商务合作
动脉网APP
可切换为仅中文
Lunit, a leading provider of AI for cancer diagnostics and precision oncology, and Labcorp, a global leader of innovative and comprehensive laboratory services, today announced a collaborative initiative to accelerate innovation in digital pathology (DP) and artificial intelligence (AI) for oncology research and clinical care..
Lunit是一家为癌症诊断和精准肿瘤学提供人工智能的领先供应商,Labcorp是一家全球领先的创新性和综合性实验室服务提供商,双方今天宣布了一项合作计划,旨在加速数字病理学(DP)和人工智能(AI)在肿瘤研究和临床护理领域的创新。
The collaboration aims to leverage Labcorp's extensive clinical and pathology expertise alongside Lunit's cutting-edge AI algorithms to transform how tumor microenvironments are analyzed and interpreted. By combining high-resolution whole-slide imaging with AI-powered spatial profiling, the collaboration seeks to generate new insights that can enhance biomarker discovery and guide precision immuno-oncology strategies..
该合作旨在利用Labcorp广泛的临床和病理学专业知识,结合Lunit尖端的人工智能算法,彻底改变肿瘤微环境的分析与解读方式。通过将高分辨率全切片成像与人工智能驱动的空间分析相结合,此次合作力求产生新的见解,以促进生物标志物的发现并指导精准免疫肿瘤学策略。
First Collaborative Studies Presented at SITC and AMP
首次合作研究在SITC和AMP上发表
The first outcome of the collaboration was showcased at two leading scientific conferences:
合作的第一个成果在两个重要的科学会议上展示:
Society for Immunotherapy of Cancer (SITC): Study demonstrated how AI-based spatial profiling and machine learning can identify immune-active subtypes of non-small cell lung cancer (NSCLC) tumors with the MET exon 14 skipping mutation, which are associated with improved immunotherapy outcomes. Using Lunit SCOPE IO®, researchers analyzed more than 370 pathology slides to characterize immune phenotypes across different types of MET alterations, including exon 14 skipping, amplification, or no mutation (wildtype).
癌症免疫治疗学会(SITC):研究表明,基于人工智能的空间分析和机器学习可以识别具有MET外显子14跳跃突变的非小细胞肺癌(NSCLC)肿瘤的免疫活性亚型,这些亚型与免疫治疗效果的改善相关。研究人员使用Lunit SCOPE IO®分析了370多张病理切片,以表征不同类型的MET改变(包括外显子14跳跃、扩增或无突变(野生型))中的免疫表型。
Immune gene expression analysis further validated the AI-defined immune phenotypes and revealed key immune response pathways driving the inflamed phenotype, underscoring the predictive power of AI-based spatial profiling in MET-mutated NSCLC..
免疫基因表达分析进一步验证了AI定义的免疫表型,并揭示了驱动炎症表型的关键免疫反应通路,突显了基于AI的空间分析在MET突变非小细胞肺癌中的预测能力。
Association for Molecular Pathology (AMP): Study highlighted distinct tumor-immune microenvironments linked to different MET alterations in NSCLC, revealing immune-desert phenotypes in MET-amplified tumors, and inflamed phenotypes in those with MET exon 14 skipping tumors.
分子病理学协会 (AMP):研究表明,MET改变不同的非小细胞肺癌与不同的肿瘤免疫微环境相关,MET扩增的肿瘤表现为免疫荒漠型,而MET第14外显子跳跃突变的肿瘤则表现为炎症型。
'Collaborating with Labcorp, one of the most respected leaders in diagnostics and clinical research, marks an important step toward expanding the real-world use of AI in oncology. These early studies show how AI can reveal meaningful, predictive biomarkers hidden within pathology slides,' said Brandon Suh, CEO of Lunit.
“与诊断和临床研究领域最受尊敬的领导者之一Labcorp合作,标志着在扩大人工智能在肿瘤学中的实际应用方面迈出了重要一步。这些早期研究表明,人工智能如何揭示病理切片中隐藏的有意义的预测性生物标志物,”Lunit首席执行官Brandon Suh表示。
'It's a clear example of how digital pathology and AI can work hand in hand to advance precision oncology understanding, bridging discovery research and real-world clinical care.'.
“这是数字病理学和人工智能如何携手推动精准肿瘤学理解的明确例子,弥合了发现研究与真实世界的临床护理之间的差距。”
'Our collaboration with Lunit aims to turn complex pathology data into meaningful insights,' said Shakti Ramkissoon, M.D., Ph.D., MBA, vice president and medical lead for oncology at Labcorp. 'These studies demonstrate how AI-powered digital pathology can reveal patterns within tumors—ultimately helping to guide treatment decisions, inform biomarker development, and pave the way for more personalized cancer care.'.
“我们与Lunit的合作旨在将复杂的病理数据转化为有意义的见解,”Labcorp公司肿瘤学副总裁兼医学主管Shakti Ramkissoon博士(医学博士、哲学博士、工商管理硕士)表示。“这些研究展示了人工智能驱动的数字病理如何揭示肿瘤内部的模式——最终帮助指导治疗决策、推动生物标志物开发,并为更加个性化的癌症治疗铺平道路。”
Labcorp and Lunit plan to further broaden their collaboration by applying digital pathology AI to additional cancer types and genomic correlations.
Labcorp 和 Lunit 计划通过将数字病理学 AI 应用于更多癌症类型和基因组相关性,进一步扩大他们的合作。
About Lunit
关于Lunit
Founded in 2013, Lunit (KRX: 328130) is a global leader on a mission to conquer cancer through AI. Our clinically validated solutions span medical imaging, breast health, and biomarker analysis—empowering earlier detection, smarter treatment decisions, and more precise outcomes across the cancer care continuum..
Lunit(KRX: 328130)成立于2013年,是一家通过人工智能征服癌症的全球领导者。我们经过临床验证的解决方案涵盖医学影像、乳腺健康和生物标志物分析,助力在癌症护理过程中实现更早的检测、更明智的治疗决策以及更精确的结果。
Following the integration of Volpara, Lunit now offers a comprehensive suite spanning risk prediction and early detection to precision oncology. Our FDA-cleared Lunit INSIGHT suite and breast health solutions support cancer screening in thousands of medical institutions worldwide, while Lunit SCOPE platform is used in research partnership with global pharma leaders for biomarker development and companion diagnostics..
随着Volpara的整合,Lunit现在提供涵盖风险预测、早期检测到精准肿瘤学的综合套件。我们获得FDA批准的Lunit INSIGHT套件和乳腺健康解决方案支持全球数千家医疗机构的癌症筛查,同时Lunit SCOPE平台与全球制药领导者合作,用于生物标志物开发和伴随诊断。
Trusted by over 10,000 sites in more than 65 countries, Lunit combines deep medical expertise with continuously evolving datasets to deliver measurable impact—for patients, clinicians, and researchers alike. Headquartered in Seoul with global offices, Lunit is driving the worldwide fight against cancer.
Lunit 获得来自65个国家超过10,000个站点的信任,结合深厚的医学专业知识与不断扩展的数据集,为患者、临床医生和研究人员带来可衡量的影响。总部位于首尔并在全球设有办事处,Lunit 正在推动全球抗击癌症的斗争。
Learn more at lunit.io/en..
了解更多,请访问 lunit.io/en。
Cautionary Statement Regarding Forward-Looking Statements
关于前瞻性陈述的警示声明
This press release contains forward-looking statements, including, but not limited to, statements with respect to the collaboration between Lunit and Labcorp and the potential benefits, uses and applications of artificial intelligence-powered digital pathology. Actual results could differ materially from those suggested by forward-looking statements.
本新闻稿包含前瞻性陈述,包括但不限于关于Lunit与Labcorp之间的合作以及人工智能驱动的数字病理学的潜在益处、用途和应用的陈述。实际结果可能与这些前瞻性陈述所暗示的结果存在重大差异。
As a result, readers are cautioned not to place undue reliance on any of the forward-looking statements. All forward-looking statements are expressly qualified in their entirety by this cautionary statement..
因此,读者被警告不要对任何前瞻性陈述给予过度依赖。所有前瞻性陈述均以本警示声明为完全限定条件。
Source: prnewswire.com
来源:prnewswire.com