EN
登录

美国牛蛙(Aquarana catesbeiana)的染色体级别基因组组装

A Chromosome-level genome assembly of the American bullfrog (Aquarana catesbeiana)

Nature 等信源发布 2025-03-10 18:14

可切换为仅中文


Abstract

摘要

The American bullfrog (

美国牛蛙 (

Aquarana catesbeiana

美洲牛蛙

) is both an economically important aquaculture species and a globally distributed invasive organism with high environmental adaptability. In this study, we present a high-quality chromosome-level genome assembly for the species, comprising 13 chromosomes with a total length of 6.32 Gb and a scaffold N50 of 691.8 Mb.

)是一种经济上重要的水产养殖物种,也是一种环境适应性很强的全球分布入侵生物。在本研究中,我们展示了该物种的高质量染色体级别基因组组装,包含 13 条染色体,总长度为 6.32 Gb,支架 N50 为 691.8 Mb。

Genome completeness was evaluated at 95.5% using BUSCO and 99.9% using Merqury. Repetitive sequences accounted for 79.51% of the genome. Through a combination of RNA-seq, Ab initio and homology-based gene prediction, we identified 32,382 protein-coding genes, with 98.96% of these genes functionally annotated.

使用BUSCO评估基因组完整性为95.5%,使用Merqury评估为99.9%。重复序列占基因组的79.51%。通过结合RNA-seq、从头预测和基于同源性的基因预测方法,我们鉴定了32,382个蛋白质编码基因,其中98.96%的基因获得了功能注释。

This chromosome-level assembly provides an important resource for future studies on the evolution, functional genomics and molecular breeding of the American bullfrog..

该染色体级别的组装为未来关于美洲牛蛙的进化、功能基因组学和分子育种研究提供了重要的资源。

Background & summary

背景与摘要

Aquarana catesbeiana

美洲牛蛙

, commonly known as bullfrog, belongs to the class Amphibia, order Anura and family Ranidae. Native to North America, this species has undergone significant evolutionary adaptations, allowing it to thrive across diverse landforms and climatic conditions

,通常被称为牛蛙,属于两栖纲、无尾目、蛙科。该物种原产于北美,经历了显著的进化适应,使其能够在不同的地形和气候条件下繁衍生息。

1

1

. It has become a highly successful invasive species, expanding to over, 40 countries across four continents and contributing to the decline of indigenous species across multiple taxonomic categories

它已经成为一种高度成功的入侵物种,扩展到四大洲的40多个国家,并导致多个分类类群的本土物种衰退。

2

2

. Furthermore, bullfrog meat is considered a delicacy in many regions, driving increased global consumption

此外,牛蛙肉在许多地区被视为美味佳肴,推动了全球消费的增长。

3

3

,

4

4

,

5

5

,

6

6

,

7

7

.

As a representative species of the order Anuran, the American bullfrog plays important roles in various fields of study, from developmental biology and physiology to ecology and evolution

作为蛙类的代表性物种,美洲牛蛙在发育生物学、生理学以及生态学和进化等各个研究领域中都发挥着重要作用。

8

8

,

9

9

. Previous studies utilised anuran species (frogs) to exhibit a wide range of sex chromosome differentiation stages as they exhibit diverse sex-determination systems and varying stages of sex chromosome differentiation, both between and within species

以前的研究利用了蛙类物种(青蛙)来展示性染色体分化的不同阶段,因为它们具有多样的性别决定系统和不同程度的性染色体分化,无论是在物种之间还是在物种内部。

10

10

,

11

11

,

12

12

,

13

13

. Therefore, they serve as suitable candidates for investigating sex chromosome evolution and diversity

因此,它们是研究性染色体进化和多样性的合适候选者。

13

13

. Moreover, frogs display significant variation in genome size

此外,青蛙的基因组大小存在显著差异。

14

14

,

15

15

, with sequenced species ranging from

,测序的物种范围从

Platyplectrum ornatum

饰纹平趾蛙

(1.06 Gb)

(1.06 Gb)

16

16

to

Bombina bombina

东方铃蟾

(9.8GB)

(9.8GB)

17

17

, making them ideal models for studying genome size evolution

,使它们成为研究基因组大小进化的理想模型

15

15

.

To facilitate ecological, evolutionary and functional genomic studies, high-quality genome assemblies are essential. In 2017, a draft genome of

为了促进生态学、进化和功能基因组学研究,高质量的基因组组装是必不可少的。2017年,一个草案基因组

A. catesbeiana

A. catesbeiana

was published, featuring a scaffold N50 of 51.6 Kb and 45.3% complete BUSCOs

被发布,其支架N50为51.6 Kb,BUSCO完整度为45.3%

8

8

. While these data provided valuable insights, the poor quality of the assembly limited its broader applicability. In the present study, we generate a chromosome-level genome assembly for the American bullfrog using integrated datasets from Pacific Biosciences (PacBio) HiFi reads, MGI short reads and Hi-C reads.

这些数据虽然提供了有价值的见解,但组装质量较差,限制了其更广泛的应用。在本研究中,我们通过整合来自 Pacific Biosciences (PacBio) HiFi 测序、MGI 短读长测序和 Hi-C 测序的数据,为美洲牛蛙生成了一个染色体级别的基因组组装。

This high-quality assembly will significantly advance research on the unique characteristics of frogs..

这个高质量的基因组将大大推进对青蛙独特特性的研究。

Methods

方法

Sample collection

样本收集

Tissue samples were collected from a female American bullfrog (Fig.

从一只雌性美国牛蛙身上收集了组织样本(图。

1

1

) bred at the Qingyuan Yangshan breeding base, Zhongyang Group, Guangdong Province. Approximately 10 g of muscle tissue was extracted from this individual for whole-genome sequencing, including short-read, long-read and Hi-C sequencing. Additionally, multiple tissues were collected for transcriptome sequencing.

)在广东省仲恺集团清远阳山育种基地繁殖。从该个体中提取了大约10克肌肉组织用于全基因组测序,包括短读长、长读长和Hi-C测序。此外,还收集了多种组织进行转录组测序。

Samples included intestines, lungs, vas deferens, liver, muscles, stomach and eyes, with approximately 1 g of each tissue collected. All tissue samples were fragmented, rapidly cooled with liquid nitrogen and stored at −80 °C for future use. The sample collection protocol was approved by the Animal Ethics Committee of Zhongkai University of Agriculture and Engineering (Guangzhou, China)..

样本包括肠、肺、输精管、肝、肌肉、胃和眼睛,每种组织收集约1克。所有组织样本均被分割,用液氮快速冷却,并保存在-80°C以备将来使用。样本采集方案经仲恺农业工程学院(中国广州)动物伦理委员会批准。

Fig. 1

图1

The full-body appearance of the American bullfrog. (

美国牛蛙的全身外观。

A

A

C

C

) Female. (

女性。

D

D

F

F

) Male. (

男性。

A,

A,

D

D

) Lateral anterior view. (

) 侧面前视图。(

B,

B,

E

E

) Dorsal view. (

) 背面视图。(

C,

C,

F

F

) Ventral supine view.

腹侧仰卧位视图。

Full size image

全尺寸图像

DNA extraction and genome sequencing

DNA提取和基因组测序

Genomic DNA (gDNA) was extracted from muscle tissue using the Qiagen Blood & Cell Culture DNA Kit (Qiagen, USA). The gDNA was randomly fragmented, and 1.5 µg was used to construct a 350-bp insert-size library with the MGIEasy Universal DNA Library Prep Set (MGI, China). Sequencing was performed on the MGISEQ2000 platform (MGI, China), generating 322.27 Gb of paired-end raw reads (150 bp).

使用Qiagen Blood & Cell Culture DNA Kit(Qiagen,美国)从肌肉组织中提取基因组DNA(gDNA)。将gDNA随机片段化,并使用1.5 µg构建350 bp插入片段大小的文库,采用MGIEasy Universal DNA Library Prep Set(MGI,中国)。测序在MGISEQ2000平台(MGI,中国)上进行,生成了322.27 Gb的双端原始读数(150 bp)。

After filtering the raw reads using SOAPnuke (v2.1.0).

使用SOAPnuke(v2.1.0)对原始读段进行过滤后。

18

18

to remove adaptors and low-quality sequences, 324.64 Gb of clean reads were obtained and used for genome size estimation and assembly.

去除接头和低质量序列后,获得了324.64 Gb的高质量读段,并用于基因组大小估计和组装。

For long-read sequencing, 2 µg of gDNA was used to create libraries following PacBio’s HiFi sequencing protocol (Pacific Biosciences, USA) with the SMRTbell Express Template Prep Kit 2.0. Sequencing was carried out on the PacBio Sequel II System, generating approximately 10.32 million consensus reads (156.21 Gb) with an average read length of 15.128 kb, processed using CCS software (SMRT Link v9.0).

对于长读长测序,使用了2 µg的基因组DNA(gDNA)按照PacBio的HiFi测序协议(Pacific Biosciences,美国)以及SMRTbell Express Template Prep Kit 2.0来构建文库。测序在PacBio Sequel II系统上进行,生成了大约1032万条一致性读取(156.21 Gb),平均读长为15.128 kb,并使用CCS软件(SMRT Link v9.0)进行处理。

19

19

(-min-passes 1–min-rq 0.99–min-length 100).

(-min-passes 1–min-rq 0.99–min-length 100)。

Hi-C sequencing was performed on muscle tissue (~1 g) from the same female individual. Libraries were constructed using the GrandOmics Hi-C Kit (GrandOmics, China) with DpnII as the restriction enzyme. Sequencing was carried out on the Illumina NovaSeq platform (paired-end reads, 150 bp), yielding 711.68 Gb of raw reads.

对来自同一雌性个体的肌肉组织(约1克)进行了Hi-C测序。使用GrandOmics Hi-C Kit(GrandOmics,中国)构建文库,并以DpnII作为限制性内切酶。测序在Illumina NovaSeq平台上进行(双端测序,150 bp),获得了711.68 Gb的原始读数。

After quality filtration using fastp.

使用fastp进行质量过滤后。

20

20

, eliminating low-quality reads (quality scores <20) and those shorter than 30 bp, 697.99 Gb of high-quality reads (98.76% of the initial reads) were obtained for constructing pseudo-chromosomes.

,去除低质量(质量分数<20)和长度短于30 bp的读段后,获得了697.99 Gb的高质量读段(占初始读段的98.76%),用于构建伪染色体。

RNA extraction and transcriptome sequencing

RNA提取与转录组测序

RNA was extracted from tissue samples using the standard Trizol protocol, followed by purification with the Qiagen RNeasy Mini Kit (Qiagen, USA). cDNA libraries were constructed following Illumina’s guidelines, and sequencing on the HiSeq X Ten platform (Illumina, USA). Finally, approximately 52 Gb of transcriptome data were generated.

使用标准的Trizol协议从组织样本中提取RNA,随后用Qiagen RNeasy Mini Kit(Qiagen,美国)进行纯化。按照Illumina的指南构建cDNA文库,并在HiSeq X Ten平台(Illumina,美国)上进行测序。最终生成了约52 Gb的转录组数据。

These data were used to support genome assembly and annotation..

这些数据被用于支持基因组组装和注释。

Genome size estimation

基因组大小估计

To genome size of the American bullfrog was estimated using a K-mer-based

利用K-mer方法估算了美国牛蛙的基因组大小。

21

21

analysis method. The frequency of 17-mers was calculated using the GCE software

分析方法。使用GCE软件计算了17聚体的频率。

22

22

(v1.0.2). The genome size (G) was determined by the formula G = K_num/K_depth, where K_depth represents K-mer depth and K_num is the total number of 17-mers. A BLASTN (v2.7.1)

(v1.0.2)。基因组大小(G)通过公式 G = K_num / K_depth 确定,其中 K_depth 表示 K-mer 深度,K_num 是 17-mers 的总数。使用 BLASTN (v2.7.1)

23

23

alignment against the NT database confirmed the absence of significant exogenous contamination in the library data. The estimated genome size was approximately 5.81 Gb, with an estimated genome heterozygosity of 0.51% (Fig.

与NT数据库的比对确认了文库数据中不存在显著的外源污染。估计的基因组大小约为5.81 Gb,估计的基因组杂合度为0.51%(图。

2a

2a

).

)。

Fig. 2

图2

Genome assessment of the American bullfrog. (

美洲牛蛙的基因组评估。

a

a

) A GenomeScope K-mer plot. (

) 一个 GenomeScope K-mer 图。(

b

b

) GC-depth plot. The x- and y-axis represent GC content and sequencing depth, respectively, and the corresponding histograms are displayed along the top and right axes.

GC深度图。x轴和y轴分别表示GC含量和测序深度,相应的直方图显示在顶部和右侧轴上。

Full size image

全尺寸图像

De novo genome assembly

从头基因组组装

After obtaining subreads, we used the assembly software hifiasm (v0.16.1)

在获得子读段后,我们使用了组装软件 hifiasm (v0.16.1)

24

24

to perform reference-free

无参考执行

de novo

从头开始

assembly of long reads from the pacbio platform’s SMRT sequencing, using default parameters. Error correction was performed using racon (v1.4.3)

使用PacBio平台的SMRT测序技术对长读段进行组装,并采用默认参数。使用racon(v1.4.3)进行错误校正。

25

25

, gcpp (v2.0.2) (

`, gcpp(v2.0.2)(`

https://github.com/PacificBiosciences/gcpp

https://github.com/PacificBiosciences/gcpp

) and pilon (v1.22)

) 和 pilon (v1.22)

26

26

, which utilised MGI short reads. The initial genome assembly size was 6.37 Gb, aligning with the previously estimated genome size. Various evaluation methods were applied to assess the quality of the assembly.

,利用了MGI短读序列。初始基因组组装大小为6.37 Gb,与之前估算的基因组大小相符。应用了多种评估方法来评估组装质量。

Pseudo-chromosome construction

伪染色体构建

Hi-C technology was used to construct pseudo-chromosomes based on high-quality genome assembly. Trimmomatic software (LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:15)

使用Hi-C技术基于高质量基因组组装构建伪染色体。Trimmomatic软件(LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:15)

27

27

was employed to remove sequencing low-quality fragments and adapters. We aligned the retained data to the draft assembly using Juicer (baw: -SP5M)

被用于去除测序的低质量片段和接头。我们使用Juicer(参数:-SP5M)将保留的数据比对到初步组装上。

28

28

, filtering out low-quality and redundant reads. Interaction maps were created using 3D-DNA software (Fig.

,过滤掉低质量和冗余的读数。使用3D-DNA软件创建了相互作用图(图。

3a

3a

), and error correction was performed using JuiceBox software (v1.11.08)

),并使用JuiceBox软件(v1.11.08)进行错误校正

29

29

. The final genome assembly reached 6.32 Gb, consisting of 13 pseudo-chromosomes (See details in Table

最终的基因组组装达到了6.32 Gb,包含13条假染色体(详见表中细节)。

1

1

), which covered 99.21% of the original genome. The overall assembly metrics included a scaffold N50 of 691.8 Mb.

),覆盖了原始基因组的99.21%。整体组装指标包括691.8 Mb的支架N50。

Fig. 3

图 3

(

(

a

a

) A total of 13 distinct blocks were visualised in the Hi-C contact matrixes. Chromosomes 1–6 are designated as macrochromosomes, while chromosomes 7–13 are classified as microchromosomes. (

在Hi-C接触矩阵中可视化了13个不同的区块。1-6号染色体被指定为大染色体,而7-13号染色体被归类为小染色体。

b

b

) Pseudo-chromosome and Karyotype Correlation Analysis. The x-axis represents chromosome length measured based on existing karyotype data, assuming that each μm of chromosome contains 37.0 Mb. The y-axis represents the pseudo-chromosome cumulative length. (

伪染色体与核型相关性分析。x轴表示基于现有核型数据测量的染色体长度,假设每微米染色体包含37.0 Mb。y轴表示伪染色体累积长度。

c

c

) A Circos plot summarising the genome features. From outside to inside: (I) the lengths of 13 pseudo-chromosomes, (II) gene density, (III) repeat coverage, (IV) non-coding RNA content, (V) GC content and (VI) internal syntenic blocks.

) 概述基因组特征的Circos图。从外到内依次为:(I) 13条假染色体的长度,(II) 基因密度,(III) 重复序列覆盖度,(IV) 非编码RNA含量,(V) GC含量,以及(VI) 内部共线性块。

Full size image

全尺寸图像

Table 1 Statistics of the genome assembly for the American Bullfrog.

表1 美国牛蛙基因组组装的统计信息。

Full size table

全尺寸表格

Based on the existing karyotype data on American bullfrog

基于现有的美国牛蛙核型数据

30

30

,

31

31

, we conducted a correlation analysis between the relative lengths obtained from the karyotype data and the cumulative length of pseudo-chromosomes. The analysis yielded an R-squared value above 0.99, confirming consistency with prior research. Using the karyotype image, we calculated physical chromosome lengths and determined a compression ratio of 37.0 Mb per μm (Table .

我们对来自核型数据的相对长度与伪染色体的累积长度进行了相关性分析。分析得到的R平方值高于0.99,证实与先前的研究结果一致。利用核型图像,我们计算了物理染色体长度,并确定了每微米37.0 Mb的压缩比(表。

1

1

). The correlation analysis between the pseudo-chromosome lengths and karyotype measurements produced an R-squared value greater than 0.98 (Fig.

)。伪染色体长度与核型测量之间的相关性分析产生的R平方值大于0.98(图。

3b

3b

), demonstrating the accuracy of the pseudo-chromosome construction.

),证明了伪染色体构建的准确性。

Gene annotation and functional assignment

基因注释与功能分配

Repetitive sequences were predicted using a Homolog-based approach, employing RepeatMasker and RepeatProteinMask software (v4.1.2)

使用基于同源性的方法预测重复序列,采用 RepeatMasker 和 RepeatProteinMask 软件(v4.1.2)。

32

32

with the RepBase database. Additionally, an ab initio approach was employed, utilising RepeatModeler (v2.0.2a)

结合RepBase数据库。此外,还采用了从头预测的方法,利用RepeatModeler(v2.0.2a)。

32

32

and LTR-FINDER (v1.0.5)

和 LTR-FINDER(v1.0.5)

33

33

software to construct an ab initio repetitive sequence library, followed by prediction using RepeatMasker. Simultaneously, the TRF software (v4.09)

构建从头算重复序列库的软件,随后使用RepeatMasker进行预测。同时,TRF软件(v4.09)

34

34

was employed to identify Tandem Repeats within the genome. Finally, a total of 5.07 Gb of repetitive sequences were detected, accounting for 79.51% of the assembled genome (See details in Table

被用于识别基因组内的串联重复序列。最终,共检测到5.07Gb的重复序列,占组装基因组的79.51%(详见表中细节)。

2

2

).

)。

Table 2 Repetitive Sequence Classification Results Statistics.

表2 重复序列分类结果统计。

Full size table

全尺寸表格

Gene structure prediction involved three approaches: transcriptome-based, homology-based and

基因结构预测涉及三种方法:基于转录组的、基于同源性的和

de novo

从头开始

prediction. Exonerate (v2.4)

预测。免除(v2.4)

35

35

was used to predict gene structures in homologous species, including

被用于预测同源物种中的基因结构,包括

Engystomops pustulosus

泡状细齿蛙

,

Bufo bufo

蟾蜍

,

Rana temporaria

普通蛙

and

Xenopus laevis

非洲爪蟾

.

De novo

从头开始

assembly of transcriptome reads was performed using Trinity (v2.13.2)

使用Trinity(v2.13.2)进行转录组读段的组装。

36

36

, followed by

,接着是

de novo

从头开始

prediction using PASA

使用PASA进行预测

37

37

and Augustus (v3.3)

和奥古斯都 (v3.3)

38

38

. A total of 32,382 genes were annotated, with an average gene length of 58,248.47 bp, an average CDS length of 1,264.88 bp and an average of 6.55 exons per gene (See details in Table

共注释了32,382个基因,平均基因长度为58,248.47 bp,平均CDS长度为1,264.88 bp,每个基因平均有6.55个外显子(详见表中细节)。

3

3

).

)。

Table 3 Gene structure and function annotation.

表3 基因结构与功能注释。

Full size table

全尺寸表格

Functional gene annotation was conducted through comparisons across various databases such as SwissProt

通过与SwissProt等不同数据库的比较,进行了功能基因注释。

39

39

, NCBI NR, PFAM

,NCBI NR,PFAM

40

40

, GO

,去吧

41

41

, KEGG

,KEGG

42

42

, InterPro

,InterPro

43

四十三

and TrEMBL

和 TrEMBL

44

44

. Among these predicted genes, 98.96% were annotated in protein databases (See details in Table

在这些预测的基因中,98.96% 在蛋白质数据库中得到了注释(详见表

3

3

). Syntenic blocks were constructed using MCscan

). 使用MCscan构建同线性块

45

45

, and a Circos

,以及一个Circos

46

46

plot (Fig.

绘制(图。

3c

3c

) illustrated key features, including: (I) the lengths of 13 pseudo-chromosomes, (II) gene density, (III) repeat coverage, (IV) non-coding RNA content, (V) GC content and (VI) internal syntenic blocks.

)图示了关键特征,包括:(I)13条假染色体的长度,(II)基因密度,(III)重复序列覆盖度,(IV)非编码RNA含量,(V)GC含量和(VI)内部共线性区块。

Data Records

数据记录

The genome assembly of the American bullfrog have been deposited in the GenBank database under the accession number GCA_042186555.1

美国牛蛙的基因组组装已存入GenBank数据库,登录号为GCA_042186555.1。

47

47

. The original genomic and transcriptomic data has been deposited in the China National GeneBank DataBase (CNGBdb) under project ID CNP0004806. Genome annotation files can be accessed publicly via the FigShare

原始的基因组和转录组数据已存入中国国家基因库数据库(CNGBdb),项目编号为CNP0004806。基因组注释文件可以通过FigShare公开访问。

48

48

.

Technical Validation

技术验证

Quality assessment of the genome assembly

基因组组装的质量评估

To evaluate the quality of the assembled genome, gDNA quality was assessed using both a Nanodrop spectrophotometer (Thermo Fisher Scientific, USA) and agarose gel electrophoresis. The OD260/280 values ranged between 1.8 and 2.0, while OD260/230 values were between 2.0 and 2.2, confirming sample quality.

为了评估组装基因组的质量,使用Nanodrop分光光度计(Thermo Fisher Scientific,美国)和琼脂糖凝胶电泳对gDNA质量进行了评估。OD260/280值在1.8到2.0之间,而OD260/230值在2.0到2.2之间,确认了样本质量。

RNA extracted from the samples was analysed using a 2100 Bioanalyzer (Agilent Technologies, USA), yielding a 28S/18S ratio exceeding 1.0 and an RNA Integrity Number (RIN) greater than 7.0, further meeting quality requirements..

从样本中提取的RNA使用2100生物分析仪(安捷伦科技,美国)进行分析,得到的28S/18S比值超过1.0,RNA完整性数值(RIN)大于7.0,进一步满足质量要求。

The minimap2 software (v2.12)

minimap2 软件 (v2.12)

49

49

was employed to map long reads to assembly data, using a 1000 bp sliding window, which confirmed that the genome assembly was free from contamination (Fig.

被用于将长读段映射到组装数据,使用了1000 bp的滑动窗口,这证实了基因组组装没有污染(图。

2b

2b

). Additionally, alignment of both long and short reads to the assembled genome indicated coverage of 99.13% and 99.96%, respectively, with average sequencing depth of 50.39x and 35.42x. The integrity of the genome assembly was further assessed using Benchmarking Universal Single Copy Orthologs (BUSCO, v5.2.2).

)。此外,长读段和短读段与组装基因组的比对表明,覆盖率分别为99.13%和99.96%,平均测序深度为50.39x和35.42x。使用Benchmarking Universal Single Copy Orthologs(BUSCO,v5.2.2)进一步评估了基因组组装的完整性。

50

50

with the vertebrata_odb10 database (Table

与vertebrata_odb10数据库(表

4

4

). The results showed that the assembly and annotation contained 92.2% and 89.5% complete BUSCO genes, respectively, with single copy BUSCOs accounting for 90.1% and 86.9%, and duplicated BUSCOs representing 2.1% and 2.7%. Merqury (v1.3)

)。结果表明,组装和注释分别包含 92.2% 和 89.5% 的完整 BUSCO 基因,其中单拷贝 BUSCO 占 90.1% 和 86.9%,重复 BUSCO 占 2.1% 和 2.7%。Merqury (v1.3)

51

51

analysis revealed a QV score and error rate of 38.924 and 1.28e-04, respectively. Gfastats (v1.3.1)

分析显示QV分数和错误率分别为38.924和1.28e-04。Gfastats(v1.3.1)

52

52

was used to generate assembly summary statistics (Table

用于生成汇编摘要统计信息(表

4

4

).

)。

Table 4 Statistics of the assembled genome and gene annotation for the American bullfrog.

表4 美国牛蛙的基因组组装和基因注释统计。

Full size table

全尺寸表格

Collinearity analysis

共线性分析

The JCVI package

JCVI 软件包

53

53

was used to perform whole-genome synteny analysis by aligning the chromosome-level genome data between the American bullfrog (this study) and its relative common frog (

通过将美洲牛蛙(本研究)与近缘的普通蛙的染色体水平基因组数据进行比对,用于执行全基因组共线性分析。

R. temporaria

R. temporaria

). Our results demonstrated strong one-to-one chromosomal correspondences between the two species (Fig.

). 我们的结果表明这两个物种之间存在强烈的染色体一一对应关系(图。

4

4

), highlighting the high-quality of the American Bullfrog genome assembly.

),突显了美国牛蛙基因组组装的高质量。

Fig. 4

图4

Chromosomal Synteny Analysis of

染色体共线性分析

Aquarana catesbeiana

美洲牛蛙

and its relative

及其相对的

Rata temporaria

临时利率

.

Full size image

全尺寸图像

Code availability

代码可用性

The parameters and versions of the softwares used in the present study are described in the Methods section. Default parameters were used unless otherwise specified. No custom code was employed in the present study.

本研究中使用的软件参数和版本在方法部分进行了描述。除非另有说明,否则使用了默认参数。本研究未使用自定义代码。

References

参考文献

Halliday, T.

霍尔迪,T.

The Book of Frogs

《青蛙之书》

.

A Life-Size Guide to Six Hundred Species from around the World

来自世界各地的六百种物种的真人大小指南

(University of Chicago Press, 2016).

(芝加哥大学出版社,2016年)。

Everts, T., Van Driessche, C., Neyrinck, S., Jacquemyn, H. & Brys, R. The American bullfrog exposed: distribution, invasion fronts, and spatial configuration of invasion hubs revealed by eDNA-based monitoring and environmental assessments.

埃弗茨,T.,范·德里塞,C.,内林克,S.,雅各布林,H.,布里斯,R. 揭示美国牛蛙:基于eDNA监测和环境评估的分布、入侵前沿及入侵枢纽的空间配置。

Manag. Biol. Invasions

管理生物入侵

14

14

, 201–220 (2023).

,201-220页(2023年)。

Article

文章

Google Scholar

谷歌学术

Zhu, Y.

朱,Y。

et al

. Comparison of the nutritional composition of bullfrog meat from different parts of the animal.

不同部位牛蛙肉的营养成分比较。

Food Sci. Anim. Resour.

食品科学与动物资源

41

41

, 1049–1059 (2021).

,1049–1059(2021)。

Article

文章

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术

Zhang, C.

张,C。

et al

. Apparent digestibility coef fi cients and amino acid availability of common protein ingredients in the diets of bullfrog,

。牛蛙日粮中常见蛋白质原料的表观消化率系数和氨基酸利用率

Rana

拉娜

(

(

Lithobates

美洲牛蛙属

)

)

catesbeiana

牛蛙

.

Aquaculture

水产养殖

437

437

, 38–45 (2015).

,38-45页(2015年)。

Article

文章

CAS

中国科学院

Google Scholar

谷歌学术

Wei, D.

魏, D.

et al

. Natural occurrences and characterization of Elizabethkingia miricola infection in cultured bullfrogs (

自然界中发生的伊丽莎白金菌感染及养殖牛蛙的特征 (

Rana catesbeiana

美洲牛蛙

).

)。

Front. Cell. Infect. Microbiol.

《细胞与感染微生物学前沿》

13

13

, 1–11 (2023).

,1–11(2023)。

Article

文章

Google Scholar

谷歌学术

Zhang, Cxiao

张,小Cxiao

et al

等人

. Effects of different lipid sources on growth performance, body composition and lipid metabolism of bullfrog

不同脂质源对牛蛙生长性能、体成分和脂质代谢的影响

Aquarana catesbeiana

美洲牛蛙

.

Aquaculture

水产养殖

457

457

, 104–108 (2016).

,104-108页(2016年)。

Article

文章

CAS

中国科学院

Google Scholar

谷歌学术

Trimpert, J.

特里姆佩特,J.

et al

. Elizabethkingia miricola infection in multiple anuran species.

伊丽莎白金菌属米里科拉感染多种蛙类物种。

Transbound. Emerg. Dis.

跨境紧急疾病

68

68

, 931–940 (2021).

,931-940页(2021年)。

Article

文章

PubMed

PubMed

Google Scholar

谷歌学术

Hammond, S. A.

哈蒙德,S. A.

et al

. The North American bullfrog draft genome provides insight into hormonal regulation of long noncoding RNA.

北美牛蛙的基因组草图提供了关于长链非编码RNA激素调控的见解。

Nat. Commun.

自然通讯

8

8

, 1–8 (2017).

,1-8页(2017年)。

Article

文章

CAS

中国科学院

Google Scholar

谷歌学术

Seidl, F.

赛德尔,F.

et al

. Genome of spea multiplicata, a rapidly developing, phenotypically plastic, and desert-adapted spadefoot toad.

. 多倍体尖嘴蟾蜍的基因组,这是一种快速发育、表型可塑且适应沙漠环境的铲足蟾蜍。

G3 Genes, Genomes, Genet.

G3 基因,基因组,遗传学。

9

9

, 3909–3919 (2019).

,3909–3919(2019)。

Article

文章

CAS

中国科学院

Google Scholar

谷歌学术

Malcom, J. W., Kudra, R. S. & Malone, J. H. The Sex Chromosomes of Frogs: Variability and Tolerance Offer Clues to Genome Evolution and Function.

马尔科姆,J. W.,库德拉,R. S.,& 马龙,J. H. 青蛙的性染色体:变异性和耐受性为基因组进化和功能提供了线索。

J. Genomics

基因组学杂志

2

2

, 68–76 (2014).

,68-76页(2014年)。

Article

文章

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术

Perrin, N. Sex-chromosome evolution in frogs: What role for sex-antagonistic genes?

佩林,N. 青蛙的性染色体进化:性拮抗基因起到了什么作用?

Philos. Trans. R. Soc. B Biol. Sci.

《英国皇家学会哲学会刊B辑:生物科学》

376

376

, 20200049 (2021).

,20200049(2021)。

Article

文章

Google Scholar

谷歌学术

Eggert, C. Sex determination: the amphibian models.

艾格特,C. 性别决定:两栖动物模型。

Reprod. Nutr. Dev.

生殖。营养。开发。

44

44

, 539–549 (2004).

,539-549页(2004年)。

Article

文章

PubMed

PubMed

Google Scholar

谷歌学术

Ma, W. J. & Veltsos, P. The diversity and evolution of sex chromosomes in frogs.

马,W. J. & Veltsos, P. 青蛙性染色体的多样性和进化。

Genes (Basel).

基因(巴塞尔)。

12

12

, 483 (2021).

,483(2021)。

Article

文章

CAS

中国科学院

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术

Olmo, E. & Morescalchi, A. Genome and cell sizes in frogs: A comparison with salamanders.

奥尔莫,E. & 莫雷斯卡尔基,A. 青蛙的基因组和细胞大小:与蝾螈的比较。

Experientia

经验

34

34

, 44–46 (1978).

,44-46页(1978年)。

Article

文章

CAS

中国科学院

Google Scholar

谷歌学术

Zuo, B., Nneji, L. M. & Sun, Y.-B. Comparative genomics reveals insights into anuran genome size evolution.

左波,Nneji, L. M.,孙跃斌。比较基因组学揭示了无尾两栖动物基因组大小进化的见解。

BMC Genomics

BMC基因组学

24

24

, 379 (2023).

,379页(2023年)。

Article

文章

CAS

中国科学院

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术

Lamichhaney, S.

拉米查内,S.

et al

. A bird-like genome from a frog: Mechanisms of genome size reduction in the ornate burrowing frog,

. 一种类似鸟类基因组的青蛙:华丽穴居蛙基因组大小减少的机制,

Platyplectrum ornatum

饰纹平腹蛙

.

Proc. Natl. Acad. Sci. USA.

美国国家科学院院刊

118

118

, e2011649118 (2021).

,e2011649118(2021)。

Article

文章

CAS

中国科学院

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术

Nürnberger, B.

纽伦贝格,B.

et al

等人

. A dense linkage map for a large repetitive genome: Discovery of the sex-determining region in hybridizing fire-bellied toads (

. 一个大型重复基因组的密集连锁图谱:在杂交铃蟾中发现性别决定区域 (

Bombina bombina

红腹铃蟾

and

Bombina variegata

斑腿铃蟾

).

)。

G3 Genes, Genomes, Genet.

G3 基因、基因组、遗传学。

11

11

, jkab286 (2021).

,jkab286(2021)。

Article

文章

Google Scholar

谷歌学术

Chen, Y.

陈,Y。

et al

. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data.

SOAPnuke:一个支持MapReduce加速的软件,用于高通量测序数据的综合质量控制和预处理。

Gigascience

千兆科学

7

7

, gix120 (2018).

,gix120(2018)。

Article

文章

PubMed

PubMed

Google Scholar

谷歌学术

Rhoads, A. & Au, K. F. PacBio Sequencing and Its Applications.

罗兹,A. & 欧,K. F. PacBio测序及其应用。

Genomics. Proteomics Bioinformatics

基因组学。蛋白质组学 生物信息学

13

13

, 278–289 (2015).

,278-289页(2015年)。

Article

文章

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术

Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor.

陈,S.,周,Y.,陈,Y.,顾,J. fastp: 一个超快的全功能FASTQ预处理器。

Bioinformatics

生物信息学

34

34

, i884–i890 (2018).

,i884–i890(2018)。

Article

文章

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术

Deorowicz, S., Kokot, M., Grabowski, S. & Debudaj-Grabysz, A. KMC 2: fast and resource-frugal k-mer counting.

Deorowicz, S., Kokot, M., Grabowski, S. & Debudaj-Grabysz, A. KMC 2: 快速且资源节约的 k-mer 计数。

Bioinformatics

生物信息学

31

31

, 1569–1576 (2015).

,1569-1576(2015)。

Article

文章

CAS

中国科学院

PubMed

PubMed

Google Scholar

谷歌学术索

Sun, H., Ding, J., Piednoël, M. & Schneeberger, K. findGSE: estimating genome size variation within human and Arabidopsis using k-mer frequencies.

孙,H.,丁,J.,皮耶诺埃尔,M.,施内伯格,K. findGSE:利用k-mer频率估算人类和拟南芥基因组大小变异。

Bioinformatics

生物信息学

34

34

, 550–557 (2018).

,550-557页(2018年)。

Article

文章

CAS

中国科学院

PubMed

PubMed

Google Scholar

谷歌学术

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool.

阿尔特舒尔,S. F., 吉什,W., 米勒,W., 迈尔斯,E. W. & 利普曼,D. J. 基本局部比对搜索工具。

J. Mol. Biol.

分子生物学杂志

215

215

, 403–410 (1990).

,403-410页(1990年)。

Article

文章

CAS

中国科学院

PubMed

PubMed

Google Scholar

谷歌学术索

Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved

程恒、康塞普西翁·G·T、冯霞、张辉、李恒 haplotype-resolved

de novo

从头开始

assembly using phased assembly graphs with hifiasm.

使用hifiasm通过分阶段组装图进行组装。

Nat. Methods

自然方法

18

18

, 170–175 (2021).

,170-175页(2021年)。

Article

文章

CAS

中国科学院

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术

Abd-Alla, H. I., Souguir, D. & Radwan, M. O. Genus Sophora: a comprehensive review on secondary chemical metabolites and their biological aspects from past achievements to future perspectives.

阿卜杜拉,H. I.,苏吉尔,D. & 拉德万,M. O. 属 Sophora:关于次生化学代谢物及其生物学方面的全面综述,从过去的成就到未来的展望。

Arch. Pharm. Res.

药学研究档案

44

44

, 903–986 (2021).

,903-986页(2021年)。

Article

文章

CAS

中国科学院

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术

Walker, B. J.

沃克,B. J.

et al

. Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement.

Pilon:一个用于全面微生物变异检测和基因组组装改进的综合工具。

PLoS One

PLoS One

9

9

, e112963 (2014).

,e112963(2014)。

Article

文章

ADS

广告

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术索

Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data.

博尔格,A. M.,洛赫塞,M. & 乌萨德尔,B. Trimmomatic:一个用于Illumina序列数据的灵活修剪工具。

Bioinformatics

生物信息学

30

30

, 2114–2120 (2014).

,2114-2120(2014)。

Article

文章

CAS

中国科学院

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术

Durand, N. C.

杜兰德,N. C.

et al

. Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments.

Juicer提供了一键式系统,用于分析环路分辨率Hi-C实验。

Cell Syst.

细胞系统。

3

3

, 95–98 (2016).

,95-98页(2016年)。

Article

文章

CAS

中国科学院

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术

Durand, N. C.

杜兰德,N. C.

et al

. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom.

Juicebox 提供了一个可视化系统,用于 Hi-C 接触图的无限制缩放。

Cell Syst.

细胞系统。

3

3

, 99–101 (2016).

,99-101页(2016年)。

Article

文章

CAS

中国科学院

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术

Vitelli, L., Batistoni, R., Andronico, F., Nardi, I. & Barsacchi-Pilone, G. Chromosomal localization of 18S + 28S and 5S ribosomal RNA genes in evolutionarily diverse anuran amphibians.

维特利,L.,巴蒂斯托尼,R.,安德罗尼科,F.,纳尔迪,I.,巴尔萨基-皮隆,G. 演化多样性蛙类两栖动物中18S + 28S和5S核糖体RNA基因的染色体定位。

Chromosoma

染色体

84

84

, 475–491 (1982).

,475-491页(1982年)。

Article

文章

CAS

中国科学院

PubMed

PubMed

Google Scholar

谷歌学术

Reynhout, J. K. & Kimmel, D. L. Chromosome studies of the lethal hybrid Rana pipiens ♀ × Rana catesbeiana ♂.

Reynhout, J. K. & Kimmel, D. L. 染色体研究致死杂交Rana pipiens ♀ × Rana catesbeiana ♂。

Dev. Biol.

发育生物学

20

20

, 501–517 (1969).

,501-517页(1969年)。

Article

文章

CAS

中国科学院

PubMed

PubMed

Google Scholar

谷歌学术

Bedell, J. A., Korf, I. & Gish, W. MaskerAid: a performance enhancement to RepeatMasker.

贝德尔,J. A.,科夫,I.,吉什,W. MaskerAid:RepeatMasker的性能增强工具。

Bioinformatics

生物信息学

16

16

, 1040–1041 (2000).

,1040-1041页(2000年)。

Article

文章

CAS

中国科学院

PubMed

PubMed

Google Scholar

谷歌学术

Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons.

徐,Z. & 王,H. LTR_FINDER:一个用于预测全长LTR逆转录转座子的高效工具。

Nucleic Acids Res.

核酸研究。

35

35

, W265–W268 (2007).

,W265–W268(2007)。

Article

文章

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术

Benson, G. Tandem repeats finder: a program to analyze DNA sequences.

Benson, G. 串联重复序列查找器:一个用于分析DNA序列的程序。

Nucleic Acids Res.

核酸研究。

27

27

, 573–580 (1999).

,573-580页(1999年)。

Article

文章

CAS

中国科学院

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术索

Slater, G. S. C. & Birney, E. Automated generation of heuristics for biological sequence comparison.

斯莱特,G. S. C. 和 伯尼,E. 用于生物序列比较的启发式算法的自动生成。

BMC bioinformatics.

BMC生物信息学。

6

6

, 1–11 (2005).

,1-11页(2005年)。

Article

文章

Google Scholar

谷歌学术

Grabherr, M. G.

格拉布赫尔,M. G.

et al

. Full-length transcriptome assembly from RNA-Seq data without a reference genome.

从无参考基因组的RNA-Seq数据进行全长转录组组装。

Nat. Biotechnol.

自然生物技术

29

29

, 644–652 (2011).

,644-652页(2011年)。

Article

文章

CAS

中国科学院

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术

Haas, B. J.

哈斯,B. J.

et al

. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies.

利用最大转录本比对组装改进拟南芥基因组注释。

Nucleic Acids Res.

核酸研究

31

31

, 5654–5666 (2003).

,5654-5666(2003)。

Article

文章

CAS

中国科学院

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术

Stanke, M.

斯坦克,M.

et al

. AUGUSTUS: ab initio prediction of alternative transcripts.

AUGUSTUS:从头预测可变转录本。

Nucleic Acids Res.

核酸研究

34

34

, W435–W439 (2006).

,W435–W439(2006)。

Article

文章

CAS

中国科学院

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术

Bairoch, A. & Apweiler, R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000.

Bairoch, A. & Apweiler, R. 2000年的SWISS-PROT蛋白质序列数据库及其补充TrEMBL。

Nucleic Acids Res.

核酸研究。

28

28

, 45–48 (2000).

,45-48页(2000年)。

Article

文章

CAS

中国科学院

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术

Mistry, J.

米斯特里,J.

et al

. Pfam: The protein families database in 2021.

Pfam:2021年的蛋白质家族数据库。

Nucleic Acids Res.

核酸研究

49

49

, D412–D419 (2021).

,D412–D419(2021)。

Article

文章

CAS

中国科学院

PubMed

PubMed

Google Scholar

谷歌学术索

Carbon, S.

碳,S。

et al

. The Gene Ontology Resource: 20 years and still GOing strong.

基因本体资源:20年依然强劲发展。

Nucleic Acids Res.

核酸研究

47

47

, D330–D338 (2019).

,D330–D338(2019)。

Article

文章

CAS

中国科学院

Google Scholar

谷歌学术索

Ogata, H.

绪方,H.

et al

. KEGG: Kyoto encyclopedia of genes and genomes.

KEGG:京都基因与基因组百科全书。

Nucleic Acids Res.

核酸研究。

27

27

, 29–34 (1999).

,29-34页(1999年)。

Article

文章

CAS

中国科学院

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术

Jones, P.

琼斯,P.

et al

等人

. InterProScan 5: genome-scale protein function classification.

InterProScan 5: 基因组规模的蛋白质功能分类。

Bioinformatics

生物信息学

30

30

, 1236–1240 (2014).

,1236-1240(2014)。

Article

文章

CAS

中国科学院

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术

O’Donovan, C.

奥多诺万,C.

et al

等人

. High-quality protein knowledge resource: SWISS-PROT and TrEMBL.

高质量的蛋白质知识资源:SWISS-PROT 和 TrEMBL。

Brief. Bioinform.

简明生物信息学

3

3

, 275–284 (2002).

,275-284页(2002年)。

Article

文章

PubMed

PubMed

Google Scholar

谷歌学术索

Wang, Y.

王,Y。

et al

. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity.

MCScanX:一个用于检测和进化分析基因同线性和共线性的工具包。

Nucleic Acids Res.

核酸研究。

40

40

, e49 (2012).

,e49(2012)。

Article

文章

ADS

广告

CAS

中国科学院

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术

Krzywinski, M.

克日维尼基,M。

et al

. Circos: an information aesthetic for comparative genomics.

Circos:比较基因组学的信息美学。

Genome Res.

基因组研究

19

19

, 1639–1645 (2009).

,1639-1645(2009)。

Article

文章

CAS

中国科学院

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术

NCBI GenBank

NCBI GenBank

https://identifiers.org/ncbi/insdc.gca:GCA_042186555.1

https://identifiers.org/ncbi/insdc.gca:GCA_042186555.1

(2024).

(2024)。

Zhang, K. American bullfrog annotation files.

张,K. 美国牛蛙注释文件。

figshare

figshare

https://figshare.com/s/cd3056e928f4d91b3578

https://figshare.com/s/cd3056e928f4d91b3578

(2024).

(2024)。

Li, H. Minimap2: pairwise alignment for nucleotide sequences.

李,H. Minimap2:用于核苷酸序列的两两比对。

Bioinformatics

生物信息学

34

34

, 3094–3100 (2018).

,3094–3100(2018)。

Article

文章

CAS

中国科学院

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术

Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs.

Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO:利用单拷贝直系同源基因评估基因组组装和注释的完整性。

Bioinformatics

生物信息学

31

31

, 3210–3212 (2015).

,3210–3212(2015)。

Article

文章

PubMed

PubMed

Google Scholar

谷歌学术

Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies.

Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury:无需参考基因组的基因组组装质量、完整性和定相评估工具。

Genome Biol.

基因组生物学

21

21

, 1–27 (2020).

,1-27页(2020年)。

Article

文章

Google Scholar

谷歌学术索

Formenti, G.

福尔门蒂,G.

et al

. Gfastats: Conversion, evaluation and manipulation of genome sequences using assembly graphs.

Gfastats:使用组装图对基因组序列进行转换、评估和操作。

Bioinformatics

生物信息学

38

38

, 4214–4216 (2022).

,4214-4216页(2022年)。

Article

文章

CAS

中国科学院

PubMed

PubMed

PubMed Central

PubMed Central

Google Scholar

谷歌学术

Tang, H.

唐,H.

et al

. Synteny and collinearity in plant genomes.

植物基因组中的同线性和共线性。

Science

科学

320

320

, 486–488 (2008).

,486-488页(2008年)。

Article

文章

ADS

广告

CAS

中国科学院

PubMed

PubMed

Google Scholar

谷歌学术索

Download references

下载参考文献

Acknowledgements

致谢

This project was supported by Development Project of 'Biosafety Technology' of Guangdong Province (No. 2022B1111030001), Special Provincial Approval Project Funds for the Rural Revitalization Strategy of Department of Agriculture and Rural Affairs of Guangdong Province (No. KB23Y1101), and R & D Projects in Key Areas of Guangdong Province (No. 2021B0202030001)..

本项目得到了广东省“生物安全技术”发展项目(编号:2022B1111030001)、广东省农业农村厅乡村振兴战略省级审批专项项目资金(编号:KB23Y1101)以及广东省重点领域研发计划项目(编号:2021B0202030001)的支持。

Author information

作者信息

Author notes

作者笔记

These authors contributed equally: Kai Zhang, Yuxuan Zhang, Ye Tian.

这些作者贡献相同:张凯、张宇轩、田野。

Authors and Affiliations

作者与所属机构

College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China

仲恺农业工程学院动物科学与技术学院,广州,510225,中国

Kai Zhang, Yuxuan Zhang, Ye Tian, Zhendong Qin, Chun Liu & Li Lin

张凯,张宇轩,田野,秦振东,刘春,林莉

Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China

中国深圳市深圳大学生命科学与海洋学院水产基因组学实验室,邮编518060

Kai Zhang

张凯

Guangdong Hisenor Group Co.,Ltd., Guangzhou, 511400, China

广东海迅集团有限公司,广州,511400,中国

Bin Xu & Xiewu Jiang

徐斌 & 蒋谢武

Authors

作者

Kai Zhang

张凯

View author publications

查看作者的出版物

You can also search for this author in

您还可以搜索该作者在

PubMed

PubMed

Google Scholar

谷歌学术

Yuxuan Zhang

张宇轩

View author publications

查看作者出版物

You can also search for this author in

您还可以搜索此作者在

PubMed

PubMed

Google Scholar

谷歌学术

Ye Tian

天野夜

View author publications

查看作者的出版物

You can also search for this author in

您还可以搜索此作者在

PubMed

PubMed

Google Scholar

谷歌学术

Bin Xu

徐彬

View author publications

查看作者的出版物

You can also search for this author in

您还可以搜索此作者在

PubMed

PubMed

Google Scholar

谷歌学术索

Xiewu Jiang

蒋谢武

View author publications

查看作者的出版物

You can also search for this author in

您还可以搜索此作者在

PubMed

PubMed

Google Scholar

谷歌学术

Zhendong Qin

秦振东

View author publications

查看作者的出版物

You can also search for this author in

您还可以搜索该作者在

PubMed

PubMed

Google Scholar

谷歌学术

Chun Liu

刘春

View author publications

查看作者的出版物

You can also search for this author in

您还可以搜索此作者在

PubMed

PubMed

Google Scholar

谷歌学术搜索

Li Lin

李林

View author publications

查看作者出版物

You can also search for this author in

您还可以搜索此作者在

PubMed

PubMed

Google Scholar

谷歌学术

Contributions

贡献

Lin Li, Chun Liu and Zhendong Qin conceived this study; Kai Zhang, Ye Tian and Yuxuan Zhang participated in the research and bioinformatics analysis; Kai Zhang and Chun Liu collected the samples; Bin Xu and Xiewu Jiang provided research advice; Kai Zhang, Ye Tian and Yuxuan Zhang wrote the original manuscript; Lin Li, Chun Liu and Zhendong Qin reviewed and edited the manuscript..

林莉、刘春和秦振东构思了本研究;张凯、田野和张宇轩参与了研究和生物信息学分析;张凯和刘春收集了样本;徐斌和江协武提供了研究建议;张凯、田野和张宇轩撰写了初稿;林莉、刘春和秦振东审阅并编辑了手稿。

Corresponding authors

通讯作者

Correspondence to

致信给

Zhendong Qin

秦振东

,

Chun Liu

刘春

or

Li Lin

李林

.

Ethics declarations

伦理声明

Competing interests

竞争利益

The authors declare no competing interests.

作者声明不存在竞争性利益。

Additional information

附加信息

Publisher’s note

出版社注

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature 对已发布地图中的管辖权声明和机构隶属关系保持中立。

Rights and permissions

权利与许可

Open Access

开放获取

This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

本文根据知识共享署名-非商业性使用-禁止演绎 4.0 国际许可协议获得许可,该协议允许您在任何媒介或格式中进行非商业性的使用、分享、分发和复制,只要您对原作者和来源给予适当的署名,提供指向知识共享许可协议的链接,并说明是否对授权材料进行了修改。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可,您无权分享从本文或其部分内容衍生的改编材料。本文中的图像或其他第三方材料包含在文章的Creative Commons许可中,除非在材料的署名行中另有说明。如果材料未包含在文章的Creative Commons许可中,并且您的预期用途不被法律规定允许或超出了允许的使用范围,您需要直接从版权持有人处获得许可。

To view a copy of this licence, visit .

要查看此许可证的副本,请访问。

http://creativecommons.org/licenses/by-nc-nd/4.0/

http://creativecommons.org/licenses/by-nc-nd/4.0/

.

Reprints and permissions

重印和权限

About this article

关于本文

Cite this article

引用这篇文章

Zhang, K., Zhang, Y., Tian, Y.

张, K., 张, Y., 田, Y.

et al.

等人

A Chromosome-level genome assembly of the American bullfrog (

美洲牛蛙的染色体级别基因组组装

Aquarana catesbeiana

美洲牛蛙

).

)。

Sci Data

科学数据

12

12

, 413 (2025). https://doi.org/10.1038/s41597-025-04697-3

,413(2025)。https://doi.org/10.1038/s41597-025-04697-3

Download citation

下载引用

Received

已收到

:

12 November 2024

2024年11月12日

Accepted

已接受

:

21 February 2025

2025年2月21日

Published

已发布

:

10 March 2025

2025年3月10日

DOI

数字对象标识符

:

https://doi.org/10.1038/s41597-025-04697-3

https://doi.org/10.1038/s41597-025-04697-3

Share this article

分享这篇文章

Anyone you share the following link with will be able to read this content:

任何你分享以下链接的人都将能够阅读此内容:

Get shareable link

获取可共享链接

Sorry, a shareable link is not currently available for this article.

抱歉,这篇文章目前没有可共享的链接。

Copy to clipboard

复制到剪贴板

Provided by the Springer Nature SharedIt content-sharing initiative

由 Springer Nature SharedIt 内容共享计划提供