EN
登录

科学家在大分子单粒子成像的激光对准方面取得突破

Scientists achieve breakthrough in laser-alignment for macromolecular single-particle imaging

D-Pharm 等信源发布 2025-04-15 12:00

可切换为仅中文


Single-particle diffractive

单粒子衍射

imaging

成像

(SPI) using X-ray free-electron lasers allows researchers to reconstruct the structure of

(SPI) 使用 X 射线自由电子激光器允许研究人员重建结构

nanoparticles

纳米颗粒

and biomolecules. However, the technique often requires imaging up to several billion nanoparticles to produce the image and imposes limitations on its clarity and sharpness. Researchers at the Center for Free-Electron Laser Science at DESY, together with international colleagues, recently demonstrated that laser-induced alignment can indeed be achieved to significantly improve molecular imaging techniques.

和生物分子。然而,该技术通常需要对多达数十亿个纳米粒子进行成像才能生成图像,并且对其清晰度和锐度有一定的限制。德国电子同步加速器研究中心自由电子激光科学中心的研究人员与国际同事最近证明,激光诱导的排列确实可以显著改善分子成像技术。

This geometric confinement of the .

这种几何限制。

molecules

分子

in the x-ray-imaging experiment will greatly facilitate the recovery of the molecular orientation and, therefore, the structure retrieval. It thus overcomes a significant challenge in single-particle diffractive imaging. This novel development further paves the way for solving the three-dimensional structures of .

在X射线成像实验中将极大地促进分子取向的恢复,从而实现结构的获取。因此,它克服了单粒子衍射成像中的一个重大挑战。这一新颖的发展为进一步解决三维结构铺平了道路。

proteins

蛋白质

and other

和其他

macromolecules

大分子

using SPI.

使用SPI。

An optical laser can be used to align complex biomolecules for single-molecule imaging.

光学激光可用于对齐复杂生物分子,以便进行单分子成像。

DESY-CFEL–CMI, Muhamed Amin

DESY-CFEL–CMI,穆哈默德·阿明

Laser-induced alignment utilizes the interaction between the anisotropic polarizability of the molecule and the electric field of a laser pulse. The laser pulse induces a transient electric dipole moment in the molecule, which then follows the electric field of the laser pulse. This forces the molecules to rotate into an orientation where the polarizability interaction is optimized, i.e., to align the most-polarizable axis of the molecule with the laser polarization, resulting in the geometric alignment of the molecules and thus fixing it in space..

激光诱导排列利用了分子的各向异性极化率与激光脉冲电场之间的相互作用。激光脉冲在分子中诱导出一个瞬态电偶极矩,随后该电偶极矩跟随激光脉冲的电场变化。这迫使分子旋转到一个极化率相互作用最优的方向,即把分子的最易极化轴与激光偏振方向对齐,从而实现分子的几何排列并将其固定在空间中。

In the current work, the researchers computationally demonstrated that nanoparticles and proteins can be strongly aligned using current standard laser technologies. Analyzing 150 000 proteins from the international protein databank (PDB), they showed that most proteins could be aligned using realistic experimental conditions.

在目前的研究中,研究人员通过计算证明,利用当前的标准激光技术可以强有力地排列纳米颗粒和蛋白质。通过对国际蛋白质数据库(PDB)中的150,000种蛋白质进行分析,他们表明在实际实验条件下,大多数蛋白质都能够被排列。

This enhances their visibility in single-particle diffraction experiments. The team published their findings in the Journal of the American Chemical Society..

这增强了它们在单粒子衍射实验中的可见性。该团队将其研究成果发表在《美国化学学会杂志》上。

The findings address a long-standing issue in single-particle imaging, where molecules are typically captured in random orientations, making 3D reconstruction difficult. The researchers also predict that cooling the molecules to cryogenic temperatures, a technique the group is actively implementing, enhances the degree of alignment and also reduces potential radiation damage, further refining the technique..

研究结果解决了单粒子成像领域一个长期存在的问题,即分子通常以随机方向被捕获,导致三维重建变得困难。研究人员还预测,将分子冷却到低温(该团队正在积极实施的一种技术)可以增强对齐程度,并减少潜在的辐射损伤,从而进一步完善该技术。

This breakthrough has significant implications for structural biology and nanotechnology, enabling scientists to visualize molecular structures with unprecedented detail, and could potentially revolutionize drug discovery, biomolecular research, and materials science. Future experiments will focus on integrating these laser techniques with XFEL imaging to achieve sub-nanometer resolution, bringing researchers closer to real-time visualization of molecular dynamics..

这一突破对结构生物学和纳米技术具有重要意义,使科学家能够以前所未有的细节可视化分子结构,并有可能彻底改变药物发现、生物分子研究和材料科学。未来的实验将集中在将这些激光技术与XFEL成像相结合,以实现亚纳米分辨率,使研究人员更接近于实时可视化分子动力学。

Original publication

首次出版

Muhamed Amin, Jean-Michel Hartmann, Amit K. Samanta, Jochen Küpper; 'Laser-Induced Alignment of Nanoparticles and Macromolecules for Coherent-Diffractive-Imaging Applications'; Journal of the American Chemical Society, Volume 147, 2025-2-3

穆罕默德·阿明,让-米歇尔·哈特曼,阿米特·K·萨曼塔,约亨·库珀;《用于相干衍射成像应用的激光诱导纳米颗粒和大分子排列》;《美国化学学会期刊》,第147卷,2025年2月3日

https://www.bionity.com/en/news/1186037/scientists-achieve-breakthrough-in-laser-alignment-for-macromolecular-single-particle-imaging.html

https://www.bionity.com/zh/news/1186037/科学家在大分子单粒子成像的激光对准方面取得突破.html

New microscope reveals ultrastructure of cells

新型显微镜揭示细胞超微结构

HZB researchers can take images of small cellular components in their natural environment – while the cell remains intact

HZB研究人员可以在细胞保持完整的情况下,对其自然环境中的小型细胞组件进行成像。

Read news

读新闻

Most read news

最受关注的新闻

1

1

What drives our cravings for food and drink?

是什么驱使我们对食物和饮料的渴望?

2

2

Groundbreaking AI tool generates 3D map of the brain

开创性的人工智能工具生成大脑的3D地图

3

3

Researchers bring prehistoric algae back to life

研究人员让史前藻类重获新生

4

4

Extreme Mutation Hotspot in Bacteria Discovered: Study Links High Mutation Rates to Transcriptional Activation

研究发现细菌中的极端突变热点:高突变率与转录激活相关

5

5

Origin of Life: How microbes laid the foundation for complex cells

生命起源:微生物如何为复杂细胞奠定基础

Original publication

首次出版

Muhamed Amin, Jean-Michel Hartmann, Amit K. Samanta, Jochen Küpper; 'Laser-Induced Alignment of Nanoparticles and Macromolecules for Coherent-Diffractive-Imaging Applications'; Journal of the American Chemical Society, Volume 147, 2025-2-3

穆罕默德·阿明,让-米歇尔·哈特曼,阿米特·K·萨曼塔,约亨·库珀;《用于相干衍射成像应用的激光诱导纳米颗粒和大分子排列》;《美国化学学会杂志》,第147卷,2025年2月3日

Topics

主题

molecules

分子

molecular imaging systems

分子成像系统

imaging

成像

macromolecules

大分子

nanoparticles

纳米颗粒

proteins

蛋白质

structural biology

结构生物学

nanotechnology

纳米技术

Show all

显示全部

Show less

显示较少

Organizations

组织

Deutsches Elektronen-Synchrotron DESY

德国电子同步加速器研究中心 DESY