EN
登录

新型抗生素对抗多药耐药超级细菌

New antibiotic for multidrug resistant superbug

D-Pharm 等信源发布 2025-04-04 13:15

可切换为仅中文


Researchers from the universities in Konstanz and Vienna discover a new class of antibiotic that selectively targets

康斯坦茨大学和维也纳大学的研究人员发现了一种新的抗生素类别,可以选择性地针对

Neisseria gonorrhoeae

淋病奈瑟菌

, the bacterium that causes gonorrhoea. These substances trigger a self-destruction program, which also operates in multi-resistant variants of the pathogen. The novel findings are published in the current issue of Nature Microbiology.

,这种细菌会引起淋病。这些物质会触发一种自我毁灭程序,该程序在病原体的多重耐药变种中同样有效。这一新颖的研究成果发表在《自然微生物学》的最新一期上。

Neisseria gonorrhoeae (gonococci), the bacteria that cause gonorrhoea. Research teams led by cell biologist Christof Hauck (University of Konstanz) and chemist Thomas Böttcher (University of Vienna) have discovered novel substances that are effective against multi-resistant gonococci.

引起淋病的细菌——淋球菌(Neisseria gonorrhoeae)。由细胞生物学家克里斯托夫·豪克(康斯坦茨大学)和化学家托马斯·波特歇(维也纳大学)领导的研究团队发现了对多重耐药淋球菌有效的新型物质。

Christof Hauck

克里斯托夫·豪克

In recent years, the World Health Organization (WHO) has repeatedly warned of the increase in microbes resistant to antibiotics. Especially multi-resistant bacteria threaten the global healthcare system and can deprive modern medicine of one of its most important curative tools. A team of researchers at the University of Konstanz and the University of Vienna, along with their collaboration partners, have now identified a highly effective substance that uses a new mechanism to target one particularly problematic pathogen.

近年来,世界卫生组织 (WHO) 屡次发出警告,指出对抗生素产生抗药性的微生物正在增加。特别是多重耐药菌,它们威胁着全球医疗系统,可能剥夺现代医学最重要的治疗工具之一。康斯坦茨大学和维也纳大学的一个研究团队及其合作伙伴现已发现一种高效物质,该物质利用全新机制针对一种特别棘手的病原体。

The astonishing findings of the research team led by Christof Hauck, professor of cell biology at the University of Konstanz, and Thomas Böttcher, professor of microbial biochemistry at the University of Vienna, have now been published in Nature Microbiology..

康斯坦茨大学细胞生物学教授克里斯托夫·豪克和维也纳大学微生物生物化学教授托马斯·贝特歇尔领导的研究团队的惊人发现现已发表在《自然微生物学》上。

Last year, the WHO compiled a list of particularly problematic bacterial pathogens

去年,世卫组织整理了一份特别棘手的细菌病原体清单。

(Bacterial Priority Pathogens List

(细菌重点病原体清单

). It names15 types of bacteria that are resistant to antibiotics and classifies them into categories such as 'critical', 'high' and 'medium' priority. The WHO has called upon science and industry to focus their efforts on developing drugs that fight these microbes. One bacterium on the list is

)。它列出了15种对抗生素具有抗药性的细菌,并将它们分为“严重”、“高”和“中等”优先级类别。世卫组织呼吁科学界和工业界集中精力开发对抗这些微生物的药物。名单中的一种细菌是

Neisseria gonorrhoeae

淋病奈瑟菌

, the microbe that causes the sexually transmitted disease gonorrhoea.

,这种导致性传播疾病淋病的微生物。

Sophisticated early warning system: How bacteria respond to threats

复杂的早期预警系统:细菌如何应对威胁

Understanding is crucial for combating infections

理解对于对抗感染至关重要。

Read news

读新闻

Superbug

超级细菌

gonococci

淋球菌

Neisseria gonorrhoeae

淋病奈瑟菌

, also referred to as gonococcus, is a highly specialized type of bacteria only found in humans. The pathogen primarily colonizes mucous membranes in the genital tract and can be transmitted from person to person during unprotected sex. During birth, these pathogens can also be transmitted from an infected mother to her child, causing the baby's eyes to become infected.

,也被称为淋球菌,是一种高度特化的细菌,仅存在于人类中。该病原体主要寄生于生殖道的黏膜,并在无保护措施的性行为中人传人。分娩时,这些病原体还可由受感染的母亲传染给婴儿,导致婴儿的眼睛受到感染。

Especially before antibiotics were available, this was a common cause of blindness in newborns..

特别是在抗生素问世之前,这是新生儿失明的常见原因。

'Gonococci are notorious for quickly becoming resistant to antibiotics', says chemist Thomas Böttcher. This is because gonococci have the special ability to pick up genetic material from other microbes – including antibiotic resistance genes. Böttcher adds: 'This is one of the reasons why gonococcal strains have recently emerged that are resistant to all antibiotics currently in use – such .

“淋球菌以其快速对抗生素产生抗药性而臭名昭著,”化学家托马斯·波策尔说道。这是因为淋球菌具有从其他微生物中获取遗传物质的特殊能力——包括抗生素抗性基因。波策尔补充道:“这就是为什么最近出现了对所有当前使用的抗生素都具有抗性的淋球菌株的原因之一。”

superbugs

超级细菌

can no longer be treated with antibiotics.'

不能再用抗生素治疗。'

Interdisciplinary research approach enables breakthrough

跨学科研究方法实现突破

Hauck and Böttcher's teams have now been able to identify new substances from the group of alkyl quinolones (AQs) that are even effective against multidrug resistant gonococci. AQs are substances produced naturally by some bacteria to ward off other naturally occurring bacteria. Building on the idea that 'the enemy of my enemy is my friend', the researchers recreated these natural substances in the lab and synthesized slightly modified variants.

豪克和贝特歇尔的团队现在已经能够从烷基喹诺酮(AQs)类化合物中鉴定出新的物质,这些物质甚至对多重耐药的淋球菌有效。AQs 是一些细菌自然产生的物质,用于抵御其他天然存在的细菌。基于“敌人的敌人就是朋友”的理念,研究人员在实验室中重建了这些天然物质,并合成了稍作修改的变体。

'One of these new AQ molecules actually did have a unique effect: The chemical compound was able to kill gonococci without having a negative impact on other microorganisms or human cells', says cell biologist Hauck. The team elucidated the nature of this astonishing effect using an interdisciplinary research approach that combines synthetic and organic chemistry with genetic and biochemical analyses as well as complex preclinical animal models..

“其中一种新的AQ分子确实产生了独特的效果:这种化合物能够在不对其他微生物或人体细胞产生负面影响的情况下杀死淋球菌,”细胞生物学家豪克说道。团队利用结合合成与有机化学、遗传与生化分析以及复杂的临床前动物模型的跨学科研究方法,阐明了这一惊人效果的本质。

It turns out that this novel antibiotic activates an existing 'suicide' mechanism in gonococci. 'From other microorganisms, we know about such self-destruction programmes based on toxin-antitoxin systems, and our AQ substance seems to precisely target this Achilles heel of gonococci', explains Ann-Kathrin Mix, first author of the study and a doctoral researcher in Hauck's team.

结果表明,这种新型抗生素激活了淋球菌内现有的“自杀”机制。该研究的第一作者、豪克团队的博士研究员安-凯瑟琳·米克斯解释说:“从其他微生物中,我们了解到基于毒素-抗毒素系统的这种自我毁灭程序,而我们的AQ物质似乎正好瞄准了淋球菌的这一致命弱点。”

The new antibiotic causes the breakdown of an antitoxin in gonococci, so that the toxin part is released and kills the bacteria. Importantly, the AQ substance can even eliminate multi-resistant gonococcal variants. However, since the respective toxin-antitoxin system is exclusive to gonococci, the antibiotic does not harm other bacteria..

新型抗生素会导致淋球菌中抗毒素的分解,从而释放出毒素部分并杀死细菌。重要的是,AQ物质甚至可以消除多药耐药的淋球菌变种。然而,由于相应的毒素-抗毒素系统是淋球菌所独有的,这种抗生素不会对其他细菌造成伤害。

Toxin-antitoxin systems are also present in other infectious microorganisms. The researchers thus expect that this type of treatment could be adapted for use against other bacterial pathogens. 'The recently published findings open up a new and innovative way to fight pathogenic microbes before our arsenal of antibiotics is drained', Hauck concludes..

毒素-抗毒素系统也存在于其他传染性微生物中。因此,研究人员预计这种类型的治疗方法可以适用于对抗其他细菌病原体。“最近发表的研究成果为我们提供了一种创新的方式来对抗病原微生物,以免我们的抗生素库被耗尽,”豪克总结道。

Original publication

首次出版

Mix, A.-K., Nguyen, T.H.N., Schuhmacher, T., Szamosvári, D., Muenzner, P., Haas, P., Heeb, L., Wami, H.T., Dobrindt, U., Delikkafa, Y.Ö., Mayer, T.U., Böttcher, T., Hauck, C.R. (2025) A quinolone N-oxide antibiotic selectively targets Neisseria gonorrhoeae via its toxin-antitoxin system. Nature Microbiology.

Mix, A.-K., Nguyen, T.H.N., Schuhmacher, T., Szamosvári, D., Muenzner, P., Haas, P., Heeb, L., Wami, H.T., Dobrindt, U., Delikkafa, Y.Ö., Mayer, T.U., Böttcher, T., Hauck, C.R. (2025) 一种喹诺酮N-氧化物抗生素通过其毒素-抗毒素系统选择性靶向淋病奈瑟菌。《自然微生物学》。

https://www.bionity.com/en/news/1185962/new-antibiotic-for-multidrug-resistant-superbug.html

https://www.bionity.com/zh/news/1185962/新型抗生素对抗多药耐药超级细菌.html

Method reveals what bacteria sense in their surroundings

方法揭示了细菌在其周围环境中感知到的信息

Knowing how environmental signals modulate bacterial behavior could help combat biofouling and antibiotic resistance

了解环境信号如何调节细菌行为可能有助于抵抗生物污染和抗生素耐药性。

Read news

读新闻

Most read news

最受关注的新闻

1

1

Fascinating new findings: Obesity starts in the brain

引人入胜的新发现:肥胖始于大脑

2

2

A method to purify proteins with light

一种用光纯化蛋白质的方法

3

3

Antimalarial drug together with anticancer drug is efficient against leukemia

抗疟疾药物与抗癌药物一起对白血病有效。

4

4

Groundbreaking AI tool generates 3D map of the brain

开创性的人工智能工具生成大脑的3D地图

5

5

Extreme Mutation Hotspot in Bacteria Discovered: Study Links High Mutation Rates to Transcriptional Activation

细菌中发现极端突变热点:研究将高突变率与转录激活联系起来

Original publication

首次出版

Mix, A.-K., Nguyen, T.H.N., Schuhmacher, T., Szamosvári, D., Muenzner, P., Haas, P., Heeb, L., Wami, H.T., Dobrindt, U., Delikkafa, Y.Ö., Mayer, T.U., Böttcher, T., Hauck, C.R. (2025) A quinolone N-oxide antibiotic selectively targets Neisseria gonorrhoeae via its toxin-antitoxin system. Nature Microbiology.

Mix, A.-K., Nguyen, T.H.N., Schuhmacher, T., Szamosvári, D., Muenzner, P., Haas, P., Heeb, L., Wami, H.T., Dobrindt, U., Delikkafa, Y.Ö., Mayer, T.U., Böttcher, T., Hauck, C.R. (2025) 一种喹诺酮N-氧化物抗生素通过其毒素-抗毒素系统选择性靶向淋病奈瑟菌。《自然微生物学》。

Topics

主题

antibiotics

抗生素

Neisseria gonorrhoeae

淋病奈瑟菌

gonorrhea

淋病

bacteria

细菌

antibiotic resistance

抗生素耐药性

multi-resistant germs

多重耐药菌

Show all

显示全部

Show less

显示更少

Organizations

组织机构

Uni Konstanz

康斯坦茨大学

Universität Wien

维也纳大学