EN
登录

约翰·斯诺实验室推出子公司Martlet.ai,为支付方和提供商实现AI赋能的HCC编码

John Snow Labs Launches Spinoff Martlet.ai to Enable AI-Powered HCC Coding for Payers and Providers

HIT 等信源发布 2025-07-01 14:18

可切换为仅中文


What You Should Know:

你应该知道的:

John Snow Labs

约翰·斯诺实验室

, a prominent AI company in the healthcare sector, today announced the launch of

,一家在医疗保健领域著名的AI公司,今天宣布推出

Martlet.ai

马丁特.ai

, a new

,一个新的

healthcare AI

医疗人工智能

company dedicated to redefining how payers and providers approach Hierarchical Condition Category (HCC) Coding.

公司致力于重新定义支付方和供应商如何处理层次条件类别(HCC)编码。

– Founded by engineers and payment experts from John Snow Labs, Martlet.ai is the first of several planned spin-off companies aimed at tackling specific, high-impact challenges within the healthcare industry using AI

– Martlet.ai由来自John Snow Labs的工程师和支付专家创立,是计划中的几家旨在利用AI解决医疗保健行业内特定高影响力挑战的首家分拆公司。

Impact of Patient Risk Adjustment

患者风险调整的影响

HCC coding is critical for patient risk adjustment, directly impacting reimbursement structures and ensuring the financial viability of value-based care models. This is becoming even more vital given the CMS Medicare Advantage rate hikes announced for 2026, which will further link reimbursement to precise documentation and coding..

HCC编码对于患者风险调整至关重要,直接影响到报销结构,并确保基于价值的护理模式的财务可行性。鉴于CMS宣布的2026年医疗保险优势计划费率上调,这一点变得尤为重要,这将进一步把报销与准确的文件记录和编码联系起来。

Martlet.ai’s State-of-the-Art HCC Engine

Martlet.ai的最先进的HCC引擎

Martlet.ai’s advanced HCC engine is designed to address these complex challenges. Co-founded by CTO Hasham Ul Haq and CRO Ritwik Jain, the venture is built on years of successful delivery of AI solutions to leading healthcare enterprises. The models operate entirely behind customer firewalls and are trained directly on patient charts to ensure unparalleled accuracy, auditability, and speed.

Martlet.ai 的先进 HCC 引擎旨在应对这些复杂的挑战。该公司由首席技术官哈沙姆·乌尔·哈克 (Hasham Ul Haq) 和首席营收官里特维克·贾恩 (Ritwik Jain) 共同创立,基于多年来为领先的医疗保健企业成功交付 AI 解决方案的经验构建而成。这些模型完全在客户的防火墙后运行,并直接根据患者病历进行训练,以确保无与伦比的准确性、可审计性和速度。

Unlike general-purpose AI tools, Martlet.ai was specifically developed for clinical documentation, making it highly effective for powering coding workflows..

与通用人工智能工具不同,Martlet.ai 专为临床文档而开发,因此在助力编码工作流程方面非常有效。

Real-World Success at WVU Medicine

西弗吉尼亚大学医学的真实世界成功案例

West Virginia University (WVU) Medicine is already benefiting from Martlet.ai, utilizing it to identify previously missed HCC codes, enhance risk adjustment factor (RAF) scoring, and streamline physician workflows. The seamless two-way integration with their electronic health record (EHR) system ensures full compliance.

西弗吉尼亚大学(WVU)医学中心已经在利用Martlet.ai带来的优势,使用它来识别之前遗漏的肝细胞癌(HCC)代码、提升风险调整因子(RAF)评分,并优化医生的工作流程。与其电子健康记录(EHR)系统的无缝双向集成确保了完全合规。

During their NLP Summit session, “Maximizing Patient Care through AI-Enhanced HCC Code Discovery,” WVU reported a notable increase in HCC code accuracy and a significant reduction in manual review time..

在他们于NLP峰会的会议“通过人工智能增强的HCC代码发现最大化患者护理”中,西弗吉尼亚大学报告称HCC代码的准确性显著提高,人工审查时间大幅减少。

“Martlet.ai gives healthcare organizations the power to take HCC coding into their own hands with a level of customization and compliance that is unmatched,” said David Talby, CEO, John Snow Labs. He further emphasized that Martlet.ai was “engineered by industry leaders to be compliant, effective, and production-ready from day one” through its combination of “state-of-the-art, healthcare-specific, proprietary medical language models, an optimized human-in-the-loop workflow, and enterprise-grade validation layers”..

“Martlet.ai让医疗保健组织能够以无与伦比的定制化和合规性,将HCC编码掌握在自己手中,”John Snow Labs首席执行官David Talby表示。他进一步强调,Martlet.ai“由行业领导者设计,从第一天起就具备合规性、高效性和生产就绪能力”,通过结合“最先进的、针对医疗领域的专有医学语言模型、优化的人机协作工作流程以及企业级验证层”实现。