., Xu, J. & Wang, K. Modelling seasonal brucellosis epidemics in Bayingolin Mongol Autonomous Prefecture of Xinjiang, China, 2010–2014.

楼,P.,王,L.,张,X.,徐,J.,& 王,K. 建模新疆巴音郭楞蒙古自治州2010-2014年布病季节性流行。

BioMed Res. Int.

生物医学研究国际

, 1–17 (2016).

,1-17页(2016年)。

An, C. et al. Exploring risk transfer of human brucellosis in the context of livestock agriculture transition: A case study in Shaanxi, China.

安,C. 等。 在畜牧业农业转型背景下探索人类布鲁氏菌病的风险转移:以中国陕西为例。

Front. Public Health

公共卫生前沿

.

10

10

, 1009854 (2022).

,1009854(2022)。

Article

文章

PubMed

PubMed

Google Scholar

谷歌学术

Deqiu, S., Donglou, X. & Jiming, Y. Epidemiology and control of brucellosis in China.

申德秋、徐东楼、于继明。中国布鲁氏菌病的流行病学与控制。

Vet. Microbiol.

兽医微生物学。

90

90

, 165–182 (2002).

,165-182页(2002年)。

Article

文章

PubMed

PubMed

MATH

数学

Google Scholar

谷歌学术

Lai, S. et al. Changing epidemiology of human brucellosis, China, 1955–2014.

赖,S. 等。 中国人布鲁氏菌病流行病学的变化,1955-2014年。

Emerg. Infect. Dis.

新发传染病

23

23

, 184–194 (2017).

,184-194页(2017年)。

Article

文章

PubMed

PubMed

PubMed Central

PubMed Central

MATH

数学

Google Scholar

谷歌学术索

Seleem, M. N., Boyle, S. M. & Sriranganathan, N. Brcellosis: a reemergingzoonosis.

Seleem, M. N., Boyle, S. M. & Sriranganathan, N. 布鲁氏菌病:一种重新出现的人畜共患病。

Vet. Microbiol.

兽医微生物学。

140

140

(3–4), 392–398 (2010).

(3-4),392-398(2010)。

Article

文章

PubMed

PubMed

Google Scholar

谷歌学术

Pappas, G., Papadimitriou, P., Akritidis, N., Christou, L. & Tsianos Ev. The new global map of human brucellosis.

帕帕斯,G.,帕帕季米特里奥,P.,阿克里蒂迪斯,N.,克里斯图,L.,齐亚诺斯,Ev. 人类布鲁氏菌病的新全球地图。

Lancet Infect. Dis.

柳叶刀传染病

6

6

(2), 91–99 (2006).

(2), 91–99 (2006).

Article

文章

PubMed

PubMed

Google Scholar

谷歌学术搜索

Tabasi, M., Alesheikh, A. A., Kalantari, M., Mollalo, A. & Hatamiafkoueieh, J. Spatio-temporal modeling of COVID-19 spread in relation to urban land uses: an agent-based approach.

塔巴萨斯,M.,阿莱希克,A. A.,卡兰塔里,M.,莫拉洛,A.,哈塔米埃弗库伊,J. 与城市土地利用相关的COVID-19传播时空建模:基于代理的方法。

Sustainability

可持续性

15

15

(18), 13827.

(18), 13827。

https://doi.org/10.3390/su151813827

https://doi.org/10.3390/su151813827

(2023).

(2023)。

Article

文章

Google Scholar

谷歌学术

Cao, M., Feng, Z., Zhang, J., Ma, J. & Li, X. Contextual risk factors for regional distribution of Japanese encephalitis in the People’s Republic of China.

曹,M.,冯,Z.,张,J.,马,J.,李,X. 日本脑炎在中国人民共和国区域分布的背景风险因素。

Trop. Med. Int. Health

热带医学与国际健康

; 15. (2010).

;15. (2010)。

Zhang, W. Y. et al. Human brucellosis, inner Mongolia, China.

张文艳等。中国内蒙古地区人类布鲁氏菌病。

Emerg. Infect. Dis.

新发传染病

16

16

, 2001–2003 (2010).

,2001-2003(2010)。

Article

文章

PubMed

PubMed

PubMed Central

PubMed Central

MATH

数学

Google Scholar

谷歌学术

Scott, L. M. & Janikas, M. V. Spatial statistics in ArcGl5. Handbook of applied spatial analysis (2010).

Scott, L. M. & Janikas, M. V. ArcGIS中的空间统计。应用空间分析手册(2010)。

Du, P. L. et al. Cervical cancer mortality trends in China, 1991–2013, and predictions for the future.

杜,P. L. 等。中国宫颈癌死亡率趋势,1991-2013年及未来预测。

Asian Pac. J. Cancer Prev.

亚太癌症预防期刊

16

16

(15), 6391–6396 (2015).

(15), 6391–6396 (2015).

Article

文章

PubMed

PubMed

MATH

数学

Google Scholar

谷歌学术索

Ren, W. et al. Spatial transmission and meteorological determinants of tuberculosis incidence in QinghaiProvince, China: a Spatial clustering panel analysis.

任伟等。中国青海省结核病发病率的空间传播与气象决定因素:空间聚类面板分析。

Infect. Dis. Poverty

传染病与贫困

.

5

5

(1), 45 (2016).

(1), 45 (2016).

Article

文章

PubMed

PubMed

PubMed Central

PubMed Central

MATH

数学

Google Scholar

谷歌学术

Fang, I., Dong, H. L., Wu, K. S., Du, P. L. & Xu, Z. X. Characteristics and prediction of lung cancer mortality in China from 1991 to 2013.

方毅、董红丽、吴开松、杜鹏里、徐之霞。1991年至2013年中国肺癌死亡率的特点及预测。

Asian Pac. Cancer Prev.

亚太癌症预防期刊

16

16

, 145829–145834 (2015).

,145829–145834(2015)。

Google Scholar

谷歌学术

McLeod, L., Bharadwaj, L., Epp, T. & Waldner, C. L. Use of principal components analysis and kriging to predict groundwater-sourced rural drinking water quality in Saskatchewan.

麦克劳德,L.,巴拉德瓦杰,L.,埃普,T.,沃尔德纳,C.L. 使用主成分分析和克里金法预测萨斯喀彻温省地下水来源的农村饮用水质量。

Int. J. Environ. Res. Public Health

国际环境研究与公共卫生杂志

14

14

(9), 1065.

(9), 1065.

https://doi.org/10.3390/ijerph14091065

https://doi.org/10.3390/ijerph14091065

(2017).

(2017)。

Article

文章

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术

Jones, S. G. & Kulldorff, M. Influence of Spatial resolution on space-time disease cluster detection.

琼斯,S. G. & 库尔多夫,M. 空间分辨率对时空疾病集群检测的影响。

PLoS One

公共科学图书馆·综合

7

7

, e48036 (2012).

,e48036(2012)。

Article

文章

ADS

广告

PubMed

PubMed

PubMed Central

PubMed Central

MATH

数学

Google Scholar

谷歌学术

Tabasi, M., Alesheikh, A. A., Babaie, E. & Hatamiafkoueieh, J. Spatiotemporal surveillance of COVID-19 based on epidemiological features: evidence from Northeast Iran.

塔巴西,M.,阿莱希克,A. A.,巴巴伊,E.,哈塔米阿福库伊,J. 基于流行病学特征的COVID-19时空监测:来自伊朗东北部的证据。

Sustainability

可持续性

14

14

, 12189.

,12189。

https://doi.org/10.3390/su141912189

https://doi.org/10.3390/su141912189

(2022).

(2022)。

Article

文章

Google Scholar

谷歌学术

Baygents, G. & Bani-Yaghoub, M. Cluster analysis of hemorrhagic disease in Missouri’s white-tailed deer population: 1980–2013.

贝金茨,G. & 巴尼-亚古卜,M. 密苏里州白尾鹿种群中出血性疾病聚类分析:1980-2013。

BMC Ecol.

BMC生态学。

18

18

, 35 (2018).

,35(2018)。

Article

文章

PubMed

PubMed

PubMed Central

PubMed Central

MATH

数学

Google Scholar

谷歌学术搜索

Liu, M. Y. et al. Spatial and Temporal clustering analysis of tuberculosis in the Mainland of China at the Prefecture level, 2005–2015.

刘梦瑶等。2005-2015年中国大陆地区(地级市)结核病时空聚集性分析。

Infect. Dis. Poverty

传染病与贫困

.

7

7

, 106 (2018).

,106(2018)。

Article

文章

PubMed

PubMed

PubMed Central

PubMed Central

MATH

数学

Google Scholar

谷歌学术

Wang, L. Y. et al. Spatiotemporal patterns of Japanese encephalitis in China, 2002–2010.

王立阳等。中国2002-2010年日本脑炎的时空分布模式。

PLoS Negl. Trop. Dis.

PLoS被忽视的热带病。

7

7

, e2285 (2013).

,e2285(2013)。

Article

文章

PubMed

PubMed

PubMed Central

PubMed Central

MATH

数学

Google Scholar

谷歌学术

Rao, H., Shi, X. & Zhang, X. Using the Kulldorff ’ s scan statistical analysis to detect spatio-temporal clusters of tuberculosis in Qinghai Province, China, 2009–2016.

饶, H., 史, X. & 张, X. 使用Kulldorff扫描统计分析检测中国青海省2009-2016年结核病的时空聚集性。

BMC Infect. Dis.

BMC感染病学

17

17

(2017).

(2017)。

Tango, T. & Takahashi, K. A flexible spatial scan statistic with a restricted likelihood ratio for detecting disease clusters.

探戈,T. 和高桥,K. 一种灵活的空间扫描统计方法结合受限似然比用于检测疾病集群。

Stat. Med.

统计医学

31

31

, 4207–4218 (2012).

,4207–4218(2012)。

Article

文章

MathSciNet

数学科学网

PubMed

PubMed

MATH

数学

Google Scholar

谷歌学术

Tango, T. & Takahashi, K. A flexibly shaped Spatial scan statistic for detecting clusters.

探戈,T. 和高桥,K. 一种用于检测集群的灵活形状空间扫描统计方法。

Int. J. Health Geogr.

国际健康地理杂志

4

4

, 11 (2005).

,11(2005)。

Article

文章

PubMed

PubMed

PubMed Central

PubMed Central

MATH

数学

Google Scholar

谷歌学术

De Massis, F., Di Girolamo, A., Petrini, A., Pizzigallo, E. & Giovannini, A. L. Correlation between animal and human brucellosis in Italy during the period 1997–2002.

德马西斯,F.,迪乔治拉莫,A.,佩特里尼,A.,皮齐加洛,E.,吉奥瓦尼尼,A. L. 1997-2002年期间意大利动物与人类布鲁氏菌病的相关性研究。

Clin. Microbiol. Infect.

临床微生物学与感染

11

11

, 632–636 (2005).

,632-636页(2005年)。

Article

文章

PubMed

PubMed

Google Scholar

谷歌学术

Park, M. Y. et al. A sporadic outbreak of human brucellosis in Korea.

Park, M. Y. 等。韩国人间布鲁氏菌病的零星爆发。

J. Korean Med. Sci

韩国医学科学杂志

.

20

20

, 941–946 (2005).

,941-946页(2005年)。

Karagiannis, I. et al. Outbreak investigation of brucellosis in Thassos, Greece, 2008.

卡拉吉安尼斯,I. 等。2008年希腊塔索斯布鲁氏菌病爆发调查。

Euro Surveill

欧洲监测

.

17

17

(2012).

(2012)。

Golshani, M. & Buozari, S. A review of brucellosis in Iran: epidemiology, risk factors, diagnosis, control, and prevention.

高尔沙尼,M. & 布奥扎里,S. 伊朗布鲁氏菌病综述:流行病学、风险因素、诊断、控制与预防。

Iran. Biomed. J.

伊朗生物医学期刊

21

21

, 349–359 (2017).

,349-359页(2017年)。

PubMed

PubMed

PubMed Central

PubMed Central

MATH

数学

Google Scholar

谷歌学术索

Pascual, D. W. et al. Alternative strategies for vaccination to brucellosis.

帕斯夸尔,D. W. 等。布鲁氏菌病疫苗接种的替代策略。

Microbes Infect.

微生物感染。

20

20

(9–10), 599–605.

(9–10), 599–605。

https://doi.org/10.1016/j.micinf.2017.12.006

https://doi.org/10.1016/j.micinf.2017.12.006

(2018).

(2018)。

Article

文章

PubMed

PubMed

MATH

数学

Google Scholar

谷歌学术

Zhou, L., Fan, M., Hou, Q., Jin, Z. & Sun, X. Transmission dynamics and optimal control of brucellosis in inner Mongolia of China.

周,L.,范,M.,侯,Q.,金,Z.,孙,X. 中国内蒙古布鲁氏菌病的传播动态与最优控制。

Math. Biosci. Eng.

数学、生物科学与工程

15

15

(2), 543–567.

(2), 543–567。

https://doi.org/10.3934/mbe.2018025

https://doi.org/10.3934/mbe.2018025

(2018).

(2018)。

Article

文章

MathSciNet

数学评论

PubMed

PubMed

MATH

数学

Google Scholar

谷歌学术

Jia, P. & Joyner, A. Human brucellosis occurrences in inner Mongolia, China: a spatio-temporal distribution and ecological niche modeling approach.

贾,P. & Joyner, A. 中国内蒙古地区人类布鲁氏菌病的发生情况:时空分布与生态位建模方法。

BMC Infect. Dis.

BMC感染病学。

15

15

, 36 (2015).

,36(2015)。

Article

文章

PubMed

PubMed

PubMed Central

PubMed Central

MATH

数学

Google Scholar

谷歌学术

Rodríguez-Morales, A. J. Climate change, climate variability and brucellosis. Recent patents Anti-Infect.

罗德里格斯-莫拉莱斯,A. J. 气候变化、气候变率与布鲁氏菌病。近期专利抗感染。

Drug Discov

药物发现

.

8

8

, 4–12 (2013).

,4-12页(2013年)。

MATH

数学

Google Scholar

谷歌学术索

Liang, P., Zhao, Y., Zhao, J., Pan, D. & Guo, Z. The spatiotemporal distribution of human brucellosis in Mainland China from 2007–2016.

梁鹏、赵岩、赵军、潘东、郭政。《2007-2016年中国大陆人间布鲁氏菌病的时空分布》。

BMC Infect. Dis.

BMC感染病学。

20

20

, 249 (2020).

,249页(2020年)。

Article

文章

PubMed

PubMed

PubMed Central

PubMed Central

MATH

数学

Google Scholar

谷歌学术

Liang, P. F., Zhao, Y., Zhao, J. H., Pan, D. F. & Guo, Z. Q. Human distribution and spatial-temporal clustering analysis of human brucellosis in China from 2012 to 2016.

梁鹏飞,赵宇,赵建华,潘多福,郭志强。2012年至2016年中国人间布鲁氏菌病的分布及时空聚集性分析。

Infect. Dis. Poverty

传染病与贫困

.

9

9

, 142 (2020).

,142(2020)。

Article

文章

PubMed

PubMed

PubMed Central

PubMed Central

MATH

数学

Google Scholar

谷歌学术搜索

Download references

下载参考文献

Acknowledgements

致谢

We are very grateful to referees and editors for their careful reading and valuable comments. We would also like to thank Profs. Yu Zhao, Jiangping Li for their valuable discussion on this work.

我们非常感谢审稿人和编辑的仔细阅读和宝贵意见。我们还要感谢赵宇教授和李江平教授对这项工作的宝贵讨论。

Funding

资金

This work was part supported by the Grant from Ningxia Provincial Natural Science Foundation(NO. NZ17187), by the Basic research project of Northwest University for Nationalities (NO. 31920180088).

这项工作得到了宁夏省自然科学基金(编号:NZ17187)和西北民族大学基础研究项目(编号:31920180088)的部分支持。

Author information

作者信息

Authors and Affiliations

作者与所属机构

Public Health Center, People’s Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, China

宁夏回族自治区人民医院公共卫生中心,宁夏医科大学,银川,750004,中国

Yuan Zhao, Yanfang Zhang, Lixu Ma, Hong Li, Jingjing Li, Shanghong Liu & Peifeng Liang

赵媛,张艳芳,马立旭,李红,李晶晶,刘尚红,梁培峰

Department of Emergency, People’s Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, China

宁夏医科大学宁夏回族自治区人民医院急诊科,银川,750004,中国

Dongfeng Pan

东风盘

Authors

作者

Yuan Zhao

袁昭

View author publications

查看作者的出版物

You can also search for this author in

您还可以搜索该作者在

PubMed

PubMed

Google Scholar

谷歌学术

Dongfeng Pan

东风盘

View author publications

查看作者的出版物

You can also search for this author in

您还可以搜索此作者在

PubMed

PubMed

Google Scholar

谷歌学术

Yanfang Zhang

张艳芳

View author publications

查看作者的出版物

You can also search for this author in

您还可以搜索此作者在

PubMed

PubMed

Google Scholar

谷歌学术

Lixu Ma

马立旭

View author publications

查看作者的出版物

You can also search for this author in

您还可以搜索此作者在

PubMed

PubMed

Google Scholar

谷歌学术

Hong Li

李红

View author publications

查看作者的出版物

You can also search for this author in

您还可以搜索此作者在

PubMed

PubMed

Google Scholar

谷歌学术

Jingjing Li

李晶晶

View author publications

查看作者的出版物

You can also search for this author in

您还可以搜索此作者在

PubMed

PubMed

Google Scholar

谷歌学术

Shanghong Liu

刘上海红

View author publications

查看作者的出版物

You can also search for this author in

您还可以搜索此作者在

PubMed

PubMed

Google Scholar

谷歌学术

Peifeng Liang

梁培锋

View author publications

查看作者的出版物

You can also search for this author in

您还可以搜索此作者在

PubMed

PubMed

Google Scholar

谷歌学术

Contributions

贡献

YZ drafted the manuscript, DFP, YFZ, HL and LXM participated in the design of the study, JJL and SHL revised manuscript critically for important intellectual content. PFL managed the project implementation. All authors read and approved the final version of the manuscript.

YZ起草了手稿,DFP、YFZ、HL和LXM参与了研究的设计,JJL和SHL对手稿的重要知识产权内容进行了严格修订。PFL负责项目的实施管理。所有作者阅读并批准了手稿的最终版本。

Corresponding author

通讯作者

Correspondence to

致信给

Peifeng Liang

梁培峰

.

Ethics declarations

伦理声明

Competing interests

竞争利益

The authors declare no competing interests.

作者声明不存在竞争性利益。

Additional information

附加信息

Publisher’s note

出版商说明

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature 对已发布地图中的管辖权声明和机构隶属关系保持中立。

Rights and permissions

权利与许可

Open Access

开放获取

This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

本文根据知识共享署名-非商业性使用-禁止演绎 4.0 国际许可协议获得许可,该协议允许您在任何媒介或格式中进行任何非商业性的使用、分享、分发和复制,只要您对原作者和来源给予适当的署名,提供指向知识共享许可协议的链接,并说明是否对授权材料进行了修改。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可,您无权分享从本文或其部分内容衍生的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非材料的署名行另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不被法律规定允许或超出了允许的使用范围,您需要直接从版权持有人处获得许可。

To view a copy of this licence, visit .

要查看此许可证的副本,请访问 。

http://creativecommons.org/licenses/by-nc-nd/4.0/

http://creativecommons.org/licenses/by-nc-nd/4.0/

.

Reprints and permissions

重印和许可

About this article

关于本文

Cite this article

引用这篇文章

Zhao, Y., Pan, D., Zhang, Y.

赵, Y., 潘, D., 张, Y.

et al.

等。

Spatial interpolation and spatiotemporal scanning analysis of human brucellosis in mainland China from 2012 to 2018.

2012年至2018年中国大陆人间布鲁氏菌病的空间插值与时空扫描分析。

Sci Rep

科学报告

15

15

, 7403 (2025). https://doi.org/10.1038/s41598-025-91769-4

,7403(2025)。https://doi.org/10.1038/s41598-025-91769-4

Download citation

下载引用

Received

已收到

:

23 August 2024

2024年8月23日

Accepted

已接受

:

24 February 2025

2025年2月24日

Published

已发布

:

03 March 2025

2025年3月3日

DOI

数字对象标识符

:

https://doi.org/10.1038/s41598-025-91769-4

https://doi.org/10.1038/s41598-025-91769-4

Share this article

分享这篇文章

Anyone you share the following link with will be able to read this content:

任何你分享以下链接的人都将能够阅读此内容:

Get shareable link

获取可共享链接

Sorry, a shareable link is not currently available for this article.

抱歉,这篇文章目前没有可共享的链接。

Copy to clipboard

复制到剪贴板

Provided by the Springer Nature SharedIt content-sharing initiative

由 Springer Nature SharedIt 内容共享计划提供

Keywords

关键词

Human brucellosis

人布鲁氏菌病

China

中国

Dynamic series

动态系列

Kriging interpolation

克里金插值

Spatial-temporal scanning

时空扫描

Subjects

主题

Diseases

疾病

Health care

医疗保健

Medical research

医学研究